
Proceedings of The National Conference 
On Undergraduate Research (NCUR) 2005  

Virginia Military Institute 
Washington and Lee University 

Lexington, Virginia 
April 21 - 23, 2005 

Analysis of Some Properties of Interleavers for Turbo Codes  

Carlos Avenancio-León   
Department of Mathematics  

University of Puerto Rico at Humacao   

Faculty Advisor: Dr. Ivelisse Rubio  

Abstract 

On this research we study the behavior of the permutations produced by monomials xi over the finite field 
Fq. In particular, we study the dispersion, spreading, fixed elements and cyclic decomposition of these 
permutations. Here we present some results related to this.  
 
1. Introduction 
 
Error correcting codes are used on digital communication systems to repair errors that might occur during 
information transmission.  Turbo codes, presented in [1], are a class of codes that are very important 
because they achieve low error rate without consuming much energy. 
 
        The messages on transmission, using turbo codes, are encoded in parallel at least two times. On one of 
these encodings, the message is codified in its original form, on the others, it is changed by the interleaver 
before being codified. The interleaver, one of the principal components of turbo encoders, changes the 
position of the information symbols on each codification.  This is, the information symbols are permuted by 
the interleaver. One of the effects of permuting the information symbols could be that consecutive entries 
of the message are not damaged by error bursts. This will depend on some properties of the interleaver, 
such as the spreading and dispersion, which we will define later. 
 
        Random and S-random interleavers may have good functioning but they have some disadvantages that 
algebraically constructed interleavers might not have. The first disadvantage of random and S-random 
interleavers is that they have to be stored in memory, while permutations given by algebraic interleavers 
can be generated at the time of codification.  Another disadvantage of random and S-random interleavers is 
that, since we do not know their algebraic structure, their properties cannot be analyzed without running 
simulations.  Algebraic constructions could have the advantage that their properties can be predetermined.  
However, at the present time random and S-random are used since still there is not an algebraic 
construction with better performance.  
 
        On this research we have been studying some properties of permutations given by monomials xi over 
the finite field Fq to find monomials that produce good interleavers.  It is known that the dispersion and 
spreading factors are important properties.  As objectives we have: to study of the dispersion and spreading 
factors of permutations given by monomials xi and to study monomials that give permutations of cycle 
length 2. These are important because they are their own inverse and the same implement can be used for 
encoding and decoding.  So far we have found patterns on the exponents i of permutation monomials with 
good dispersion or spreading factors. Also, we have found conditions to be able to construct a second 
permutation monomial with dispersion, spreading, fixed points and cyclic decomposition equal to a given 
one.  
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2. Permutation Monomials 
 
A permutation ð of a set A is a bijective function ð:  A� A.  Monomials that produce permutations of a set 
are called permutation monomials.  A permutation of the elements of the finite field Fq is given by ð(x) =xi 
if and only if gcd(i,  q-1) =1.  Permutation monomials give an algebraic method to construct permutations.  
Using algebraic methods has the advantage that is not needed to store the permutation, as with the random 
and S-random interleavers.  Also, it could be possible to study the properties of the interleaver without 
having to run simulations. 
 
        Important factors for the good functioning of an interleaver are the dispersion and spreading factors.  
The dispersion measures the randomness of the permutation.  The spreading measures the distance between 
symbols that were close before being permuted by the interleaver.  There is conjecture of Corrada-Bravo, 
University of Puerto Rico at Rio Piedras, that another factor that affects the performance of the code might 
be the cyclic decomposition of the permutation.  The cyclic decomposition of permutations given by 
monomials have been studied in [1]. 
 
        For an example of the cyclic decomposition consider Z11 and ð(x) =x7. This gives the permutation: 
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In this representation, the first row are the elements of the set and the second is the image of these elements 
under ð.  We can write ð as:  ð= (2 7 6 8) (3 9 4 5), which is called the cyclic decomposition of ð.  If ð(x) 
=x, then x is said to be a fixed point and we do not write it in the cycle. 
 
         We have found that for a permutation ð, ð-1 has similar characteristics: 
 
Theorem 2.1:  Let ð be a permutation of Fq. Then, the permutation of Fq given by ð-1 has dispersion, 
spreading, fixed points and cycle length equal to the permutation given by ð. 
 
