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Classification of leaf epidermis microphotographs using texture features
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We present the results of a Gray Level Co-occurrence Matrix (GLCM) analysis for two sets of leaf epidermis
images for the adaxial (20×_H) and abaxial sides (20×_E). The leaves were collected from a dry forest in
Mona Island which is located between the Dominican Republic and Puerto Rico. For each set of images
(GLCM) texture features were calculated namely the energy, correlation, contrast, absolute value, inverse
difference, homogeneity, and entropy. From the calculated statistics a features matrix was obtained for each
image and randomly divided into training set and test set using the hold-out method. In this method 70% of
the images were considered as a training set and 30% as the test set. For each training and test set a linear
discrimination analysis (LDA) was performed resulting in a average correct classification percent of 90% for
the abaxial side in comparison with 80% for the adaxial side.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Classification is one of the main tasks in basic science. In biological
sciences it is the basis for the categorization of groups and the
discrimination between species. Within the broad area of artificial
intelligence and machine learning the field of pattern recognition
aims to the automatic (unsupervised) or semiautomatic (supervised)
classification of objects based on the statistical patterns observed
(Tuceryan and Jain, 1998). These methodologies play an important
role in such applications like biomedical image analysis, automated
visual inspection, automated image retrieval, and remote sensing.
Texture is one of the most useful and important characteristics for the
recognition of images. The distinction between textures can be
associated to differences in the intensity of the pixels and the spatial
relations between them. These textures are strongly dependent on the
spatial scale as is the common observation that a smooth texture at a
very large scale becomes a rough texture at a small scale.

A particular texture in an image is characterized by the invariance
of certain local attributes that are periodically (or quasi-periodically)
distributed over a region. There are many approaches for the
quantitative characterization of textures in images. A set of statistical
features (contrast, entropy, homogeneity, etc.) can be calculated froma
gray level co-occurrence matrix (GLCM) (e.g. Haralick et al., 1973).
Other statistical approaches involves Markov Random Field models to
characterize textures (Kashyap et al.,1982),measurements in a Fourier
domain (Unser, 1986), and wavelets methods (Laine and Fan, 1993).

In this paper, we present the results of a texture analysis for two
sets of images of microphotograph of replicas of leaf epidermis using

the GLCM approach. The images present a wide variety of textures
characterized by different cell structures, spatial patterns, and stomata
configurations. The main objective of this paper is the development of
a methodology for the supervised classification of leaf epidermis
images based on the GLCM Haralick features. This investigation is a
contribution to develop an automatic procedure for preliminary
classification of leaf epidermis present in the rumen and/or fecal
material of large herbivores, to study their diet and the possible effects
on the plant communities. In the next section we describe the data
sets utilized in the analysis, followed by the methodology for the
statistical characterization of textures. Then, the results of the data
analysis are presented.

2. Data sets and filtering

The data set consisted of two sets of images (microphotographs) of
leaf epidermis of 1600×1200 pixels at 200×magnification each group
corresponding to the abaxial (lower) and adaxial (upper) side of the
leaf. The adaxial set (20×_H) consisted of 39 images and the abaxial
set (20×_E) consisted of 69 images. The original 32-bit RGB images
were converted to 8-bit gray scale images and enhanced using a
histogram stretching method. Each image was identified visually and
an acronymwas assigned based on the abbreviated scientific name of
the identified species. Furthermore, the amount of images was
reduced by considering only species with images available for both
sides (adaxial and abaxial). This resulted in two smaller samples
containing 35 images. Given the large size of the original images and
the relatively small quantity in each group (for classification
purposes) each images was cropped into 16 equal size regions
(prototypes) of 400×300 pixels. In both cases this resulted in 560
images for the 20×_E and the 20×_H set. Examples of image
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prototypes for the species Cakile lanceolata are shown in Fig. 1
(abaxial) and Fig. 2 (adaxial).

Visual examination of the regions indicated the presence of noisy
images with a high level of distortion and visual artifacts. For this
purpose an automatic method was developed to select the best
prototypes by computing the standard deviation of the average gray
level value of each prototype image. With this approach the
prototypes with the lowest or highest standard deviations corre-
sponded to images of low or high dispersion among the prototypes
and consequently the best or worst quality for classification purposes.
The images were sorted from the lowest to the highest dispersion and
the top 15 prototypes were selected for the analysis. This resulted in
two samples of 240 images for the 20×_E and 20×_H data sets.

