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ABSTRACT

We present a theoretical and analytical curve with reproduce essential features of
the frequency distributions vs. diameter, of the 42,000 crater contained in the Barlow
Mars Catalog. The model is derived using reasonable simple assumptions that allow us
to relate the present craters population with the craters population at each particular
epoch. The model takes into consideration the reduction of the number of craters as
a function of time caused by their erosion and obliteration, and this provides a simple
and natural explanation for the presence of different slopes in the empirical log-log plot
of number of craters (N) vs. diameter (D).

1. Introduction

The present impact crater size frequency distribution, N is the result, on one hand, of a rate
of crater formation, φ, and, on the other hand, the elimination of craters, as time goes by, due
to effects like erosion and obliteration. Therefore if we want to understand the crater formation
history we will need to know how these forming and erasing factors combine to create N . Thus, in
this work the above problem is analyzed, and in section 2 we find that N can be expressed in terms
of φ and the fractional reduction of craters per unit of time, C. Then, a simple model is discussed
that describe the crater size distribution in Mars data, collected by Barlow (Barlow 1988), where it
is assumed that φ is independent of time. The above model is realistic, since according to several
investigations φ has remained nearly constant for the last 3 to 3.5 billion years (Hartmann 1966b;
Neukum 2001, 1983; Ryder 1990). The simplest interpretation of this model implies that φ and C

are given as the following inverse power of the diameter, D, of the crater: φ ∝ 1
D4.3 , C ∝ 1

D2.5 .
In section 3 the model is applied to craters data on Earths, and it is concluded that also in our
planet C ∝ 1

D2.5 . This result is interpreted to mean that on Mars and Earth we have C ∼ 1
Volume ,

or equivalently the crater mean life ≡ 1
C ∝ Volume ∝ D2 h, with h ∝ D0.5. Investigations of

geometric properties of Martian impact craters reflect values of the average height h(D) consistent
with the above conclusion.
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2. Theoretical Models for the Observed Data

In what follows we will present theoretical and analytical curves which will reproduce the
essential features of the martian crater-size frequency distribution empirical curves (Figure 1),
based on Barlow’s (1987) database of about 42,000 impact craters. The models will be derived
using reasonable simple assumptions, that will allow us to relate the present crater population with
the crater population at each particular epoch.

To this end, let ∆N(D, τ) represents the number of craters of diameter D± ∆D
2 formed during

the epoch τ ± ∆τ
2 , where we are assuming that ∆D and ∆τ are sufficiently large that is justified

treating ∆N as a statistical continuous function, but, on the other hand, they should be sufficiently
small (∆τ

τ ¿ 1,∆D
D ¿ 1) to be able to treat them as differentials in the following discussion. This

initial population will change as time goes on due to climatic and geological erosion, and the
obliteration of old craters by the formation of new ones. Then, we expect that the change in ∆N

during a time interval dt will be proportional to itself and dt:

d(∆N) = −C ∆Ndt, (1)

where C is the factor that takes into account the depletion of the craters, and should be a function
of the diameter, since the smaller a crater is the most likely it will disappear. Furthermore, C could
also depend on time however, we will ignore such changes here, which we believe is a good starting
approximation to the general problem. It is easy to integrate Equation (1) in time to obtain:

∆N(D, t) = ∆N(D, tn) Exp [−C τn] , (2)

τn = t− tn. (3)

Equation (2) gives the number of craters, as a function of D, observed at time t, that were produced
at the time interval tn± ∆τ

2 . Therefore the total contribution to the present (t=0) population due
to all the epochs tn is:

N(D) =
∑
n

∆N(D, tn) Exp [−Cτn] , (4)

or in the continuous limit ∆τ→0,

N(D) =
∫ τf

0
φ(D, τ) Exp [−Cτ ] dτ, (5)

where
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φ(D, τ) ≡ lim∆τ→0
∆N(D, τn)

∆τ
. (6)

φ(D, τ) is the rate of crater formation of diameter D at the epoch τ , and τf is the total time of
crater formation.

