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Abstract

One of the most important questions in number theory is to find properties on a system of equations that
guarantee solutions over a field. A well-known problem is Waring’s problem that is to find the minimum
number of variables such that the equation xd

1 + · · · + xd
n = β has solution for any natural number β. In

this note we consider a generalization of Waring’s problem over finite fields: To find the minimum number
δ(k, d,pf ) of variables such that a system

xk
1 + · · · + xk

n = β1,

xd
1 + · · · + xd

n = β2

has solution over Fpf for any (β1, β2) ∈ F
2
pf . We prove that, for p > 3, δ(1,pi + 1,pf ) = 3 if and only if

f �= 2i. We also give an example that proves that, for p = 3, δ(1,3i + 1,3f ) � 4.
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1. Introduction

One of the most important questions in number theory is to find properties on a system of
equations that guarantee solutions over a field. This type of question is called of the Chevalley
type and there are many results related to this [3,9,19]. A well-known problem is Waring’s prob-
lem that is to find the minimum number of variables such that the equation xd

1 + · · · + xd
n = β

has solution for any natural number β . This minimum number is called the Waring number asso-
ciated to d . For finite fields there are many bounds for Waring numbers [10,20]. For an excellent
survey of work related to Waring’s problem see [17,19].

In this note we consider a generalization of Waring’s problem over finite fields: To find the
minimum number of variables such that a system

xk
1 + · · · + xk

n = β1,

xd
1 + · · · + xd

n = β2 (1)

has solution over Fpf for any (β1, β2) ∈ F
2
pf . We denote this number by δ(k, d,pf ).

The cases δ(1, d,2f ) have been studied intensively because of their application to the com-
putation of the covering radius of certain cyclic codes. The following are some examples of the
known cases. It is known that δ(1,2i + 1,2f ) = 3 if (i, f ) = 1 and this is called Gold’s case
[5,12,15]. Also, δ(1,2i + 1,2f ) = 3 if ord2(l + 1) < f/2, and l = (2f − 1,2i − 1) [12]. In par-
ticular, δ(1,2i +1,2f ) = 3 whenever l ≡ 1 mod 4. It is also known that δ(1,22i −2i +1,2f ) = 3
and this is called Kasami’s case [6,8,13]. Recently, the case δ(1,2i + 3,22i+1) = 3 was
proved by Canteaut et al. [2] and it is called the Welch’s case. In [1] it was proved that
δ(1,24i + 23i + 22i + 2i − 1,25i ) � 4.

For the case where p > 3, it has been known for a long time that δ(1,2,pf ) = 3 (see [4,7,
18]). When p = 3 it was proved in [4] that δ(1,2,3f ) = 4.

In Section 3 we prove that, for p > 3, δ(1,pi + 1,pf ) = 3 if and only if f �= 2i. We also
give an example that proves that, for p = 3, δ(1,3i + 1,3f ) � 4. In Section 2 we compute the
splitting field of a polynomial that it is used in the proof of δ(1,pi + 1,pf ) = 3 for p > 3. In the
last section we find conditions on the coefficients of a system of diagonal equations so that the
system has solutions for any value of the constant terms.

2. Splitting field

In this section we compute the splitting field of a polynomial of the form axq+1 +bxq +bx +
d ∈ Fq [x].

Theorem 1. Let q = pf and f (x) = axq+1 + bxq + bx + d ∈ Fq [x], where a �= 0. Then f (x)

factors into linear factors over Fq2 [x].

Proof. We have

f (x) = axq+1 + bxq + bx + d

= xq(ax + b) + bx + d
Please cite this article in press as: F.N. Castro et al., On systems of linear and diagonal equation of degree pi + 1 over
finite fields of characteristic p, Finite Fields Appl. (2007), doi:10.1016/j.ffa.2007.09.008
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= axq

(
x + b

a

)
+ b

(
x + b

a

)
+ d − b2

a

=
(

x + b

a

)(
axq + b

) + d − b2

a

= a

(
x + b

a

)(
x + b

a

)q

+ d − b2

a
.