3. Texture features characterization

The classification of the images was based on the texture features
observed in the images. Although there is no formal definition of

texture it is recognized as one of the most important sources of
information in the visual perception of humans. In general terms,
texture is related with the statistical distribution of gray tones. The
corresponding distribution may result in the perception of textures as
being fine, coarse, or smooth and more complex visual perceptions
like irregularity, complexity, and rippled patterns.

The Gray Scale Co-occurrence Matrix (GLCM) is a tabulation of
how often different combinations of gray levels occurs in an image
(e.g. Haralick et al., 1973) and is commonly referred as a two-
dimensional histogram where unlike the one-dimensional version it
counts the pixels intensities by pairs. Formally, for an image g of G
gray levels we can construct a N×N gray level co-occurrence matrix
Md,θ. The elements of Md,θ represent the probability of the co-
occurrence of gray values i, j at points p1, p2 separated by distance d
and angle θ:

Md;θ = Probfgðp1Þ = i; gðp2Þ = jg ð1Þ

Fig. 1. Abaxial (20×_E) prototypes for the species Cakile lanceolata (Caklan).
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given that d(p1, p2)=d and ∠(p1, p2)=θ, where pi=(xi, yi), and i=1, 2
and

dðp1;p2Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 + ðy2 � y1Þ2

q
ð2Þ

∠ðp1;p2Þ = arctanððy2 � y1Þ= ðx2 � x1ÞÞ ð3Þ

In general the Md,θ matrix is symmetric and the elements of the
diagonal quantify the amount of pixel pairs with the same gray value.
Consequently, higher values, near the diagonal of the matrix,
correspond to images with low contrast. On the other hand, elements
far away from the diagonal represent pixels pairs with different gray
values and consequently correspond to images with a higher contrast.
Once the Md,θ matrix is calculated for an image a wide variety of
texture features can be calculated (detailed formulas are presented in
the Appendix A).

As is shown in Eqs. (1)–(3) the calculation of the GLCM (and the
texture features) requires the specification of a distance (d) and an

angle (θ) between the pixels (Fig. 3). The optimum distance is
dependent on the concrete set of images and texture patterns under
consideration. Nevertheless, the distances commonly considered in
the literature (Conners et al., 1984) are d=1, 2, 3, 4 and the angles
θ=0°, 45°, 90°, 135°. For a given image that may imply a large
amount of features corresponding to all the distance and angle
combinations and in practice the number of features can be reduced
by the calculation of an isotropic GLCM given by:

Md;isotropic =
1
Nθ

∑
θ
Md;θ ð4Þ

where Nθ is the number of possible angles (e.g. 4). Similarly we can
define a range GLCM by taking the difference between the maximum
and minimum element of the matrix:

Md;range = maxðMd;θÞ �minðMd;θÞ ð5Þ

Fig. 2. Abaxial (20×_H) prototypes for the species Cakile lanceolata (Caklan).
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Using these two matrices we can compute isotropic texture features
and the range texture features by the specification of a distance.

4. Implementation

The GLCM method was implemented as a plugin with the ImageJ
public domain Java image processing software. The plugin, GLCM.
java was developed in Java and based on a texture analysis plugin
developed in NIH (Cabrera, 2005). The original texture analysis
plugin source was extended by adding some additional features
and modified to handle a large amount of images. Additional mo-
dules for post-processing (filtering and classification) were devel-
oped using the R programming language (Venables and Ripley,
2003).

5. Results and discussion

For each data set of 240 images (20×_E and 20×_H) 7 GLCM
texture features were calculated corresponding to distances from 1
to 4. This resulted, in a matrix of 240 rows (objects) and 7 columns
(features). Due to the differences in scale for each texture feature,
each column was normalized to zero mean and unit variance using
the transformation fnorm=(f− f ̄)/σ. The normalized matrix was
randomly divided into a training set and a test set using the hold-
out validation approach (Theodoridis and Koutroumbas, 2006).
Using this approach 70% of the rows were randomly selected as
the training set and 30% of the rows were selected as the test set.
Then, a multi-class linear discriminant analysis (LDA) (Fisher, 1936)
was applied to each test-training pair and a correct classification
percent was calculated. The process was repeated N times (e.g.
N=100) and a mean classification percent was obtained. The
results of this analysis, for each of the data sets, are summarized in

