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Dickson permutation polynomials that decompose in cycles
of the same length

Ivelisse M. Rubio, Gary L. Mullen, Carlos Corrada, and Francis N. Castro

Abstract. In this paper we study permutations of finite fields Fq given by

Dickson polynomials. For certain families of Dickson permutation polynomials

we give the necessary and sufficient conditions on the degree of the polynomial
in order to obtain a permutation that decomposes in cycles of the same length.

1. Introduction

Consider Fq, the finite field of q = pf elements, where p is a prime number.
The Dickson polynomial Di(x, a) of degree i is defined as:

Di(x, a) :=
bi/2c∑
j=0

i

i− j

(
i− j
j

)
(−a)j xi−2j .

It is known that the Dickson monomial of degree i, Di(x, 0) := xi produces
a permutation of Fq if and only if gcd(i, q − 1) = 1. Also, for a 6= 0, the Dick-
son polynomial of degree i, Di(x, a), produces a permutation of Fq if and only if
gcd(i, q2 − 1) = 1.

Using the fact that Dickson permutation polynomials Di(x, a) are closed under
composition of polynomials if and and only if a = 0, 1,−1, in [LM], Lidl and Mullen
studied the cycle structure of Dickson permutation polynomials where a = 0, 1,−1.
Permutation monomials xi with all the cycles of the same length (ignoring the
fixed points) were characterized by Rubio and Corrada in [RC]. For the sake of
completeness we include the following theorem that characterizes the permutation
monomials that decompose in cycles of the same length.

Theorem 1.1. Let q − 1 = pk11 . . . pkr
r and suppose that gcd(i, q − 1) = 1. The

permutation of Fq given by xi has cycles of the same length j if and only if one of
the following holds for each l = 1, . . . , r:
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1. i ≡ 1
(

mod pkl

l

)
2. j = ord

p
kl
l

(i) and j| (pl − 1)
3. j = ord

p
kl
l

(i), kl ≥ 2 and j = pl.

In this work we characterize Dickson permutation polynomials Di(x, 1) and
Di(x,−1) that decompose in cycles of the same length. With this characterization
one can construct Dickson permutations with a prescribed cycle length as we will
see in Section 4. Being able to construct permutations with certain cycle structure
may prove to be very important in applications like turbo-like coding or low-density
parity-check codes (LDPC) where cycles or lack thereof are fundamental for the
performance of the codes. We also characterize Dickson permutation polynomials
that decompose in cycles of length two. These types of permutations are their own
inverse and are useful in applications to coding theory because the same technology
used for encoding can be used for decoding. We are currently undertaking the task
of distinguishing which of the permutations described here provide good interleavers
for these applications.

From now on j will denote a positive integer and (n,m) = gcd(n,m) denotes
the greatest common divisor of n and m. We say that a permutation decomposes
in cycles of length j if all of the nontrivial cycles of the permutation have length
j. Also, we say that j is the smallest integer such that ij ≡ ±1 (mod t) if j is the
smallest integer such that ij ≡ 1 (mod t) or ij ≡ −1 (mod t).

2. Dickson Permutation Polynomials Di(x, 1)

The cycle structure of Dickson permutation polynomials Di(x, 1) is determined
by the following theorem proved in [LM].

Theorem 2.1. Let j be a positive integer and let Di(x, 1) permute Fq. Then
Di(x, 1) has a cycle of length j if and only if q−1 or q+ 1 has a divisor t such that
j is the smallest integer with ij ≡ ±1 (mod t). Moreover the number Mj of such
cycles is

jMj =

(
q + 1, ij + 1

)
+
(
q − 1, ij + 1

)
+
(
q + 1, ij − 1

)
+
(
q − 1, ij − 1

)
2

−ε−
∑

k|j,k<j

kMk,

where

ε =
{

1 if p = 2, or p is odd and i is even
2 if p is odd and i is odd.

Note that this theorem gives a formula for counting the number of fixed points
of the permutation (also see Theorems 3.35 and 3.36 in [LMT]). The number of
points of Fq fixed by the permutation Di(x, 1) is:

((q + 1, i+ 1) + (q − 1, i+ 1) + (q + 1, i− 1) + (q − 1, i− 1))/2 − ε, where ε is
as defined in Theorem 2.1.

The following corollary to Theorem 2.1 characterizes the Dickson permutation
polynomials Di(x, 1) that decompose in cycles of the same length j.