Then

f (x) = a

(
x + b

a

)q+1

−
(

b2

a
− d

)
. (2)

If b2 = ad , then f (x) = a(x + b
a
)q+1 and f (x) factors completely over Fq . Now suppose that

b2 �= ad . If we let d ′ = 1
a
( b2

a
− d), we obtain

f (x) = a

((
x + b

a

)q+1

− d ′
)

.

Note that, since d ′ ∈ Fq , there exists D ∈ Fq2 such that Dq+1 = d ′. Therefore

f (x) = a

((
x + b

a

)q+1

− Dq+1
)

= aDq+1
((

x

D
+ b

aD

)q+1

− 1

)

= aDq+1(yq+1 − 1
)
,

for y = x
D

+ b
aD

. Since

∏
0�=α∈F

q2

(y − α) = yq2−1 − 1 = (
yq+1 − 1

)( q−2∑
i=0

(
yq+1)i

)
,

one has that f (x) factors into linear factors over Fq2 . �
The next corollary will be needed to prove that δ(1,pi + 1,pf ) = 3 for p > 3, if and only if

f �= 2i (Theorem 7).

Corollary 2. Let p > 2 and suppose that b
a

∈ Fpl . The number of different roots of f (x) over Fpl

is even if and only if b2 �= ad .

Proof. Suppose that b2 �= ad and x = s ∈ Fpl is a root of f (x). Then, for y = s
D

+ b
aD

, one has

that f (s) = aDq+1(yq+1 − 1) = 0 = aDq+1((−y)q+1 − 1). This implies that −s − 2b
a

∈ Fpl is
also a solution of f (x) = 0.

To see that the number of different roots is even, we first see that s �= −s − 2b
a

. If s = −s − 2b
a

,
then s = −b

a
. But f (−b

a
) = 0 implies that b2 = ad and we are assuming that this is not true.

Hence, if s is a root of f (x), we have that −s − 2b is a different root of f (x) and we have sets of
Please cite this article in press as: F.N. Castro et al., On systems of linear and diagonal equation of degree pi + 1 over
finite fields of characteristic p, Finite Fields Appl. (2007), doi:10.1016/j.ffa.2007.09.008
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roots {si,−si − 2b
a

} with two elements. These sets are either equal or disjoint because (1) si = sj

if and only if −si − 2b
a

= −sj − 2b
a

, and (2) si = −sj − 2b
a

if and only if sj = −si − 2b
a

. This
implies that the number of roots of f (x) is even.

Suppose now that b2 = ad . Then, from the proof of Theorem 1 we can see that x = − b
a

∈ Fpl

is the only root of f (x) and hence the number of different roots is odd. �
Consider the polynomial x3 + 1 = (x + 1)(x2 +x + 1) ∈ F2[x]. This polynomial has the form

f (x) = axq+1 + bxq + bx + d with a = d = 1 and b = c = 0. The polynomial has only one
solution over F22i+1 but 0 = b2 �= ad = 1. This implies that the previous corollary is not true for
p = 2.

The next are some results on the reducibility and type of roots of polynomials similar to the
one in Theorem 1.

Proposition 3. The polynomial g(x) = axq+1 + bxq + cx + d ∈ Fq [x] has a root over Fq if and
only if ax2 + (b + c)x + d is reducible over Fq .

Corollary 4. The polynomial g(x) has at most two different roots over Fq .

Corollary 5. Let q = pf , p > 2 and f (x) = axp+1 + bxp + bx + d ∈ Fp[x], where a �= 0.
If b2 �= ad and (f,2) = 1, we have that

1. f (x) = (x − α1)(x − α2)p1(x) · · ·pp−1
2

(x) over Fpf whenever ax2 + 2bx + d is reducible

over Fpf , where the pi(x)’s are irreducible polynomials of degree 2, and α1, α2 are zeros of

ax2 + 2bx + d over Fp .
2. f (x) = p1(x) · · ·pp+1

2
(x) over Fpf whenever ax2 + 2bx + d is irreducible over Fpf , where

the pi(x)’s are irreducible polynomials of degree 2.
3. f (x) is always reducible over Fpf .