Proof:   The proof is a direct use of the definition of dispersion, spreading, fixed points and the 
construction of cycles.                                � 

Corollary 2.2:  If i|(q-2) then the permutation given by the monomial 
i

i
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result follows from Theorem 2.1.                                            � 
 
3. The Dispersion Factor 
 
To construct interleavers that could give good performance it is important to study some properties, like the 
dispersion factor.  The dispersion factor is a measure of how regular a permutation is. To have good 
dispersion property is to prevent patterns on the permutation.  The dispersion of a permutation ð is given by 
the number of elements on the set  D(ð):= {(j- i, ð(j)-ð(i)) | 0 � i < j < T}, where ð is a permutation of a set 
with T elements. The normalized dispersion is given by

)1(
)|(|2

−TT

D π .  The closer the normalized dispersion is to 

1, the better it is.  
 
        The following proposition gives us an upper bound to the normalized dispersion of permutations of Zp 
given by monomials with odd exponents. 
 
Proposition 3.1:  Let p be an odd prime and ð(x)= xi a permutation of Zp.   Then the normalized dispersion 

ã is such that ã� 
p

p

2
3+ . 
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    To compute the dispersion of ð, we need to count the distinct differences of the images of elements that 
are at the same distance.  The following lemma counts the differences of images of elements that are k units 
apart.   
 
Lemma 3.2: Let p be an odd prime, ð(x)=xi and define Ä(n)� ð(n+k)- ð(n), where k∈ {1 ,..., p-1} is fixed.  
If Dk={Ä(n)|0 � n < n+k � p-1}, then  
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Proof:  Since p is odd and ð is a permutation monomial,  gcd(i, p-1)=1 implies that i must be odd.                             
Thus, Ä(n)= (n+k)i- ni = (-n)i-(-n-k )i = (p-n)i-(p-n-k)i =  Ä(p-n-k).  Let Ä(n)=a.  Then, there is at least 
another solution n' such that Ä(n')=a.  However, there are two extreme cases we need to take in 

consideration.  First, if n=p-n-k=n' (observe that, since k=p-2n, k  needs to be odd), this is, if n= 2
kp− , 

Ä(n)=a might have only one solution.  Second, if n=0, n+k<p but p-nh p, and therefore Ä(0)=a could have 
just one solution.   Therefore, 
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Now we proceed to prove Proposition 3.1: 
 
Proof of Proposition 3.1:  The permutation ð has normalized dispersion ã= 

)1(
)|(|2

−TT

D π .  We have that the 

number of elements of the set D(ð), for ð(x)=xi is : 
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        We studied closely the permutations given by the monomials xp-2 and x3 for p a prime.  Note that the 
monomial xp-2 is always a permutation monomial for p prime.  This is because gcd(p-2, p-1) =1.  In contrast 
with the monomial xp-2, x3 is permutation monomial only if 3|(p-2).  Otherwise it would divide p-1 and 
gcd(3, p-1)≠ 1. 
 
        For the dispersion property we found that these polynomials give permutations with normalized 
dispersion equal to the upper limit given in Proposition 3.1 given some conditions. Before stating this result 
formally we are going to prove some other results. 
 
        To calculate the normalized dispersion of the permutation given by xp-2 and x3  we need to count the 
number of elements of  D(ð).  Here it will be useful to rewrite D(ð) as  D(ð) ={(k, Ä(n)) | 1 � k < p, 0 � n < 
n+k � p-1}, where Ä(n) is defined as in Lemma 3.2. 
 
        We need to count how many values Ä(n) we have for each value of k .  So, the dispersion is related to 
the number of solutions to the equation Ä(n) = a.  The following two lemmas count and characterize the 
number of solutions of Ä(n) =a for ð(x)= x3. 
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Lemma 3.3: Consider ð(x)= x3 and define Ä(n)� (n+k)3 – n3, where k∈ {1 ,..., p-1} is fixed, n∈ {0 ,..., p-2} 
and 1 � n+k � p-1.  Suppose that Ä(n) =a.  Then there is at most another n' such that Ä(n’) =a and n'= p-n-
k. 
 