Corollary 2.2. All non-trivial cycles of the permutation of Fq given by the
Dickson polynomial Di(x, 1) have cycles of length j if and only if for every divisor
t of q − 1, i ≡ ±1 (mod t) or j is the smallest integer with ij ≡ ±1 (mod t)
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and for every divisor s of q + 1, i ≡ ±1 (mod s) or j is the smallest integer with
ij ≡ ±1 (mod s).

One can use the above corollary to obtain Dickson permutation polynomials
Di(x, 1) that decompose in cycles of length j but this would imply checking the
conditions for every divisor of q+1 and q−1. Also, if one wants to use the corollary
to find the exponents i with this property, one will have to do an exhaustive search.
It seems difficult to use a direct application of the Chinese Remainder Theorem
to reformulate Corollary 2.2 in terms of the prime power divisors of q − 1 and
q + 1. More conditions are needed in the situations presented in Lemmas 2.15 and
2.16. These lemmas are used in Theorem 2.17 to give the necessary and sufficient
conditions on the highest power of the primes dividing q − 1 and q + 1 to obtain
Dickson permutation polynomials that decompose in cycles of the same length.

The following definitions and notations will be used on the rest of the paper:

Definition 2.3. Suppose that gcd(i, t) = 1. Denote by j = ordt(i) the smallest
integer j such that ij ≡ 1 (mod t).

Definition 2.4. Suppose that gcd(i, t) = 1. Denote by j = ord−t (i) the small-
est integer j such that ij ≡ −1 (mod t).

The conditions in the above corollary are related to these definitions but it is
important to note that j = ordt(i) does not imply that j is the smallest integer
such that ij ≡ ±1 (mod t). The following lemmas, which are very easy to prove,
relate ordt(i) and ord−t (i).

Lemma 2.5. If ord−t (i) exists, then ord−t (i) ≤ ordt(i).

Lemma 2.6. Suppose that ord−t (i) exists. Then, ord−t (i) = ordt(i) if and only
if t = 2 and i ≡ 1 (mod 2).

Lemma 2.7. Let p be a prime, pk 6= 2, and suppose that ord−pk(i) exists. Then
j = ord−pk(i) implies that 2j = ordpk(i).

Since we want to reduce the conditions in Corollary 2.2 from any divisor of
q+1 and q−1 to only the highest powers of the primes dividing q+1 and q−1, we
need to relate ord

p
kl
l

(i) to ordph
l
(i) for h < kl and ord−

p
kl
l

(i) to ord−
ph

l

(i) for h < kl.

Also, for l 6= m, we need to relate ord
p

kl
l

(i) to ordpkm
m

(i) and ord−
p

kl
l

(i) to ord−
pkm

m
(i).

The relations needed for our results are shown in the following lemmas.

Lemma 2.8. Let p be a prime and suppose that p = ordpk(i) for some k ≥ 2.
Then either 2 = p = ordpl(i) for 2 ≤ l ≤ k or i ≡ 1 (mod pl) for 1 ≤ l < k.

Proof. It is easy to see that the result follows for k = 2, 3.
Let p = 2 and k ≥ 4. Suppose that 2 = ord2k(i) = ord2k−1(i) and i ≡

1 (mod 2k−2). Then 22|(i− 1) and, since 2 = ord2k−1(i) implies that 2k−1 6 |(i− 1),
one must have that 22|(i + 1). This implies that 4|2 which is absurd. Hence,
2 = p = ordpl(i) for 2 ≤ l ≤ k or i ≡ 1 (mod 2l) for 1 ≤ l < k.

Now let p 6= 2 and p = ordpk(i). Then, i ≡ α
ϕ(pk)

p (mod pk) for some α a
primitive root mod pk. This implies that i ≡ αp

k−2(p−1) ≡ αϕ(pl)pk−l−1 ≡ 1 (mod
pl), for 1 ≤ l < k. �
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Lemma 2.9. Let p be a prime and suppose that p = ord−pk(i) for some k ≥ 2.
Then p 6= 2 and i ≡ −1 (mod pl) for 1 ≤ l < k.

Proof. If 2 = ord−2k(i) for some k ≥ 2, then 22|(i2 + 1) and i is odd. This
implies that 2|(i− 1) and 2|(i+ 1) and hence 22|(i2 − 1). But this implies that 4|2,
which is impossible. Therefore 2 6= ord−2k(i) for k ≥ 2

Suppose now that p 6= 2 and p = ord−pk(i). Then i ≡ α
ϕ(pk)

2p (mod pk) for some

α a primitive root mod pk, and, since p 6= 2, i ≡ α
ϕ(pl)

2 pk−l−1 ≡ −1 (mod pl) for
1 ≤ l < k.