Proof. By Theorem 1,

f (x) = p0(x)p1(x) · · ·pp−1
2

(x),

where pi(x) ∈ Fp[x] have degree 2 for i = 0, . . . ,
p−1

2 . Suppose that α ∈ Fpf and p0(α) = 0.
Then α is a root of degree at most 2 over Fp . This implies that α ∈ Fp2 ∩ Fpf , and since f is
odd, we have α ∈ Fp . Therefore 0 = f (α) = aα2 + (b + c)α + d . Note that any other root of
f (x) will also be a root of ax2 + (b + c)x + d . This implies that f (x) has exactly two roots in
Fp and pi(x) is irreducible over Fpf for i = 1, . . . ,

p−1
2 . �

Proposition 6. Let g(x) = axq+1 + bxq + cx + d . If b �= c and bc = ad , then g(x) has exactly
two distinct roots.

Proof. Just note that

g(x) = axq+1 + bxq + cx + d =
(

x + b

a

)(
axq + c

) =
(

x + b

a

)
(ax + c)q . �
Please cite this article in press as: F.N. Castro et al., On systems of linear and diagonal equation of degree pi + 1 over
finite fields of characteristic p, Finite Fields Appl. (2007), doi:10.1016/j.ffa.2007.09.008
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3. Calculation of δ(1,pi + 1,pf )

As we mentioned in the introduction, δ(1, d,2f ) has been studied intensively because of
the applications to the computation of the covering radius of certain cyclic codes. In particular,
δ(1,2i + 1,2f ) = 3 under certain conditions, although the necessary conditions for this are still
not known.

In this section we find the necessary and sufficient conditions for δ(1,pi + 1,pf ) = 3 for any
field of characteristic greater than 3. The proof that we present here is elementary and uses a
technique introduced in [12].

Theorem 7. Let p > 3. Then the system of polynomial equations

x1 + x2 + x3 = β,

x
pi+1
1 + x

pi+1
2 + x

pi+1
3 = γ, (3)

has solutions for every β,γ ∈ Fpf , if and only if f �= 2i.

Proof. Consider the system

x1 + x2 + x3 = β0x4,

x
pi+1
1 + x

pi+1
2 + x

pi+1
3 = γ0x

pi+1
4 . (4)

Note that (a, b, c, d), d �= 0, is a solution to system (4) if and only if ( a
d
, b

d
, c

d
) is a solution to

system (3) with β = β0, γ = γ0. To prove that system (3) has solutions we will see that system (4)
has solutions with x4 �= 0. For this, consider the system

x1 + x2 + x3 = 0,

x
pi+1
1 + x

pi+1
2 + x

pi+1
3 = 0. (5)

The number of solutions of (5) is the number of solutions of x
pi+1
1 + x

pi+1
2 + (x1 + x2)

pi+1 = 0.

If x2 = 0 then 2x
pi+1
1 = 0, and x1 = 0. Suppose that x2 = b �= 0. Then x

pi+1
1 + bpi+1 +

(x1 + b)p
i+1 = x

pi+1
1 + bpi+1 + (x1 + b)p

i
(x1 + b) = 2x

pi+1
1 + bx

pi

1 + bpi
x1 + 2bpi+1 = 0.