In the next section we will determine the function C(D) and φ for a model where we assumed
that the rate of crater formation, φ, is independent of τ .

3. φ Independent of τ

Investigations of the time dependance of cratering rate of meteorites have concluded (Hartmann
1966b; Neukum 2001, 1983; Ryder 1990) that the impact rate went through a heavy bombardment
era that decayed exponentially until about 3 to 3.5 Gy, and since then has remained nearly constant
until the present. Therefore, for surfaces that are younger than 3 to 3.5 Gy we can reasonably
assume that φ is independent of τ , and hence from Equation (5) immediately obtain

N(D) =
φ(D)
C(D)

[1− Exp {−Cτf}] . (7)

We then find that the simplest model that essentially reproduces the data in Figure 1, for D≥ 6
km, is given by Equations (8)and (9):

φ(D) =
3.55× 109

D4.3 τf
, (8)

C(D) =
2.48× 104

D2.5 τf
. (9)

We see that the theoretical curve (7), shown in Figure(2), differs significantly from the observed
curves for D less than about 6 km. However, according to Barlow (Barlow 1988) the empirical data
is undercounting the actual crater population for D less than 8 km, and therefore no meaningful
comparison is then possible between models and data for this region of small craters.

Equation (2) implies that the fraction of craters of diameter D formed at each epoch τ that
still survive at the present time τ = 0 is given by:

∆N(D, 0)
∆N(D, τ)

= Exp [−Cτ ] ≈ Exp

[
−

(
57
D

)2.5 τ

τf

]
(10)

and thus we have that the mean life for craters of diameter D, τmean, is
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Fig. 1.— Log-log plot of number of craters (N) vs. diameter (D) in Mars. Following (Neukum
2001) the number of craters per kilometer squared were calculated for craters in the diameter
DL < D < DR, where DL and DR are the left and right bin boundary and the standard bin width
is DR/DL = 21/2.
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Fig. 2.— Comparison of theoretical model with the empirical log-log plot of number of craters (N)
vs. diameter (D) in Mars.
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τmean =
1
C
≈

(
D

57

)2.5

τf . (11)

Hence, craters with D ≈ 57 km have τmean ∼ τf , while

τmean >> τf , D >> 57 km,

τmean << τf , D << 57 km.
(12)

The region D >> 57 km is approximately described by the limit of Equation (7) when D → ∞:

lim
D→∞

N = φ τf =
3.55× 109

D4.3
, (13)

which corresponds to a straight line of slope -4.3 in a Log N vs Log D plot, and that would be the
form of Equation (7) in the absence of erosion and obliterations (C ≈ 0). Hence,we have that the
bending of the empirical curve (Figure 1) for D < 57 km is explained in this model as the result
of the elimination of smaller craters as they get older. We also see from Equations(13) that when
the effect of C can be ignored we have N = φ (D) τf , and therefore the actual crater density N is
proportional to the age of the underlying surface τf . On the other hand, when for smaller craters
Exp [−C τf ] << 1 we will have from (7) that

N(D) ≈ φ (D)
C (D)

= φ (D) τmean, (14)

and in this limit the crater density N(D) is proportional to the survival mean life, τmean, of the
craters of size D. Thus, when saturation occurs and hence N is independent of τf , we have, instead,
that N is proportional to τmean. This feature is called by Hartmann (Hartmann 2002)“Crater
retention age”, and in Mars this effect shows, according to this model, in craters smaller than
about 57 km.