�

The following lemmas are similar to results presented in [RC] for the case of
permutation monomials and their proofs are omitted.

Lemma 2.10. Let p be a prime. Then j = ordpk(i) and j|(p− 1) if and only if
j = ordpl(i) for all l ≤ k.

Lemma 2.11. Let p be a prime, j odd and k ≥ 2. Then j = ord−pk(i) and
j|(p− 1) if and only if j = ord−pl(i) for all l ≤ k.

Lemma 2.12. Let p be a prime and j even. Then j = ord−pk(i) and 2j|(p − 1)
if and only if j = ord−pl(i) for all l ≤ k.

Lemma 2.13. Let j = ord−s (i), j = ord−t (i) and gcd(s, t) = 1. Then j =
ord−st(i).

Lemma 2.14. Let j = ord−s (i), i ≡ −1 ( mod t), j odd and gcd(s, t) = 1. Then
j = ord−st(i).

The next two lemmas will be combined to obtain the main theorem of this
section.

Lemma 2.15. Let n = q − 1 = pk11 p
k2
2 . . . pkr

r be the prime factorization of n.
Suppose that gcd(i, q2 − 1) = 1. If all the non-trivial cycles of the permutation
of Fq given by the Dickson polynomial Di(x, 1) have the same length j, then i ≡
±1 (mod n), or exactly one of the following hold for all l = 1, . . . , r.

(1) Either
(a) i ≡ −1 (mod pkl

l ) and (j odd or pkl

l = 2), or
(b) j = ord−

p
kl
l

(i), and (j odd and j|(pl − 1), or 2j|(pl − 1)), or

(c) j = ord−
p

kl
l

(i), kl ≥ 2 and j = pl 6= 2.

(2) i 6≡ 1 (mod n), j odd and either
(a) i ≡ 1 (mod pkl

l ), or
(b) j = ord

p
kl
l

(i) and j|(pl − 1), or
(c) j = ord

p
kl
l

(i), kl ≥ 2 and j = pl.
(3) i 6≡ ±1 (mod n), j = 2 and either

(a) i ≡ −1 (mod pkl

l ), or
(b) i ≡ 1 (mod pkl

l ), or
(c) 2 = ord

p
kl
l

(i), kl ≥ 2, and pl = 2.
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Proof. Suppose that all the cycles have length j, or are fixed points. Suppose
that i 6≡ ±1 (mod q − 1). By Corollary 2.2, j = ordt(i), or j = ord−t (i) or i ≡
±1 (mod t) for all t that divides q− 1. This holds in particular for all t = pkl

l , l =
1, . . . , r. We first show that if pkl

l divides q − 1, then it satisfies either (a), (b), or
(c) in one of the cases of the lemma. This is, we need to show that:

i. If 1 6= j = ord
p

kl
l

(i) and j 6 |(pl − 1), then j = pl and kl ≥ 2.

ii. If 1 6= j = ord
p

kl
l

(i), then j odd or i ≡ −1 (mod pkl

l ) or j = pl = 2, kl ≥
2.

iii. For l 6= m, if 1 6= j = ord−
p

kl
l

(i) and i ≡ −1 (mod pkm
m ), then j is odd, or

pkm
m = 2.

iv. If 1 6= j = ord−
p

kl
l

(i) and j 6 |(pl − 1), then j = pl 6= 2 and kl ≥ 2.

v. If 1 6= j = ord−
p

kl
l

(i) and 2j 6 |(pl − 1), then j = pl 6= 2 and kl ≥ 2.

• Proof of i: This result follows from Theorem 2 in [RC].
• Proof of ii: Suppose that 1 6= j = ord

p
kl
l

(i) and j even. Then j = 2h

and pkl

l |(ih − 1)(ih + 1). Since all the cycles have the same length j, one
must have that h = 1 and j = 2. Suppose that i 6≡ −1 (mod pkl

l ). Then,
since 2 = ord

p
kl
l

(i), one has that pkl

l 6 |(i − 1) and pkl

l 6 |(i + 1). Therefore

pl|(i+ 1) and pl|(i− 1), which implies that pl = 2 = j. Since 2kl 6 |(i− 1),
one must have that kl ≥ 2.

