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Abstract 

 
A permutation is an ordered arrangement of a set. A monomial xi in Fq[x] gives a permutation of the finite 
field Fq if the function xi: Fq →  Fq is a bijection. We construct permutations of Zq in the following 
manner: first we associate the elements of Fq, q=pr to r-tuples of non-negative integers, then we use 
monomial orderings to order the elements. In this way elements of Fq are associated to elements of Zq. 
Finally we apply the monomial xi to obtain the permutation. We prove that one can obtain permutations 
obtained with other constructions using monomial orderings. Furthermore, using these monomial orderings 
we also obtain other permutations, some of which have better dispersion and spreading properties than the 
ones that we already knew. 
 
1. Introduction 
 
A monomial xi in Fq[x], q=pr gives a permutation of the finite field Fq if the function xi: Fq →  Fq is a 
bijection. This happens if and only if (q-1,i)=1. We associate the elements of Fq to r-tuples of non-negative 
integers. Then we order these r-tuples using several monomial orderings. These orderings allow us to create 
a correspondence between the elements of Fq and the elements of Zq. The importance of this 
correspondence relies on the fact that we can construct interleavers, which are an important component of 
turbo codes, using permutations of Zq. Hence we can apply our permutations to construct turbo codes. 
 
Our paper is structured as follows: We begin with the “Monomial Ordering” section which has the 
definitions of two types of monomial orderings and some examples. Then we move on to the “Ordering 

qF using Monomial Orderings” section where we show the method we utilize to order the elements of the 

finite field. On section four we present our result on how to obtain permutations of qZ  from permutations 

of qF . We also discuss permutation monomials which are the monomials that let us construct the desired 
permutations once the elements of the finite field are ordered. Section five refers to the interleaver and 
some of its properties. In section six we give information about the different types of interleaver 
constructions that exist. The remaining sections state the computational results of our research, the future 
work we will be conducting, the acknowledgments and the references used in the course of this research.    
 
2. Monomial Ordering 
 
We start by enunciating a few definitions that will help us understand better the way we order elements of  
Fq and hence the correspondence between Fq and Zq. It is possible to represent monomials 
in ],,,[ 21 rq xxxF !  as vectors of length r and then order these vectors using monomial orderings. We 
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associate a monomial ],,,[ 2121
21

rqr xxxFxxx r !" ∈ααα  to the r-tuple of exponents 
r

r Z 021 ),,( ≥∈ααα ! . 
 
Definition 1. Monomial Ordering 
 
 Let K be a field. A monomial ordering on the polynomial ring ],,,[ 21 rxxxK !  is any relation > on the 

set of monomials rZx 0, ≥∈γγ  satisfying the following properties: 

i. > is a lineal ordering on rZ 0≥ . 

ii. If δγ >  and rZ 0≥∈κ , then κδκγ +>+ . 

iii. > is a well-ordering on rZ 0≥ . 
 

The first type of monomial orderings that we will utilize is the Lexicographic Ordering. Intuitively, 
ordering monomials in this way is similar to the method used to order the words in a dictionary. The 
following is the formal definition. 

 
Definition 2.  Lexicographic Order 
Let ),,,( 21 rγγγγ !=  and r

r Z 021 ),,,( ≥∈= δδδδ ! . We say that δγ lex>  if, in rZ∈−δγ , the 

left-most nonzero entry is positive. We say δγ xx lex>  if δγ lex> . 

Example 1.  δγ =>= )1,0,0()0,1,0( lex since  )1,1,0( −=−δγ . 
 

Unlike the Lexicographic Ordering there are several monomial orderings that take in consideration 
the total degree of  the monomials. The Graded Lex Order is one of such monomial orderings. 
 
Definition 3. Graded Lex Order 

Let rZ 0, ≥∈δγ . We say that δγ grlex>  if δδγγ =>= ∑∑
==

r

i
i

r

i
i

11
or δγ = and δγ lex>    

Example 2.  δγ =>= )0,0,1()1,1,0( grelex since 1)0,0,1(2)1,1,0( =>= . 
 

When there is a “tie” between the degrees of the monomials the Lexicographic Ordering is used to 
break those ties. The following example illustrates this situation. 
 