This equation is equivalent to 2( x1
b

)p
i+1 + ( x1

b
)p

i + ( x1
b

) + 2 = 0 and has the same number of
solutions as

2zpi+1 + zpi + z + 2 = 0. (6)

Note that the polynomial in this equation is of the type considered in Theorem 1 and therefore
it has all its solutions in Fp2i . Suppose that N is the number of different solutions of (6) over Fpf .
Then the number of solutions of system (5) is N(pf − 1) + 1 = Npf − (N − 1). By Moreno–
Moreno’s theorem (see [14]), we have that p�f/2	 divides the number of solutions of (4).

If N = 0, then (0,0,0) is the only solution to system (5) and therefore there is only one
solution to system (4) with x4 = 0. Since p�f/2	 divides the number of solutions of (4), we must
Please cite this article in press as: F.N. Castro et al., On systems of linear and diagonal equation of degree pi + 1 over
finite fields of characteristic p, Finite Fields Appl. (2007), doi:10.1016/j.ffa.2007.09.008
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have that this system has solutions with x4 �= 0, and system (3) has solutions. Suppose that
N = 1. Then, since b

a
= 1

2 ∈ Fp , Corollary 2 implies that b2 = ad . Therefore p = 3 and this is a
contradiction.

For N > 1, if we prove that ordp(N − 1) < �f
2 	 then the number of solutions of system (4) is

not equal to the number of solutions of system (5). This means that system (4) has solutions with
x4 �= 0 and we obtain the desired result.

Since p > 3 and the degree of (6) is pi + 1, one has that ordp(N − 1) � i. Now, if i < �f
2 	,

then ordp(N − 1) < �f
2 	 and we are done. We now have to prove that this is also true when

i � �f
2 	. Suppose that 2i > f . Without loss of generality, we can assume that pi � pf − 2.

Hence i < f < 2i. Note that all the solutions of (6) over Fpf are in Fpk = Fpf ∩ Fp2i , where

k = (2i, f ). Hence, N � pk . Since k|f , we must have that k � f
2 or k = f .

If k � f
2 , then N − 1 < pk � p�f/2	 and we are done. If k = f , then f |2i and one has

that f r = 2i for some r ∈ Z. Since i < f , then ir < f r = 2i and hence r = 1. This implies
that f = 2i, which is a contradiction. Hence, for f �= 2i system (3) has solutions for every
β,γ ∈ Fp2i .

If f = 2i, then system (3) does not have solutions for all β,γ ∈ Fp2i . For example, consider

γ ∈ Fp2i \ Fpi . Since (αpi+1)p
i−1 = 1 for α ∈ F

∗
p2i , one has that αpi+1 ∈ Fpi and x

pi+1
1 +

x
pi+1
2 + x

pi+1
3 = γ does not have solutions. �

Corollary 8. Let p be any prime. Then δ(1,pi + 1,p2i ) does not exist.

Proof. Note that the last argument of the proof of Theorem 7 applies to a similar system with
any number of variables. �
Theorem 9. Suppose that p > 3. Then δ(1,pi + 1,pf ) = 3 if and only if f �= 2i.

Proof. Consider the system

x1 + x2 = 0,

x
pi+1
1 + x

pi+1
2 = β. (7)

A solution to this system has to satisfy x
pi+1
1 = β

2 , and this does not have a solution for each β .
This implies that δ(1,pi + 1,pf ) � 3. By the previous theorem δ(1,pi + 1,pf ) = 3 if and only
if f �= 2i. �

For p = 3 system (3) does not have a solution for each β,γ ∈ F3f . For example, consider

x1 + x2 + x3 = 0,

x3i+1
1 + x3i+1

2 + x3i+1
3 = β. (8)

Note that a solution to (8) has to satisfy β = (x2 +x3)
3i+1 +x3i+1

2 +x3i+1
3 = 2(x2 +2x3)

3i+1,
and this equation does not have a solution for each β .

