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Abstract— In this paper we present an algorithmic approach
to the problem of the divisibility of the number of solutions
to a system of polynomial equations. Using this method we
prove that all binary cyclic codes with two zeros overF2f and
minimum distance 5 are quasi-perfect for f ≤ 10. We also
present elementary proofs of divisibility results that, in some
cases, improve previous results.

I. I NTRODUCTION

Even though the Ax-Katz, McEliece divisibility results
have been used widely in coding theory (for example see
[16],[10]) and cryptography (for example [3],[5]), most of the
methods required advanced mathematical theory and were not
algorithmic. This motivates us here to study elementary and
algorithmic approaches to this problem.

In this paper we present new approaches to the problem
of the divisibility of the number of solutions to a system of
polynomial equations:

1) We use integer linear programming to estimate the
divisibility in our generalization of McEliece’s theorem [14].
In Section III, we show that this method has the advantage of
being algorithmic and easy to program and, as a consequence,
in Section IV we prove that all binary cyclic codes with two
zeros overF2f and minimum distance 5 are quasi-perfect for
f ≤ 10. This new result is remarkable since it was previously
thought that a double error-correcting code being quasi-perfect
was a rare property.

2) We give an elementary proof of the divisibility result
by Moreno-Moreno. For the prime field case we also present
a new improvement to results by Adolphson-Sperber [1] and
Ax-Katz [8], which solves a question raised by Ax in [2]. This
proof is completely algorithmic, hence giving an elementary
proof of the algorithmic treatment of the divisibility problem.

II. GENERALIZATION OF MCELIECE’ S THEOREM

The following is the characteristic 2 version of the well
known theorem of McEliece [15] that we generalize to the
multi-variable case:

Theorem 1 (McEliece [15]). Let C be a binary cyclic code
and let l be the smallest number such that(l + 1) nonzeros
of C (with repetitions allowed) have product equal to 1. Then
the weight of every codeword is divisible by2l and there is a
codewordw ∈ C such that2l+1 does not divide the weight of
w.

Let F (x1, x2, . . . , xn) =
∑N

i=1 aix
e1i
1 xe2i

2 · · ·xeni
n be a

polynomial over a finite fieldFpf . We denote byζ a primitive
p-th root of unity over Q and put θ = 1 − ζ, so that
pA = θp−1A whereA = Z[ζ] is the ring of integers ofQ(ζ).
Set S(F ) =

∑
x∈Fn

pf
ζTr(F (x)), whereTr is trace function

from Fpf to Fp. We say thatθl divides S(F ) if there exists
a ∈ Z[ζ] such thatS(F ) = aθl. The divisibility of S(F ) gives
us the divisibility of the number of solutions to a system of
polynomial equations and hence the divisibility of the weights
of codewords.

We associate toF the following system of modular equa-
tions:

e11t1 + · · ·+ e1N tN ≡ 0 mod pf − 1
...

...
... (1)

en1t1 + · · ·+ enN tN ≡ 0 mod pf − 1,

where 0 ≤ ti ≤ pf − 1. The system (1) determines thep-
divisibility of S(F ); i.e., if

µ = min
(t1,...,tN )

is solution of(1)

{σp(t1) + · · ·+ σp(tN )}, (2)



then pµ dividesS(F ), whereσp is the p-weight function. In
[14] we neededp-adic analysis and the theorem of Stickel-
berger to justify thatpµ|S(F ); an innovation in this paper is
that, in Section V, we present a completely elementary proof
of this result.

The relation of McEliece’s theorem and modular equations
can be found in [4]. Now, using the above modular system
and the properties of thep-weight function, the following
generalization of McEliece’s theorem [15] was proved in [14].
This also improves results by Ax-Katz [2] and Adolphson-
Sperber [1].

Theorem 2. Let G be the set of polynomials spanned by the
monomials ofF . That is,

G = {a1x
e11
1 · · ·xen1

n + · · ·+ aNxe1N
1 · · ·xenN

n |

a1, . . . , aN ∈ Fpf

}
.

With µ as in (2), there is at least one polynomialG ∈ G such
that S(G) is divisible byθµ but not byθµ+1.

III. D IVISIBILITY PROPERTIESREDUCED TO A PROBLEM

IN INTEGERL INEAR PROGRAMMING

In this section we estimate the divisibility of the exponential
sum S(F ) by associating it to a system of inequalities that
form a problem of integer linear programming. Solving such
a problem might be hard but, in many cases, we obtain good
estimates using elementary methods.