Example 3.  δγ =>= )1,0,0()1,0,0( grlex since )1,0,0()0,1,0( =  and )1,0,0()0,1,0( lex> . 
 
 
3. Ordering Fq using Monomial Orderings 
 
To be able to construct permutations of Zq from permutations of Fq we first need to order the elements of 
Fq.  

Consider the following ordering of the elements of the finite field },,,{: 110 −qqF ξξξ ! , where 

001111 βββξ nnn rrn +++= −− " , 

},,,{ 110 −rβββ !  is a base for Fq over Zp and 1
110

−
−+++= r

r pnpnnn " , 10 −≤≤ pni .  
 
We denote this order as ξ  and we proved in [2] that this order is well defined. This ordering gives a 

natural correspondence between the elements of qF  and the elements of qZ : iξ correspond to i. 
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The representation of nξ as 001111 βββ nnn rr +++−− "  also induces a natural correspondences 

of the elements of nξ and the r-tuples in r
pZ : nξ correspond to ),,,( 011 nnnr !− . Now we can order the 

elements of qF by ordering the corresponding r-tuples. For the reminder of this paper, τ  denotes the 

ordering of the r-tuples associated to the elements of qF  with the Lexicographic Order and φ  denotes the 
ordering of the r-tuples with the Graded Lex Order. 

 Consider 1/ 23
223 ++= xxZF with and let α  be a primitive root of 32F . Note that we get a 

basis for 32F  over 2Z  using the relation 123 +=αα . Table 1 shows the elements of 32F  along with its 
r-tuple representation, the representation as powers of α and the ordering with the Lexicographic Order 
and the Graded Lex Order. The numbers in column n correspond to the ordering of the elements with the 
ξ  ordering. 
 
Table 1 
 

n 
qF  jα  r-tuple τ  φ  

0 0 0  (0,0,0) 0 0 

1 1 0α  (0,0,1) 1 1 

2 α  1α  (0,1,0) 2 2 

3 1+α  5α  (0,1,1) 3 4 

4 2α  2α  (1,0,0) 4 3 

5 12 +α  3α  (1,0,1) 5 5 

6 αα +2  6α  (1,1,0) 6 6 

7 12 ++αα  4α  (1,1,1) 7 7 

 
Note that the ξ  ordering is equivalent to the Lexicographic ordering in the previous example. This 
equivalence always holds as it is shown below. 
 
Theorem 1. The ordering ξ  of the elements of qF  is equivalent to the Lexicographic ordering of the 

corresponding elements in r
pZ . 

Proof: Let  001111 βββξ nnn rrn +++= −− " ,   001111 βββξ mmm rrm +++= −− "    for 

1,0 −≤≤ pmn ii    and  

∑
−

=

=
1r

ol

l
l pnn , ∑

−

=

=
1r

ol

l
l pmm  

 Note that nξ  and mξ  can be represented as r-tuples in the following way 
 

     .Z)m,,m,m,,(m
and    ),,,,,(

r
p0i1i1-r

011

∈=
∈=

+

+−

!!#
!!#

m
Znnnnn r

piir  

 
 We want to show that mn lex

## >  implies that mn > . This is the same as showing that 
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∑∑
−

=

−

=

>
1

0

1

0

r

l

l
l

r

l

l
l pmpn . 

Note that mn lex
## >   implies that in 

,),,,,,( 001111
r

iiiirr Zmnmnmnmnmn ∈−−−−=− ++−− !!##
 

the first integer from left to right not equal to zero is positive. This implies that for some 10 −≤≤ ri    

ik allfor  mn kk >= and ii mn > . Since ik allfor  mn kk >= , to see that mn >  we only have to 
show that 

∑∑
==

>−
i

l
ll

i

l

l
l pmpn

00

0 . 

   This is the same as proving that 

0)(
0
∑
=

>−
i

l

l
ll pmn . 

   This   

∑
−

=

>−+−
1

0

0)()(
i

l

l
ll

i
ii pmnpmn . 