Proposition 10. δ(1,3i + 1,3f ) > 3.
Please cite this article in press as: F.N. Castro et al., On systems of linear and diagonal equation of degree pi + 1 over
finite fields of characteristic p, Finite Fields Appl. (2007), doi:10.1016/j.ffa.2007.09.008
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4. Generalizations

One of the possible generalizations of Theorem 7 is to consider a system of two equations
with coefficients different from 1 and find conditions on the coefficients so that the system has
solutions over Fpf . This is, to find conditions on a1, a2, a3, b1, b2, b3 so that

b1x1 + b2x2 + b3x3 = β,

a1x
pi+1
1 + a2x

pi+1
2 + a3x

pi+1
3 = γ, (9)

have solutions over Fpf for every β,γ ∈ Fpf . It is important to note that the results here work
for any Fpf with p �= 2.

Theorem 11. Suppose that a1a2a3b1b2b3 �= 0, a1, a2, a3, b1, b2, b3 ∈ Fpf , and f �= 2i. Then,
system (9) has solutions for every β,γ ∈ Fpf if one of the following conditions hold:

1. (a) a1, a2, a3, b1, b2, b3 ∈ Fpi ;

(b) a1b
−2
1 b2

2 + a2 = 0 and a1b
−2
1 b2

3 + a3 �= 0.
2. (a) a1, a2, a3, b1, b2, b3 ∈ Fpi ;

(b) a1b
−2
1 b2

2 + a2 �= 0 and a1b
−2
1 b2

3 + a3 = 0.

3. a1b
−(pi+1)

1 b
pi+1
2 + a2 = 0 and a1b

−(pi+1)

1 b
pi+1
3 + a3 = 0.

4. (a) a1, a2, a3, b1, b2, b3 ∈ Fpi ;

(b) a1b
−2
1 b2

2 + a2 �= 0 and a1b
−2
1 b2

3 + a3 �= 0;
(c) a1b

−2
1 b2

2a3 + a2a1b
−2
1 b2

3 + a2a3 �= 0.

Proof. We are going to use the same technique used in the proof of Theorem 7. Consider the
system (9) with β = γ = 0.

Then, x1 = −b−1
1 b2x2 − b−1

1 b3x3, and we want to compute the number of solutions of

a1
(
b−1

1 b2x2 + b−1
1 b3x3

)pi+1 + a2x
pi+1
2 + a3x

pi+1
3 (10)

= (
a1b

−(pi+1)

1 b
pi+1
2 + a2

)
x

pi+1
2 + a1b

−(pi+1)

1 b
pi

2 b3x3x
pi

2

+ a1b
−(pi+1)

1 b2b
pi

3 x
pi

3 x2 + (
a1b

−(pi+1)

1 b
pi+1
3 + a3

)
x

pi+1
3

= 0.

(a) For coefficients satisfying Theorem 4, part (1), we obtain

a1b
−2
1 b2b3x3x

pi

2 + a1b
−2
1 b2b3x

pi

3 x2 + (
a1b

−2
1 b2

3 + a3
)
x

pi+1
3 = 0.

If x2 = 0, then x3 = 0. If x2 = α, then

a1b
−2b2b3z + a1b

−2b2b3z
pi + (

a1b
−2b2

3 + a3
)
zpi+1 = 0,
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where z = x3
α

. The polynomial here has the form axq+1 + bxq + bx + d , the polynomial consid-

ered in Theorem 1. Here b
a

∈ Fpf and b2 = (a1b
−2
1 b2b3)

2 �= 0 = ad . Corollary 2 implies that the
number of roots of the polynomial is even and the rest of the proof follows the arguments in the
proof of Theorem 7.