The system (1) is equivalent to the following system of
equations:

e11t1 + · · ·+ e1N tN = c1(pf − 1)
...

... (3)

en1t1 + · · ·+ enN tN = cn(pf − 1),

where0 ≤ ti ≤ pf − 1 and ci > 0. Using the properties of
the p-weight functionσp, we obtain

σp(e11)σp(t1) + · · ·+ σp(e1N )σp(tN ) ≥ σp(c1(pf − 1))
≥ (p− 1)f

...
...

... (4)

σp(en1)σp(t1) + · · ·+ σp(enN )σ(tN ) ≥ σp(cn(pf − 1))
≥ (p− 1)f.

Now, our problem of finding the divisibility of
S(F ) reduces to the integer linear programming
problem of finding µ = min(T1,...,TN ){T1 + · · · +
TN |, (T1, . . . , TN ) is a solution of system below} :

σp(e11)T1 + · · ·+ σp(e1N )TN ≥ (p− 1)f
...

...
... (5)

σp(en1)T1 + · · ·+ σp(enN )TN ≥ (p− 1)f.

Note thatµ ≤ µ, thereforeθµ dividesS(F ) if θµ does.

IV. QUASI-PERFECTCYCLIC CODES

In this section, we use the divisibility results and the
algorithmic methods to obtain that every binary primitive
cyclic code with two zeros overF2f and minimum distance 5
is quasi-perfect forf ≤ 10.

Let Nβ1,β2(d1, d2) be the number of solutions overF2f of
the following system of polynomial equations:

xd1
1 + xd1

2 + xd1
3 = β1x

d1
4

xd2
1 + xd2

2 + xd2
3 = β2x

d2
4 . (6)

Now consider the codeC with zerosαd1 andαd2 overF2f ,
where α is a primitive root ofF2f . C being quasi-perfect
depends on the covering radius and the minimum distance
of C. Double error-correcting codes with two zeros overF2f

are known forf ≤ 25 (for example, see [4]). The covering
radius ofC is 3 if and only if system (6) has a solution with
x1x2x3x4 6= 0. The existence of this type of solutions to the
system and hence quasi-perfection is given by the following
theorem proved in [11].

Theorem 3. Let α be a primitive root ofF2f and let C
be the code with zerosαd1 , αd2 over F2f , and minimum
distance 5. ThenC is a quasi-perfect code whenever 4 divides
Nβ1,β2(d1, d2).

Several infinite families of quasi-perfect codes with two
zeros are known ([7], [5], [10]). Theorem 3 gives a way to
get quasi-perfect codes, but, to apply it, we would need to
give a theoretical proof that 4 dividesNβ1,β2(d1, d2) for all
(β1, β2) 6= (0, 0) and this can be very difficult. However, if
we follow the techniques of Section III, we can determine
divisibility with a computer program. For this, as in [14],
consider the following modular system associated to (6):

d1t1 + d2t2 ≡ 0 mod 2f − 1

· · · ... (7)

d1t7 + d2t8 ≡ 0 mod 2f − 1
t1 + t3 + t5 + t7 ≡ 0 mod 2f − 1
t2 + t4 + t6 + t8 ≡ 0 mod 2f − 1.

Now, we need to prove thatµ > 2f + 1, whereµ is as
defined in (2). Note that the computation ofµ is not a difficult
one. In the cases we computed, we only need to compute the
minimum µp of just one modular equation,i.e.,

µp = min{σ2(u) + σ2(v) | d1u + d2v ≡ 0 mod 2f − 1 },
and this is simple. This is true sinceµ ≥ 4µp − 2f .

Using the above procedure, we verified thatµ > 2f +1 for
f ≤ 10 and obtained the following result:

Theorem 4. Let C be a binary primitive cyclic code with two
zeros overF2f and minimum distance 5. Iff ≤ 10, thenC is
a quasi-perfect code.

Formerly, finding primitive quasi-perfect codes with
minimum distance 5 and two zeros was considered difficult,
but, as we mentioned, there are infinite families of such



codes. Now Theorem 4 suggests that it is difficult to find
codes with minimum distance 5 that are not quasi-perfect.

Problem: Prove that all the binary primitive cyclic codes with
two zeros and minimum distance 5 are quasi-perfect or find
the smallest binary primitive cyclic code with two zeros and
minimum distance 5 that it is not quasi-perfect.