• Proof of iii: Suppose that 1 6= j = ord−
p

kl
l

(i), i ≡ −1 (mod pkm
m ), and

j is even. Then ij ≡ 1 (mod pkm
m ). Since all the cycles have the same

length, we have that pkm
m pkl

l |(ij − 1) or pkm
m pkl

l |(ij + 1). Therefore pkl

l = 2
or pkm

m = 2. If pkl

l = 2, then i ≡ 1 (mod pkl

l ) and this is a contradiction.
• Proof of iv: Suppose that 1 6= j = ord−

p
kl
l

(i) and j 6 |(pl − 1). If kl = 1,

then pl 6= 2 and, by Lemma 2.7, 2j = ordpl
(i), 2j|(pl − 1) and therefore

j|(pl − 1), which is a contradiction. Hence kl ≥ 2.
Lemmas 2.11 and 2.12 imply that h = ord−ps

l
(i) for some s < kl and

h < j. But, since all the cycles have the same length j, h = 1 and
i ≡ −1 (mod psl ). Let s be the largest such that j 6= ord−ps

l
(i). Then, j =

ord−
ps+1

l

(i) and 2j = ordps+1
l

(i). If pl = 2, then 2s|(i+ 1) and 2s+1|(i2−1).
This implies that j = 2 = pl, but this contradicts Lemma 2.9. Therefore
pl is odd. By Lemma 3 in Chapter 4 of [IR], one has that ipl ≡ (−1)pl ≡
−1 (mod ps+1

l ). Hence, i2pl ≡ 1 (mod ps+1
l ). This implies that 2j|2pl

and j = pl.
• Proof of v: Suppose 1 6= j = ord−

p
kl
l

(i) and 2j 6 |(pl − 1). If j 6 |(pl − 1),

then we get the result by iv. Suppose that j|(pl−1). Then pl 6= 2 and 2j =
ord

p
kl
l

(i). Since 2j 6 |(pl − 1), Lemma 2.10 implies that h = ordps
l
(i) for

some h < 2j and s < kl. But, since the cycles have the same length, h = 1
and i ≡ 1 (mod psl ). Therefore ij ≡ 1 (mod psl ) and ij ≡ −1 (mod psl ).
This implies that psl = 2 which is a contradiction.
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We now need to show that the same case of the lemma holds for all pk11 , . . . , p
kr
r .

To see this it is enough to prove that, if pkl

l and pkm
m both divide q − 1 for l 6= m,

then:
vi. If 1 6= j = ord

p
kl
l

(i), then j 6= ord−
pkm

m
(i). That is, if pkl

l satisfies case 2 or

case 3, then pkm
m cannot satisfy case 1.

vii. If 1 6= j = ord
p

kl
l

(i), i 6≡ −1 (mod pkl

l ) and i ≡ −1 (mod pkm
m ), then j is

odd and i ≡ 1 (mod pkm
m ) (and we are in case 2), or 2 = j = pl, kl ≥ 2

(and we are in case 3).
viii. If 1 6= j = ord−

p
kl
l

(i) and i ≡ 1 (mod pkm
m ), then i ≡ −1 (mod pkm

m ) (and

we have case 1).
• Proof of vi: Suppose that 1 6= j = ord

p
kl
l

(i) and j = ord−
pkm

m
(i). Then,

since all the cycles have the same length j, ij ≡ ±1 (mod pkl

l p
km
m ). This

implies that pkl

l |(ij + 1) or pkm
m |(ij − 1) and therefore pkl

l = 2 or pkm
m = 2.

Hence i ≡ 1 (mod pkl

l ) or i ≡ 1 (mod pkm
m ), which is a contradiction to

1 6= j = ord
p

kl
l

(i) or 1 6= j = ord−
pkm

m
(i).

• Proof of vii: Suppose that 1 6= j = ord
p

kl
l

(i) and i ≡ −1 (mod pkm
m ).

Then, since all the cycles have the same length j, we have that pkm
m pkl

l |(ij−
1) or pkm

m pkl

l |(ij + 1).
Suppose that pkm

m pkl

l |(ij − 1) and j is odd. Since i ≡ −1 (mod pkm
m ),

we have that ij ≡ −1 (mod pkm
m ). This implies that pkm

m |(ij − 1) and
pkm
m |(ij + 1) and hence pkm

m = 2. Therefore i ≡ 1 (mod pkm
m ) and this

follows under case 2 of the lemma.
Suppose that pkm

m pkl

l |(ij − 1) and j is even. The same arguments in
the proof of ii show that pl = 2 = j and kl ≥ 2.