Proof: If Ä(n)= (n+k)3 – n3, then Ä(n)=  3n2k+ 3nk 2 + k3.  Because the degree of Ä(n) is 2, Ä(n)=a has at 
most two distinct solutions. 
 
Now suppose that a= Ä(i) = Ä(i+j)  for some j � 1 , j+i < p-1. Then Ä(i) = Ä(i+j)  implies that Ä(i) - 
Ä(i+j)=0.  This also implies that (3i2k+ 3ik 2 + k3)-(3(i+j)2k+ 3(i+j)k 2 + k3)=0.  Thus, j=0 or j � -2i-k  (mod  
p). Therefore, if n=i, n'=i+j=p-i-k=p-n-k  is another solution to Ä(n) =a.                � 
 
Lemma 3.4: Let ð(x)=x3 and consider the conditions of lemma 3.3. The polynomial Ä(n)= a has unique 

solution if and only if n=
2

kp−
 or n=0. 

 
Proof: (�) From the previous result, we have that Ä(n) =a has solutions n1=i and n2=p-i-k .  Suppose that 

there is only one solution.  Then, n1=n2 or n2 does not exist.  If n1=n2, i=p-i-k� n1=n2 = i=
2

kp− .  If n2 do 

not exists, n2+k=p. Therefore, n1=0. 
 

 (�) Now consider n1= 2
kp−

.  Then n2=  p-
2

kp−
-k=

2
kp−  and the solution is unique.  If n1=0,  n2+k=p and 

this contradicts n+k < p .  Hence, this solution is also unique.                � 
 
        Now that we know the number of solutions of Ä(n) =a for each n we are able to count the number of 
elements of  D(ð) for each k . 
 
Proposition 3.5: Let ð(x)=x3, and define Ä(n)� (n+k)3 – n3, where k∈ {1 ,..., p-1} is fixed. If Dk={Ä(n)| 0 � 
n < n+k � p-1}, then   
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Proof: For every k  we have p-k  differences Ä(n) (may be not distinct).  If k  is odd n=
2

kp−  exists. Therefore, 

by Lemma 3.3, since each Ä(n) =a has two solutions except for when n=0 and n=
2

kp− , we obtain that 

|Dk|= 
2

2−−kp
+2=

2
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2
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The following result was presented by I. Rubio in [2]: 
 
Lemma 3.6: Let ð(x)=xp-2, and fix k∈ {1 ,..., p-2}.  Define Ä(n):=(n+k)p-2-np-2.  If Dk={ Ä(n) |1 � n < n+k � 
p-1} then  
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        Note that in Lemma 3.6 the sets Dk do not include values Ä(0).  The following lemma addresses this 
case. 
 
Lemma 3.7: Let (x)=xp-2, and fix k∈ {1 ,..., p-1}.  Suppose that Ä(0)=a.  Then n=0 is the only solution to 
Ä(n)=a for all k if and only if 3|(p-2). 
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Proof:  If Ä(0)=Ä(i), for i∈ *
Æp , then (i+k)p-2-ip-2=kp-2 � (i+k)p-2= kp-2 + ip-2 � (i+k)p-1=(k p-2+ip-2)(i+k) =kp-1+ 

ikp-2+ ip-2k + ip-1.  Since {p-1 =1 for all {∈ *
Æp   the equation reduces to 1= ikp-2+ ip-2k + 2 � -1= ikp-2 + ip-2k  

� -1(ik)= (ik)ik p-2+ (ik)ip-2k= k 2 + i2 � k2 +ki+ i2=0.  Solving for i we obtain i=
2

4 22 kkk −±− .                                                        

 
        These solutions are in Zp if and only if 3−  ∈ Zp.  Making use of the Division Algorithm Theorem and 
of the fact that p is a prime, we have that p must be of the form 12m+á, for m ∈ Z and á ∈ {5, 11}, if 3|(p-

2), or á ∈ {1, 7}, if 3F(p-2). 
 
        By Theorems A.1 and A.3 we have that 

  

(-1/p)(3/p)=(1)(-1)=-1, if =5; 

(-1/p)(3/p)=(-1)(1)=-1, if =11;
(3/p)=

(-1/p)(3/p)=(1)(1)=1, if =1;

(-1/p)(3/p)=(-1)(-1)=1, if =7.