(b) The case (2) in Theorem 4 is similar to case (1) of this theorem.
(c) For case (3), we obtain

a1b
−(pi+1)

1 b
pi

2 b3x3x
pi

2 + a1b
−(pi+1)

1 b2b
pi

3 x
pi

3 x2

= x2x3a1b
−(pi+1)

1 b2b3
(
b

pi−1
2 x

pi−1
2 + b

pi−1
3 x

pi−1
3

)
= 0 (11)

So, either x2 = 0, x3 = 0, or b
pi−1
2 x

pi−1
2 + b

pi−1
3 x

pi−1
3 = 0. Suppose that x2 = a �= 0. Then,

the number of solutions of b
pi−1
2 x

pi−1
2 + b

pi−1
3 x

pi−1
3 = 0 with x2 �= 0 is the number of roots of

the polynomial 1 + zpi−1 over Fpf , where z = b3x3
ab2

, which is 0 or d = (pf − 1,pi − 1) � 2.
Hence, any solution to (11) will have the form (0,0), (0, a), (a,0), (a, c), where a �= 0 and c

is a solution to 1 + zpi−1 = 0. Therefore, the number of solutions of (11) is either 2pf − 1 or
2pf + dpf − (d + 1). Note that any root of 1 + zpi−1 over Fpf is also a root of zp2i−1 − 1 and
therefore is an element in Fp2i ∩ Fpf . Divisibility arguments similar to the ones in Theorem 7
imply the desired result.

(d) For case (4), if x2 = 0, then x3 = 0. If x2 = α, then (a1b
−2
1 b2

2 + a2)α
pi+1 + a1b

−2
1 b2b3 ×

αpi+1z + a1b
−2
1 b2b3α

pi+1zpi + (a1b
−2
1 b2

3 + a3)α
pi+1zpi+1 = 0, where z = x3

α
. We divide both

sides by αpi+1 to obtain again a polynomial p(x) of the form axq+1 +bxq +bx +d , the polyno-
mial considered in Theorem 1. Since ad = (a1b

−2
1 b2b3)

2 + a1b
−2
1 b2

2a3 + a2a1b
−2
1 b2

3 + a2a3 and
a1b

−2
1 b2

2a3 + a2a1b
−2
1 b2

3 + a2a3 �= 0, we have that ad �= (a1b
−2
1 b2b3)

2 = b2. Again, by Corol-
lary 2, the number of roots of the polynomial p(x) is even, and the rest of the proof follow the
arguments of the proof of Theorem 7. �
Example 1. Using part (1) of Theorem 4, we obtain that the system

x1 + x2 + x3 = β,

a1x
pi+1
1 − a1x

pi+1
2 + a3x

pi+1
3 = γ, (12)

has at least one solution for every β,γ ∈ Fpf , whenever f �= 2i, a1, a2, a3 ∈ Fpi , and a3 �= −a1.

Theorem 12. Suppose that a1, a2, a3, b1, b2 ∈ Fpf ∩ Fpi and f �= 2i. Then, the system of poly-
nomial equations

b1x1 + b2x2 = β,

a1x
pi+1
1 + a2x

pi+1
2 + a3x

pi+1
3 = γ, (13)

has at least one solution for every γ,β ∈ Fpf if a1(−b2b
−1)2 + a2 �= 0 and a3 �= 0.
Please cite this article in press as: F.N. Castro et al., On systems of linear and diagonal equation of degree pi + 1 over
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Proof. Again, we will use the same technique used in the proof of Theorem 7. Consider the
system (13) with β = γ = 0. Then x1 = −b2b

−1
1 x2 and we want to compute the number of

solutions of

(
a1

(−b2b
−1
1

)2 + a2
)
x

pi+1
2 + a3x

pi+1
3 = 0.

Suppose that a1(−b2b
−1
1 )2 + a2 �= 0. If x2 = 0, then x3 = 0. If x2 = α �= 0, then we need to com-

pute the number of solutions of d +a3x
pi+1
3 = 0, where d = (a1(−b2b

−1
1 )2 +a2)α

pi+1 �= 0. The
polynomial here has the form axq+1 + bxq + bx + d , the polynomial considered in Theorem 1.
Here b

a
= 0 ∈ Fpf and b2 = 0 �= a3d = ad . Corollary 2 implies that the number of roots is even

and the rest of the proof follow the arguments in the proof of Theorem 7. �
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