Suppose now that pkm
m pkl

l |(ij+1). Then pkl

l |(ij+1) and, since pkl

l |(ij−
1), we have that pkl

l = 2. This implies that i ≡ 1 (mod pkl

l ), a contradic-
tion to 1 6= j = ord

p
kl
l

(i).
• Proof of viii: The proof is similar to the proof of vii.

�

The next lemma deals with the divisors of q + 1 and its proof is the same as
the proof of Lemma 2.15.

Lemma 2.16. Let n = q + 1 = pk11 p
k2
2 . . . pkr

r be the prime factorization of n.
Suppose that gcd(i, q2 − 1) = 1. If all the non-trivial cycles of the permutation
of Fq given by the Dickson polynomial Di(x, 1) have the same length j, then i ≡
±1 (mod n), or exactly one of the cases of the above lemma holds for all l =
1, . . . , r.

The following theorem gives the necessary and sufficient conditions for a per-
mutation Di(x, 1) to decompose in cycles of the same length.

Theorem 2.17. Let q − 1 = pk11 p
k2
2 . . . pkr

r and q + 1 = p
kr+1
r+1 p

kr+2
r+2 . . . pks

s be
the prime factorizations of q − 1 and q + 1. Suppose that gcd(i, q2 − 1) = 1. The
permutation of Fq given by the Dickson polynomial Di(x, 1) is the identity on Fq
or all non-trivial cycles have the same length j if and only if i ≡ ±1 (mod q − 1)
or exactly one of the cases in Lemma 2.15 holds for all l = 1, 2, . . . , r, and i ≡
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±1 (mod q + 1) or exactly one of the cases in Lemma 2.15 holds for all l = r +
1, r + 2, . . . , s.

Proof. (=⇒) If the permutation is the identity on Fq, then i ≡ ±1 (mod q−
1) and i ≡ ±1 (mod q + 1). If the permutation is not the identity and all the
non-trivial cycles have length j then j = ord

p
kl
l

(i) or j = ord−
p

kl
l

(i) for at least one

1 ≤ l ≤ s and Lemmas 2.15 and 2.16 show this direction of the statement.
(⇐=) If i ≡ ±1 (mod q − 1) and i ≡ ±1 (mod q + 1) then Di(x, 1) is the

identity on Fq. Suppose that i 6≡ ±1 (mod q − 1) and case 1 of Lemma 2.15
holds for every pkl

l that divides q − 1. Lemmas 2.9, 2.11 and 2.12 guarantee that
j = ord−

ph
l

(i) or i ≡ −1 (mod phl ) for all l = 1, 2, . . . , r and h ≤ kl. If t|(q − 1)

Lemmas 2.13 and 2.14 guarantee that j = ord−t (i) or i ≡ −1 (mod t). Since
ord−t (i) ≤ ordt(i), this implies that i ≡ −1 (mod t) or j is the smallest integer
such that ij ≡ ±1 (mod t).

Suppose that case 2 of Lemma 2.15 holds for every pkl

l that divides q−1. Then,
by arguments similar to those on the proof of Theorem 2 in [RC], one has that
j = ordt(i) or i ≡ 1 ( mod t). Since j is odd, we have that ord−t (i) does not exist and
therefore i ≡ ±1 (mod t) or j is the smallest integer such that ij ≡ ±1 (mod t).

Suppose that case 3 of Lemma 2.15 holds for every pkl

l that divides q − 1.
Then i ≡ ±1 (mod pkl

l ) or 2 = ord2kl (i), kl ≥ 2. If i ≡ ±1 (mod pkl

l ), then
i ≡ ±1 (mod phl ) for all h ≤ kl. If 2 = ord2kl (i), kl ≥ 2, then, by Lemma 2.8 we
have that 2 = ord2h(i) or i ≡ ±1 (mod phl ) for all h ≤ kl. Therefore 2 = ordt(i) or
i ≡ ±1 (mod t) for all t|(q − 1) and i 6≡ ±1 (mod q − 1). This implies that j = 2
is the smallest integer such that ij ≡ ±1 (mod t) or i ≡ ±1 (mod t).