4. Application to Earth

The model given by Equations (7), (8), and (9) assumed a simple polynomial form for φ and
C, however, alternative models can be also considered. For instance, by assuming that

N = φ τf =
1.43× 105

D1.8

[
1− Exp

{−2.48× 104

D2.5

}]
, (15)

we will reproduce the Mars crater data, exactly as in model given by Equations (7),(8),(9) but now
with C = 0 , and the change in slope in Figure (1) around D ≈ 57 km will now be interpreted as
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intrinsic behavior of φ(D) rather than due to the erosion and obliteration of smaller craters. How
can we then discriminate between these two alternative views?. We see that in the model given by
Equation (7) the fraction of craters of a given diameter, D, produced at a time τ , decreases with
time according to Equation (10) as

∆N(D, 0)
∆N(D, τ)

= Exp [−Cτ ], (16)

while in the model of Equation (15) this fraction is independent of time. Therefore we can put to
test the validity of Equation (16) by studying crater size frequency distributions as a function of
time. This is possible to do in our planet, and in this section we will investigate the consistency of
the hypothesis (16) with the Earth craters data.

Thus consider the average diameter of craters observed today that were formed during a given
time τ ± dτ

2 , which is given, according to Equation (16), by

D̄ =

∫∞
0 D φ e−cτ dD∫∞
0 φ e−cτ dD

. (17)

Assuming that C and φ behave in the form

φ =
A

Dm
, A = const, m = const, (18)

C =
B

Dl
, B = const, l = const, (19)

we can rewrite Equation (17) in the form (Appendix)

D̄ = B
1
l α τ

1
l , (20)

where

α ≡ Γ
(

m−2
l

)

Γ
(

m−1
l

) , (21)

and

Γ(n) ≡
∫ ∞

0
Un−1 e−U dU (22)

is the Gamma function. Equation (20) can be rewritten as
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Log D̄ =
1
l

Log τ + Log B
1
l α, (23)

which represents a linear relation between Log D̄ and Log τ with slope 1
l . In Figure (3) we plot

Log D̄ vs Log τ from data of crater size vs τ on Earth, and the straight line best fitting gives
l = 2.5, which is the value determined for model (7) for Mars. This result is interpreted as follows.
If we assume that, as expected, τmean is a function of the volume of the crater, V , that decreases
with decreasing V , then it is reasonable to expand it in terms of powers of V , and thus we will have

τ =
1
C

= a1V + a2V
2 + a3V

3 + ..., . (24)

Furthermore, for sufficiently small volumes we would have, as a good approximation to C, that

1
C
≈ a1V = a1 D2h, (25)

where we are writing

V = D2 h, (26)

with h as the average height of the crater of size D. The comparison of Equation (25) with
Equations (19), with l =2.5, imply that

h ∼ ConstD
1
2 , (27)

which is a prediction that can be investigated, and we have found that indeed Equation (27) is
consistent with results from studies of impact crater geometric properties on the surface of Mars,
by J.B. Garrin (Garrin 2002).

Therefore it appears that the age distribution of craters on Earth favor the simple model
considered for Mars, where there is an erosion and obliteration factor C with the approximate form

C ≈ Const
D2.5

. (28)

It is also suggested here that the above behavior for C follows from a relation of the form

C ≈ Const
V

=
Const
D2 h

; (29)

with
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Fig. 3.— Average diameter (D̄) vs. average age (τ̄) for terrestrial craters. The bin size increases
as 2

n
2 . The slope of the straight line best fit (0.40) correspond to l = 2.5.
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h ∝ D
1
2 (30)

Further investigations and observations of the crater data on the terrestrial planets, the moon
and the asteroids are necessary for additional tests of the validity of the model (7) and its inter-
pretation.

5. Appendix

Lets define

U =
B

Dl
τ, (31)

or, equivalently

D =
(

Bτ

U

) 1
l

. (32)

Then we have

dD =
− (Bτ)

1
l dU

l U1+ 1
l

, (33)

and therefore Equation (17) becomes

D̄ = (Bτ)
1
l

∫∞
0 U

m−2
l
−1 e−UdU

∫∞
0 U

m−1
l
−1 e−UdU

≡ (Bτ)
1
l α, (34)

where α is the ratio of the following gamma functions:

α ≡
∫∞

0 U
m−2

l
−1e−UdU

∫∞
0 U

m−1
p
−1

e−UdU
≡ Γ

(
m−2

l

)

Γ
(

m−1
l

) . (35)
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