Now since ii mn >  we have 0)( >− i
ii pmn  and we only have to see that 

.)()(
1

0

l
l

i

l
l

i
ii pmnpmn −>− ∑

−

=

 

Since ii mn >  the smallest value ii mn −  can take is 1 and the maximum value that 
li

l ll pmn∑=
−−

0
)(1  can take is obtained when 1−=− pmn ll , for each 1,,0 −= il ! . By the 

Geometric Series we have that 

i
ii

ii
ii

l

l
i

l

ll
i

l
ll pmnpp

p
pppppppmn )(1

1
1)1()1()1()(

1

0

1

0

1

0
−≤<−=





−
−−=−=−≤− ∑∑∑

−

=

−

=

−

=

 

 

Hence ∑ ∑
−

=

−

=

=>=
1

0

1

0

r

l

r

l

l
l

l
l mpmpnn  if mn lex

## > .                                                                                      � 

Since these orderings are total, they represent the same orderings on the elements of qF . 
 
4. Permutation Monomials 
 
Now that we know how to order the elements of a finite field, we can introduce the function that we use to 
construct permutations of qF and hence permutations of qZ . 

Definition 5.  A monomial ][xFx q
i ∈ is a permutation monomial if and only if the polynomial function 

qq FFf →: ; ixxf =)(  is a permutation of the finite field qF .  

Example 5.  The function 77:)( FFx →π , 5)( xx =π  is a permutation monomial of 7F  and it can be 
represented as  
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=

6325410
6543210

π . 

 
On this representation, the elements of the first row are the elements of 7F  and the elements of the second 
row are their images underπ . The following is a well known characterization of permutation monomial. 
 
Theorem 2. The monomial ][xFx q

i ∈  is a permutation monomial of qF if and only if 1)1,gcd( =−qi . 
 
The next theorem tells us that we can use any permutation of qF to obtain a permutation of qZ . This is an 
obvious generalization of Theorem 1 in [2], which now we state as a corollary. 
 
Theorem 3. Let rpq = , p a prime, qq F=− },,,{ 110 ξξξ ! and qq FFf →: any function. The function 

qq ZZ →:π defined as mn =)(π , where mnf ξξ =)( , is a permutation of qZ if and only if f is a 

permutation of qF . 

Corollary 1. Let qq FFf →: be defined as ixxf =)( , q and π as above. Then π is a permutation of 

qZ if and only if .1)1,gcd( =−qi  
 

Example 6.  Let 1/ 23
223 ++= xxZF . We can construct a permutation of 32Z using the permutation 

monomial 2)( xxf = . From Table 1 we obtain the following relation among the element of 8F ordered 

with the ξ  order and the powers of the primitive root α  

),,,,,,,0(),,,,( 4632510
7210 αααααααξξξξ =! . 

Evaluating each element in 32
2 Fx ∈ we get 

).,,,,,,,(),,,,,,,0( 23675410
1564320 ξξξξξξξξααααααα =  

Taking the indices n  from the nξ  we construct the permutation π  
 







=

23675410
76543210

π . 

 
Recall from our previous section that the ξ  ordering is equivalent to the Lex ordering; hence this 

permutation is the same if we order the elements of 32F with the Lexicographic Ordering. Now we present 

a permutation constructed with the same monomial but with the elements of 32F ordered using the Graded 
Lex Ordering. 
 
Example 7.  From Table 1 we obtain the following relation among the element of 8F ordered with the 
Graded Lex Order and the powers of the primitive root α  

),,,,,,,0(),,,,( 4635210
7210 αααααααφφφφ =! . 

Evaluating each element in 32
2 Fx ∈  we get 

).,,,,,,,(),,,,,,,0( 24657310
1563420 φφφφφφφφααααααα =  

Taking the indices n  from the nφ  we obtain the permutation π  
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=

24657310
76543210

π  

 
Note that this permutation is different from the one obtained with the lex ordering. 
 
5. The interleaver and its properties 
 
As we mentioned in the introduction once we have the permutations of qZ  we can use them as interleavers 
in the construction of turbo encoders. 

An interleaver π  is a bijective function qq ZZ →:π . Two important properties associated to 
interleavers are the spreading and the dispersion.  