The above arguments also apply for q + 1. Therefore, if Di(x, 1) is not the
identity on Fq and j is such that one of the cases of Lemma 2.15 holds for all pks

s

that divide q − 1 or i ≡ ±1 (mod q − 1) and one of the cases of Lemma 2.15 holds
for all pkl

l that divide q + 1 or i ≡ ±1 (mod q + 1), then we have that for every
divisor t of q−1 and for every divisor s of q+1, i ≡ ±1 ( mod t) or j is the smallest
integer such that ij ≡ ±1 ( mod t), and i ≡ ±1 ( mod s) or j is the smallest integer
such that ij ≡ ±1 (mod s). Therefore, by Corollary 2.2, all cycles have length j or
1. �

Example 2.18. Consider the Dickson permutation polynomial D31(x, 1) over
F17 after reducing the exponents modulo 16:

D31(x) = x15 + 3x13 + 9x11 + 11x9 + 5x7 + 8x5 + 14x3 + x.

For p − 1 = 17 − 1 = 16 = 24, we have that 1 = ord−24(31). The value of j cannot
be determined by p− 1; is determined by the divisors of p+ 1.

For p + 1 = 18 = 2 · 32, we have that 1 = ord2(31), 3 = ord32(31). Case 2 (a)
and (c) are satisfied and j = 3.

Theorem 2.17 implies that all the cycles of the permutation induced byD31(x, 1)
have length j = 3. The number of fixed points is given by the formula after Theorem
2.1: [(18, 32) + (16, 32) + (18, 30) + (16, 30)] /2− 2 = 11. The cyclic decomposition
is in fact (3, 4, 10)(7, 14, 13).
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As we mentioned in the introduction, permutations that decompose in cycles of
length two are useful in applications to coding theory. The following corollary char-
acterizes the Dickson permutation polynomials Di(x, 1) that decompose in cycles
of length two and, hence, are their own inverse.

Corollary 2.19. Let q − 1 = pk11 p
k2
2 . . . pkr

r and q + 1 = p
kr+1
r+1 p

kr+2
r+2 . . . pks

s be
the prime factorizations of q − 1 and q + 1. Suppose that gcd(i, q2 − 1) = 1. The
permutation of Fq given by the Dickson polynomial Di(x, 1) is the identity on Fq
or all the non-trivial cycles have length two if and only if one of the following holds
for all l = 1, 2, . . . , r and one of the following holds for all l = r + 1, r + 2, . . . , s:

(1) Either
(a) i ≡ 1 (mod pkl

l ) and pkl

l = 2, or
(b) 2 = ord−

p
kl
l

(i), and 4|(pl − 1).

(2) Either
(a) i ≡ ±1 (mod pkl

l ), or
(b) 2 = ord

p
kl
l

(i), pl = 2, kl ≥ 2, and i 6≡ −1 (mod pkl

l ).

We close this section with a nice approach to finding the necessary and sufficient
conditions to obtain Dickson permutation polynomials with cycles of the same
length suggested by Rex Matthews. We thank Rex Matthews for his idea, which
can be stated as follows:

Theorem 2.20. Let Fq be a field with odd characteristic and let i be such that
gcd(i, q2 − 1) = 1. All non-trivial cycles of the permutation of Fq given by the
Dickson polynomial Di(x, 1) have length j if and only if j = ord−s (i) and gcd(it +
1, s) = gcd(i + 1, s) for all t < j, or j = ords(i) and gcd(it − 1, s) = gcd(i −
1, s) for all t < j, for s = q − 1 and s = q + 1.

3. Dickson Permutation Polynomials Di(x,−1)

We now consider the case Di(x,−1). Since for p = 2, Di(x, 1) = Di(x,−1), it
is enough to consider Di(x,−1) for Fq with odd characteristic. Since Di(x,−1) is
permutation polynomial if and only if gcd(i, q2−1) = 1, we will also consider i to be
odd. Let νρ(m) denote the highest power of ρ dividing m 6= 0 and set νρ(0) =∞.

The cycle structure of Dickson permutation polynomials Di(x,−1) is deter-
mined by the following theorem proved in [LM].