α
α
α
α







 

 
Since 3|(p-2) if and only if p� 5, 11 (mod  12), these solutions are unique in Zp if 3|(p-2). 
 
        We have that if á ∈ {1, 7}, that is, if 3F(p-2), then, if we set k=1, i=

2
31 −±−  is a solution distinct from 

0 if and only if 0<i<p-1. Since i ∈ Zp we must prove just that i≠ 0 and i ≠ p-1=-1.  First, if i=0, k2 +ki+ 
i2=1=0, which is a contradiction. Therefore i≠0.  If i=-1, then k2 +ki+ i2=1=0, which is also a 
contradiction.  Therefore, when 3F(p-2), Ä(0) is at least once a repeated difference.              � 
 
        Lemmas 3.6 and 3.7 for ð(x)=xp-2 were the analogous to Lemmas 3.3 and 3.4 for ð(x)=x3.  In the same 
way the following proposition is the analogous of Proposition 3.5.  This proposition and the following 
theorem improves the result on Theorem 4 of [1]. They give the necessary and sufficient conditions to 
attain the upper bound in the Proposition 3.1. 
 
Proposition 3.8: Let ð(x)=xp-2, and fix k∈ {1 ,..., p-1}.  Define Ä(n):=(n+k)p-2-np-2.  For Dk={ Ä(n) |0  � n < 
n+k � p-1}, 
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for each k  if and only if 3|(p-2).  
 
Proof: From Lemma 3.6 we know that, for 1 � n < n+k � p-1,  
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If 3|(p-2), Ä(0) is a unique difference and, for 01 � n < n+k � p-1 and each k ,   
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If 3F(p-2) then Ä(0) is not unique for some k 's and hence this is not true.               � 
 
        Now we have been able to compute the cardinality of the subset Dk of D(ð) for each k .  The sum of the 
cardinalities of all these subsets will give us the number of elements in D(ð) and therefore we will be able 
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to compute the normalized dispersion of the permutations given by ð(x)=x3,  ð(x)=xp-2 and, making use of 

Theorem 2.1, ð(x)= 3
12 −p

x .  This is stated in the following theorem: 
 
Theorem 3.9:  Let p be a prime. The permutation of Fp given by xi has dispersion equal to the upper bound 

ã= 
p
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2
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3
12 −p ,  p-2}. 

 
Proof:  The permutation ð has normalized dispersion ã=
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Therefore, ð(x)=x3 and ð(x)=xp-2 have normalized dispersion equal to the upper bound ã= 
p

p

2
3+ .  Since 

3
12 −p = 3-1, by theorem 2.1 ð(x)= 3

12 −p

x  also has normalized dispersion equal to ã= 
p

p

2
3+ .               � 

 
4. The Spreading Factor 
 
The spreading is another important property of an interleaver. It is a measure of how distant are interleaved 
symbols that were originally close to each other.  It is said that an interleaver have spreading factors s if                
|i- j| < s� |ð(i)-ð(j)| � s.  The closer s is to

2
T , where T is the length of the block that is being permuted, 

the better the spreading is. 
 
        The following two theorems relate the form of p with the spreading of the permutation given by ð(x) 
=x3 and ð(x) =xp-2 respectively: 
 

Theorem 4.1: Let p be a prime. If 3|(p-2), then the permutation given by the monomials x3 and 3
12 −p

x   
have spreading greater than 1 if and only if p is of the form 30l + 11 or 30l + 29, for l∈ Z. 
 
Proof:   Let ð(x)=x3  and define Ä(x)=ð(x+1)-ð(x).  By the Division Algorithm we find that an integer q is 
of the form 30l+ á, for l∈Z and á∈{0,1,2,...,29}.  If q=p then, á ∈{1,7,9,11, 13,17,19,23,29}.  To fit 3|(p-
2), we must restrict the values of á even more.  Hence, á ∈{11,17,23,29}. 
 
        By definition, we have spreading s=1 if and only if exists i ∈ Zp such that Ä(i)=1 or Ä(i)=-1, for k= 
1and 1 � i � p-2.  Easily we can see that the polynomial Ä(i)=  (i+1)3-i3= 3i2+3i+1=1 has solutions i=0 
and i=p-1.  Since 1 � i � p-2, Ä(i)=1 has no solutions for the spreading calculation. 
 