V. ELEMENTARY APPROACH TO THEDIVISIBILITY OF THE

NUMBER OF SOLUTIONS TO SYSTEMS OFEQUATIONS

There are several results on the divisibility of the number
of solutions to systems of equations; some examples are
the results by Ax-Katz ([2], [8]), Moreno-Moreno [12] and
Adolphson-Sperber [1]. These results have been widely used
in applications to coding theory (for example see [16],[10])
and cryptography (for example [3],[5] ). However, the methods
used to obtain these and other related results required advanced
mathematics techniques such as p-adic analysis, the theorem
of Stickelberger and Newton Polyhedra.

On [9] we presented an elementary proof of the Moreno-
Moreno result for characteristic 2 that uses the covering
method introduced in [13]. In the present paper we estimate
the divisibility of exponential sums, for arbitrary characteristic,
using a generalization of the covering method. This new
generalization allows us to give a completely elementary proof
of Moreno-Moreno’s result [12] for any characteristic and
improvements to Ax-Katz and Adolphson-Sperber’s results
over the prime field.

We have two different elementary proofs for this result [6];
the one that we sketch here is algorithmic for the prime field
Fp, providing then a completely elementary treatment of the
algorithmic solution to the divisibility problem.

To generalize the covering method, letE = {e1, . . . , eN}
be a set ofn-tuples,ei = (ei1, . . . , ein), where eacheij is
a non-negative integer. LetU = (νi)1≤i≤N be anN -tuple of
non-negative integers. Ifm is a positive integer, we say thatU
is anm-covering when the vector sumf = ν1e1 + · · ·+νNeN

has all its entries nonzero and divisible bym, or equivalently,
when there exist positive integersλ1, . . . , λn such that

ν1e11 + · · ·+ νNeN1 = mλ1

. . .
ν1e1n + · · ·+ νNeNn = mλn.

(8)

We defineκm(E), the m-th covering number ofE, as the
smallest cardinality of any suchm-covering, that is the min-
imal value ofν1 + · · · + νN for which the preceding system
holds. One clearly hasκm(E) ≤ mn.

Let now ζ be a primitivep-th root of unity overQ and put
θ = 1−ζ, so thatpA = θp−1A, whereA is the ring of integers
of Q(ζ). Also let F ∈ Fp[x1, . . . , xn] be a polynomial inn
variables with coefficients in the finite fieldFp with p elements,
and such thatE is the set of exponentn-tuples of monomials
that appear inF with non-zero coefficient, that is

F (x) =
N∑

i=1

cixei (9)

with ci ∈ Fp×.
Consider S = {0, 1} if p = 2, and, for p ≥ 3 and

g a generator of the group of units ofZpn , S = {0} ∪{
gipn−1 | 0 ≤ i ≤ p − 2

}
. This implies thatS is a complete

residue system modulop.
We put

S(F ) =
∑

x∈(Fp)n

ζF (x) ∈ A. (10)

By abuse of notation we will also writeF for the polynomial
with integral coefficients obtained by liftingFp to S. Since
ζm depends only onm modulop, the preceding can also be
written as

S(F ) =
∑

s∈Sn

ζF (s). (11)

Now, if we write

S(F ) =
∑

s∈Sn

N∏

i=1

(1− θ)cis
ei

, (12)

and use the binomial theorem to expand

(1− θ)cis
ei =

∑

ν≥0

(
cisei

ν

)
(−θ)ν , (13)

we can obtain

Proposition 5. With these notations, ifS(F ) is a rational
integer, then it is divisible bypdκp−1(F )/(p−1)e.

With the above proposition we obtain the following new
result, which gives an improvement of the main theorem of
Adolphson-Sperber [1] for the finite fieldFp. The result of
Adolphson-Sperber is an improvement to Ax-Katz’s theorem
([2], [8]).

Theorem 6. With the above notations,κp−1(F ) ≥ ω(F ),
whereω(F ) is as defined in [1].

Also note thatκp−1(E) coincides withµ of (2) when the
finite field is Fp, and we then obtain an elementary proof of
the algorithmic treatment in Section III.

Combining the generalization of the covering method with a
generalization of the reduction to the prime field method [12]
we can obtain an elementary proof of the following result by
Moreno-Moreno for an arbitrary finite field.

Theorem 7. Let Fi be a polynomial overFpf with p-weight
degreeli, wherei = 1, . . . , t. Then the number simultaneous
solutions ofF1, . . . , Ft over Fpf is divisible by pµ, where

µ = df(n−∑t
i=1 li)

maxi li
e.
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