Theorem 3.1. Let j be a positive integer and let Di(x,−1) permute Fq. If i
and q are odd, then Di(x,−1) has a cycle of length j if and only if q−1 or q+1 has
a divisor t such that j = ordt(i) or j is the smallest such that 2(ij+1) ≡ 0 ( mod t).
Moreover the number Kj of such cycles is

jKj =
a1

(
2(q + 1), ij + 1

)
+ a2

(
q − 1, ij + 1

)
+ a3

(
q + 1, (ij − 1)/2

)
2

+

(
q − 1, ij − 1

)
2

− ε−
∑

m|j,m<j

mKm,

where

ε =
{

2 if ij ≡ 1 and q ≡ 1 (mod 4)
0 otherwise, a1 =

{
1 if ν2(ij + 1) = ν2(q + 1)
0 otherwise,
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a2 =
{

1 if ν2(ij + 1) < ν2(q + 1)
0 otherwise, a3 =

{
1 if ν2(ij + 1) > ν2(q + 1)
0 otherwise.

Note that this theorem gives us a formula for counting the number of fixed
points of the permutation (also see Theorems 3.35 and 3.36 in [LMT]). The num-
ber of points of Fq fixed by the permutation Di(x,−1) is: (a1 (2(q + 1), i+ 1) +
a2 (q − 1, i+ 1) + a3 (q + 1, (i− 1)/2) + (q − 1, i− 1))/2 − ε, where ε, a1, a2, a3 are
as defined in Theorem 3.1.

The following corollary to Theorem 3.1 characterizes the Dickson permutation
polynomials Di(x,−1) that decompose in cycles of the same length j.

Corollary 3.2. All the non-trivial cycles of the permutation of Fq given by
the polynomial Di(x,−1) have length j if and only if for every divisor t of q− 1 we
have that j is the smallest integer with ij ≡ 1 (mod t) or 2(ij + 1) ≡ 0 (mod t) or
i ≡ 1 (mod t) or 2(i + 1) ≡ 0 (mod t), and, for every divisor s of q + 1, j is the
smallest integer with ij ≡ 1 (mod s) or 2(ij + 1) ≡ 0 (mod s) or i ≡ 1 (mod s) or
2(i+ 1) ≡ 0 (mod s).

As in Section 2 we will reformulate the conditions in order to have Dickson
permutation polynomials Di(x,−1) that decompose in cycles of the same length.
Note that in this case, instead of requiring j to be the smallest integer such that
ij ≡ −1 ( mod t), it is required that 2(ij+1) ≡ 0 ( mod t). The following definition
for the case 2(ij + 1) ≡ 0 (mod t) is similar to what was defined in Section 2 for
ij ≡ −1 (mod t).

Definition 3.3. Suppose that gcd(i, t) = 1. Denote by j = ord−2
t (i) the

smallest integer j such that 2(ij + 1) ≡ 0 (mod t).

It is important to note that j = ordt(i) does not imply that j is the smallest
such that ij ≡ 1 (mod t) or 2(ij + 1) ≡ 0 (mod t).

Through a sequence of lemmas that we omit because their results and proofs are
similar to those used in Section 2, we are able to state the next two lemmas. These
lemmas lead to Theorem 3.6, which is a characterization of Dickson permutation
polynomials Di(x,−1) that decompose in cycles of the same length.

Lemma 3.4. Let Fq be a field of odd characteristic and n = q−1 = pk11 p
k2
2 . . . pkr

r

be the prime factorization of n. Suppose that gcd(i, q2−1) = 1. If all the non-trivial
cycles of the permutation of Fq given by the Dickson polynomial Di(x,−1) have the
same length j, then i ≡ 1 (mod n) or 2(i+ 1) ≡ 0 (mod n), or exactly one of the
following hold for all l = 1, . . . , r.

(1) Either
(a) 2(i+ 1) ≡ 0 (mod pkl

l ) and (j odd or pkl

l = 2, 4), or
(b) j = ord−2

p
kl
l

(i), and ( j odd and j|(pl − 1), or 2j|(pl − 1)), or

(c) j = ord−2

p
kl
l

(i), kl ≥ 2 and j = pl 6= 2.

(2) i 6≡ 1 (mod n), j odd and either
(a) i ≡ 1 (mod pkl

l ), or
(b) j = ord

p
kl
l

(i) and j|(pl − 1), or
(c) j = ord

p
kl
l

(i), kl ≥ 2 and j = pl.
(3) 2(i+ 1) 6≡ 0 (mod n), i 6≡ 1 (mod n), j = 2 and either

(a) 2(i+ 1) ≡ 0 (mod pkl

l ), or
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(b) i ≡ 1 (mod pkl

l ), or
(c) 2 = ord

p
kl
l

(i), kl ≥ 2 and pl = 2.

The next lemma deals with the divisors of q + 1.