            For the case Ä(i)=-1 we have four cases: 
 
Case p=30l+11:  Using the quadratic formula we know that i= -1(2)-1 ± (2)-1 1(4)(2)(3)1 −−  = 15l+5 ±  

(2)-1 4)(4)(2)(10l1 +− = 15l+5 ±  (2)-1 2)(10l + = 15l+5 ±  (2)-1 2−-1(3) =15l+5 ±  (2)-1 
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)323( 2×−-2(3) =15l+5 ±  (2)-1(3)-1 531− .  By Theorem A.1, (1/p)= 2
1

)1(
−

−
p

.  Hence, (-1/p) is 

quadratic residue if and only if l is odd.  By Theorem A.3, (3/p)=1 if p � ±1 (mod 12), and (3/p)=-1 if p 
�±5 (mod 12).  If  l is odd p � 5  (mod 12)  � (3/p)=-1.  If l is even, then p � -1 (mod 12) �                
(3/p)=1.  So long we have that (-1(3)/p)=-1.  Since (5/p)=1 by Theorem A.4, (-1(3)(5)/p) =-1 and                
therefore i is no solution. 
 
Case p=30l+17:   In this case i= -1(2)-1 ± (2)-1 1(4)(2)(3)1 −−  = 15l+8 ±  (2)-1 6)(4)(2)(10l1 +− = 

15l+8 ±  (2)-1 4(10l +  = 15l+8 ±  (2)-1 2−-1(3) = 15l+8 ±  (2)-1 )323( 2×−-2(3) = 15l+8 ±  (2)- 1 

(3)-1 531− .  When l is odd, following the same procedure as in the first case, (3/p)=1 and (-1/p)=-1.  
If l is even (3/p)=-1 and (-1/p)=1.  By Theorem A.4, (5/p)=-1.  Thus, (-1(3)(5)/p) =1 and i is                
solution to Ä(i)=-1. 
 
Case p=30l+23:  Here i= -1(2)-1 ± (2)-1 1(4)(2)(3)1 −−  =15l+11 ±  (2)-1 )(4)(2)(10l1 8+− = 

15l+11 ±  (2)-1 6(10l +  = 15l+11 ±  (2)-1 2−-1(3) = 15l+11 ±  (2)-1 )323( 2×−-2(3) = 15l+11 ±  

(2)- 1 (3)-1 531− .  Doing as in case 1 we obtain that (-1/p)=1 and (3/p)=-1 for odd l's and (-1/p)=-1 
and (3/p)=1 for even l's.  Also we have that (5/p)=-1.  Hence, (-1(3)(5)/p) =1and i is solution to Ä(i)=-1. 
 
Case p=30k+29:  This time i= -1(2)-1 ± (2)-1 1(4)(2)(3)1 −−  =15l+14 ±  (2)-1 10)(4)(2)(10l1 +− = 

15l+14 ±  (2)-1 8(10l +  = 15l+14 ±  (2)-1 2−-1(3) = 15l+14 ±  (2)-1 )323( 2×−-2(3) = 15l+14 ±  

(2)- 1 (3)-1 531− .  For odd l's, (-1/p)=-1 and (3/p)=1.  For even l's (-1/p)=1 and (3/p)=-1.  Because 
(5/p)=1, (-1(3)(5)/p) =-1 and there is no solution to Ä(i)=-1.. 
 
         If there are no solutions to Ä(i)=1 or Ä(i)=-1, by definition, the spreading is greater than 1.  Else, it is 

1.  Since 
3

12 −p = 3-1, by Theorem 2.1, this result is also true for ð(x)= 3
12 −p

x .              � 

 
Theorem 4.2: Let p be a prime.  The spreading of the permutation given by ð(x)=xp-2 is 2 if p is of the form 
30l + 17 or 30l + 23,  for l∈ Z.  Otherwise the spreading is 1. 
  