Table 1. This results show the poor performance of the classification
method for a single inter-pixel distance. For the 20×_E set the
highest correct classification percent (76%) is obtained from fea-
tures calculated from the range GLCM at a distance of 1 pixel.
Meanwhile, in the 20×_H set the highest percent (67%) is obtained
from features calculated from isotropic GLCM at either 1 or 4 pixels
of separation. These results are consistent with authors that sug-
gest (e.g. Haralick et al., 1973) that the best discrimination capa-
bilities of texture features, derived from the GLCM, are obtained by
combining features from two (or more) inter-pixel distances. The
results of these calculations are presented in Table 2 where the
correct classification percent was obtained for several combinations
of inter-pixel distances. This results show a dramatic improvement
in the performance of the classification. In the case of the 20×_E set
the highest percent (90%) was obtained from the range GLCM
features from almost all the inter-pixel distance combinations.
Meanwhile, in the case of the 20×_H set the highest percent (80%)
was obtained from isotropic GLCM features from 1,3 inter-pixel
distances combinations. Furthermore, the performance of the clas-
sification, by using textures features at the four distances (1,2,3,4)
show a 2% improvement in the correct classification percent. How-
ever, we did not find a significant improvement of correct classifica-
tion percent for distances larger than 4 pixels.

6. Summary and conclusions

A methodology is presented for the filtering, processing, analysis,
and classification of images based on texture features derived from a
Gray Scale Co-ocurrence Matrix (GLCM) Specifically, a texture
analysis was carried out on two set of images of microphotographs
of leaf epidermis corresponding to the abaxial (20×_E) and adaxial
(20×_H) sides. Seven texture features were calculated from isotropic
GLCM and a range GLCM at four inter-pixel distances. Our results
indicate that the highest percent of correct classifications (90%) is
obtained from the abaxial set where the features are derived from a
range GLCM. On the other hand, the adaxial set results in a relatively
smaller correct classification percentage (80%) from texture features
derived from the isotropic GLCM. Our results indicate that the
combination of texture features from separations of more than 2
pixels improves dramatically the discrimination capabilities of the
method.
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Table 1
Results of LDA classification for a sample of 240 images.

Distance Percentage of correct classifications for leaf epidermis images

20×_E 20×_H

Isotropic GLCM Range GLCM Isotropic GLCM Range GLCM

1 67 76 63 67
2 38 73 62 64
3 39 75 63 63
4 37 74 67 66

For each image a set of 8 texture features were considered at specific inter-pixel
distance.

Table 2
Results of LDA classification for a sample of 240 images.

Distances Percentage of correct classifications for leaf epidermis images

20×_E 20×_H

Isotropic GLCM Range GLCM Isotropic GLCM Range GLCM

1,2 75 90 79 73
1,3 75 90 78 75
1,4 75 90 80 73
2,3 46 89 77 74
2,4 47 90 77 74

For each image a set of 16 texture features were considered for two inter-pixel distance
combinations.

Fig. 3. Geometry for the Calculation of Md, θ at four angles and four distances.
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Appendix A. Haralick texture features

For an image g of G gray levels Haralick (e.g. Haralick et al., 1973)
proposed several texture features that can be calculated from
weighting the Md, θ matrix. But first, several descriptive statistics
need to be calculated:

μx = ∑
G�1

i=0
iMx

d;θðiÞ

μy = ∑
G�1

j=0
jMy

d;θðjÞ

σ2
x = ∑

G�1

i=0
ði� μxÞ2Mx

d;θðiÞ

σ2
y = ∑

G�1

j=0
ðj� μyÞ2 My

d;θðjÞ

where

Mx
d;θðiÞ = ∑

G�1

j=0
Md;θði; jÞ

My
d;θðjÞ = ∑

G�1

i=0
Md;θði; jÞ

From the previous parameters seven features can be defined to
measure different aspects of the texture information in the images:

• Energy

f1 = ∑
G�1

i;j=0
ðMd;θði; jÞÞ2

• Correlation

f2 = ð ∑
G�1

i;j=0
ijMd;θði; jÞ � μx μyÞ= σxσy

• Contrast

f3 = ∑
G�1

i;j=0
ði� jÞ2Md;θði; jÞ

• Absolute value

f4 = ∑
G�1

i;j=0
j i� j jMd;θði; jÞ

• Inverse difference

f5 = ∑
G�1

i;j=0
Md;θði; jÞ= ð1 + ði� jÞ2Þ

• Homogeneity

f6 = ∑
G�1

i;j=0
Md;θði; jÞ = ð1 + j i� j j2Þ

• Entropy

f7 = ∑
G−1

i;j=0
Md;θði; jÞ log2 ðMd;θði; jÞÞ

This features can be equally calculated from the isotropic (Eq. (4))
and range (Eq. (5)) matrices defined in the main text.
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