Lemma 3.5. Let Fq be a field with odd characteristic and n = q+1 = pk11 p
k2
2 . . . pkr

r

be the prime factorization of n. Suppose that gcd(i, q2−1) = 1. If all the non-trivial
cycles of the permutation of Fq given by the Dickson polynomial Di(x,−1) have the
same length j, then i ≡ 1 (mod n) or 2(i+ 1) ≡ 0 (mod n), or exactly one of the
cases in the above lemma holds for all l = 1, . . . , r.

The following theorem gives the necessary and sufficient conditions for a per-
mutation Di(x,−1) to decompose in cycles of the same length. The proof is very
similar to the proof of Theorem 2.17.

Theorem 3.6. Let Fq be a field with odd characteristic and q−1 = pk11 p
k2
2 . . . pkr

r

and q+1 = p
kr+1
r+1 p

kr+2
r+2 . . . pks

s be the prime factorizations of q−1 and q+1. Suppose
that gcd(i, q2 − 1) = 1. The permutation of Fq given by the Dickson polynomial
Di(x,−1) is the identity on Fq or all the non-trivial cycles have the same length
j if and only if i ≡ 1 (mod q − 1) or 2(i + 1) ≡ 0 (mod q − 1) or exactly one
of the cases in Lemma 3.4 holds for all l = 1, 2, . . . , r and i ≡ 1 (mod q + 1) or
2(i+ 1) ≡ 0 (mod q + 1), and exactly one of the cases in Lemma 3.4 holds for all
l = r + 1, r + 2, . . . , s.

The following corollary characterizes the Dickson permutation polynomials
Di(x,−1) that decompose in cycles of length two and, hence, are their own in-
verse.

Corollary 3.7. Let Fq be a field with odd characteristic. Also let q − 1 =
pk11 p

k2
2 . . . pkr

r and q+ 1 = p
kr+1
r+1 p

kr+2
r+2 . . . pks

s be the prime factorizations of q− 1 and
q + 1. Suppose that gcd(i, q2 − 1) = 1. The permutation given by the Dickson
polynomial Di(x,−1) is the identity in Fq or all the non-trivial cycles have length
two if and only if one of the following holds for all l = 1, 2, . . . , r and one of the
following holds for all l = r + 1, r + 2, . . . , s:

(1) Either
(a) 2(i+ 1) ≡ 0 (mod pkl

l ) and pkl

l = 2, 4, or
(b) j = ord−2

p
kl
l

(i), and 4|(pl − 1).

(2) Either
(a) 2(i+ 1) ≡ 0 (mod pkl

l ), or
(b) i ≡ 1 (mod pkl

l ), or
(c) 2 = ord

p
kl
l

(i), kl ≥ 2 and pl = 2.

4. Construction of Dickson permutation polynomials that decompose
in cycles of length j

Certain permutations of Fq that decompose in cycles of length two and are
given by monomials xi have been used to construct interleavers for turbo codes
that have good performance ([CR]). As we have mentioned, being able to con-
struct permutations with certain cycle structure may prove to be very important
in applications such as turbo-like coding or low-density parity-check codes (LDPC)
where cycles or lack thereof are fundamental for the performance of the codes.
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Our results are algorithmic in the sense that, given a finite field Fq and a positive
integer j, we can find the degrees i of all the Dickson permutation polynomials
Di(x, 1), Di(x,−1) that decompose in cycles of length j.

We designed an algorithm for constructing the set of all the degrees i such that
Di(x, 1) ∈ Fq[x] decomposes in cycles of length j. The detailed algorithm can be
found in
http://epsilon.cnnet.upr.edu/irubio/Investigacion/permute.html.

The main idea is to use primitive roots αl in Zpl
kl , where pl 6= 2, and pkl

l |(q − 1)
or pkl

l |(q + 1) to get elements tl such that j = ord
p

kl
l

(tl) or j = ord−
p

kl
l

(tl). Note

that tl = α
p

kl−1
l

(pl−1)
2j c

l , where gcd(c, 2j) = 1, is such that j = ord−
p

kl
l

(tl). Similarly,

tl = α
p

kl−1
l

(pl−1)
j c

l , where gcd(c, j) = 1, is such that j = ord
p

kl
l

(tl). One uses the
conditions on Theorem 2.17, the tl’s and the Chinese Remainder Theorem to obtain
the desired exponents i.
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23355, San Juan, PR 00931

E-mail address: ccorrada@gmail.com

Department of Mathematics, University of Puerto Rico, Ŕıo Piedras, Box 23355,
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