 Proof: Define Ä(x)= (i+k)p-2 - ip-2 with k ∈{1,..., p-1}.  Since p is a prime, it is of the form 30l+á, with á 
∈{1,7,9,11, 13,17,19,23,29}.  To have a spreading better than 1 implies to have neither Ä(i)=1 nor Ä(i)=-1               
for every i ∈Zp such that 1� i � p-2, k=1.  If Ä(i)=1, (i+k)p-2 - ip-2=1.  Multiplying by i(i+k) we obtain 
i(i+k)(i+k)p-2- i(i+k)ip-2=-k=1(i)(i+k))� i2+ ik +k=0 � i=

2
42 kkk −±− .  If k=1 this simplifies to 

i=
2

31 −±−  and it is already solved in the proof of Lemma 3.7.  From those results we know that if 3F(p-

2),  this is, if á∈{1, 7, 13, 19}, Ä(i)=1 for some i.  Therefore if á∈{1, 7, 13, 19},  ð(x)=xp-2 gives 
permutations with spreading 1. 
 
        If Ä(i)=-1, then (i+k)p-2 - ip-2=-1� i(i+k)(i+k)p-2- i(i+k)ip-2=-k=-1(i)(i+k))� i2+ ik -k=0 � 
i=

2
42 kkk +±− .  Since k=1, i=  

2
51 ±− .  By Theorem A.4, i is solution if and only if p=30l+11 or 

p=30l+29.  By the fact that 15 ≠ and 15 −≠ , we have that i≠0,-1 and we can conclude that i is a 
solution such that 1 � i <i+k � p-1.   Hence, when p=30l+11 or p=30l+29, the permutation given by 
ð(x)=xp-2 has spreading 1. 
 
We have seen that Ä(i)≠ -1 and Ä(i)≠ 1 when p=30l+17 or p=30l+23.  From this follows that the 
permutation given by ð(x)=xp-2 has spreading at least two.   
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If a permutation has spreading 3, Ä(i)≠  1, -1, 2,-2 for k=1 and k=2.  If Ä(i)=2 and k=1, then (i+k)p-2 - ip-2= 
2� i(i+k)(i+k)p-2- i(i+k)ip-2=-k=2(i)(i+k))�2 i2+2 ik+k=0 � i=

2
122 −±− . Making use of Theorem A.1,we 

find that 1−  is solvable for p=30l+17 if l even.  If l is odd it is solvable for p=30l+23.  Hence, the 
spreading is not 3 under these circumstances. 
 
If Ä(i)=-2 and k=1, following the same procedure, we have that i=

2
322 ±− . Now, making use of 

Theorem A.3 we find that 3  is solvable for p=30l+17 if l is odd.  If l even, it is solvable for p=30l+23. 
We can observe that the spreading is not 3, for p=30l+17 and p=30l+23, in both cases l odd and l even.  
Therefore the spreading is never greater than 2 for the permutation given by ð(x)=xp-2.              � 
 
5. Future Work 
 
There is still much work to do in the area of permutation monomials applied to Turbo Codes.  The 
spreading and dispersion factors as well as all the other properties of permutation monomials need to be 
studied much more.  Simulations need to be ran in order to check the performance of codes constructed 
with the different interleavers. 
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Appendix A: Used Results from Number Theory 
 
To prove some of our results we used the Legendre symbol and quadratic reciprocity.  Here we include the 
results about quadratic reciprocity that we used. 
 
Definition: Let p be an odd prime and gcd(a, p)= 1.  The Legendre symbol (a/p) is defined by (a/p) =1, if a 
is quadratic residue of p, and (a/p) =-1, if a is quadratic nonresidue of p. 
 
Theorem A.1:  Let p be an odd prime and a and b be integers which are relatively prime to p.  Then the 
Legendre symbol has the following properties: 
        1.  If a � b (mod p), then (a/b)=(b/p). 
        2.  (ab/p)=(a/p)(b/p) 

        3.  (1/p)=1 and ( -1/p)= 2
1p

1)(
−

−  

 
Theorem A.2: If p is an odd prime, then (2/p)=1 if p �± 1 (mod 8) or (2/p)= -1, if p �± 3 (mod  8). 
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Theorem A.3: If p ≠ 3 is an odd prime, then (3/p)= 1, if p �± 1 (mod 12) or (3/p)= -1 , if p �±5 (mod 12). 
 
Theorem A.4: If p ≠ 53 is an odd prime, then (5/p)= 1, if p �± 1 (mod 5) or (5/p)= -1 , if p �±2 (mod 5). 