The spreading measures how separated are elements that were originally close. It can be thought as 
measuring the randomness of the permutation. It has factors ),( ts , if 

 
tjisji ≥−⇒<− )()( ππ . 

 
The spreading of the interleaver is the maximum value s  such that ts ≤ . Let q  be the number of 

symbols to be permuted. The closest to 
2
q

 the spreading is, the better spreading the interleaver has.  

The dispersion measures the regularity of the interleaver. It is defined as the number of elements in the 
set: 

}0)),()(,{()( qjiijijD <<≤−−= πππ . 

The normalized dispersion is
)1(
)(2

−qq
D π

. The closest to 1 the dispersion is, the better it is. 

To illustrate the computation of the dispersion, recall from Example 6 the following permutation of 
1/ 23

223 ++= xxZF . 

 







=

23675410
76543210

π  

 
 
To obtain the dispersion we first find the list of the differences   
 

1).(7,
4),(6,1),  (6,

5),(5,2),(5,2),  (5,
7),(4,3),(4,1),(4,5),  (4,

6),(3,5),(3,2),(3,2),  (3,6),  (3,
3),(2,4),(2,4),(2,1),  (2,3),  (2,4),  (2,

2),(1,1),(1,3),  (1,1),(1,2),  (1,1),  (1,3),  (1,

−
−

−−
−−−

−−−
−−−

−−−
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Note that 26)( =πD . Since we have )(πD , we can compute the normalized dispersion which is: 

860.92857142
)18(8

26*2
)1(
)(2

≈
−

=
−qq

D π
 

This is an excellent dispersion. 
To compute the spreading of the permutation we look for the factors ),( ts . Recall that we require 

that ts ≤ . The pairs ( ))()(, jiji ππ −−  are: )2,1(),1,1(),3,1( . Then, 2=s and 1=t note 

that .Therefore the spreading is1. 
Carlos Corrada, UPR-Rio Piedras, conjectured that the cyclic decomposition of the permutation is 

another important property of the interleaver. 
 

6. Construction of Interleavers 
 
Interleavers can be constructed either in a random or in an algebraic way. Currently the random 
construction is the one being used. Random interleavers have good properties but they need to be stored in 
memory and have to be analyzed by simulations. In the other hand, algebraic interleavers can be studied 
and analyzed before hand and do not have to be stored in memory. We study permutations obtained with 
other permutation monomials because most of the other known algebraic interleavers do not have good 
properties and we wish to find such interleavers with good properties. Another reason for studying 
permutation monomials is because it is believed that the cyclic decomposition of the permutation is 
important and there are results on the cyclic decomposition of monomial permutations [7]. In the next 
section we take a look at some of our results. From these one can see that we found permutations with very 
good dispersion properties. 
 
7. Computational Results 
  
We wrote programs in Maple to construct permutations using permutation monomials and the monomial 
orderings mentioned before. The following table shows some of the results obtained with the programs.  
The first column contains the finite fields, the second the exponents i of the monomials and the remaining 
columns contain the dispersion factor for permutations constructed with theξ   ordering ( ξD ) and the 

Graded Lex Ordering ( φD ) respectively.  
 
    Table 2 

〉〈= )(/ xpZF pq  i 
ξD  φD  

〉++〈= 1/ 23
28 xxZF  2 0.928571 0.750000 

〉++〈= 1/ 23
28 xxZF  6 0.857143 0.857142 

〉++〈= 12/ 23
327 xxZF  17 0.880341 0.820512 

〉++〈= 12/ 23
327 xxZF  25 0.868946 0.831908 

〉+++〈= 1/ 245
3243 xxxZF  227 0.818590 0.818896 

 
〉+++〈= 1/ 245

3243 xxxZF  241 0.819304 0.811753 

〉++〈= 2/ 56
3729 xxZF  605 0.815207 0.812399 

〉++〈= 2/ 56
3729 xxZF  727 0.817664 0.812644 

〉++〈= 2/ 23
5125 xxZF  119 0.817677 0.817419 

〉++〈= 2/ 23
5125 xxZF  123 0.807613 0.818193 
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〉+++〈= 3/ 34
5625 xxxZF  31 0.801918 0.811918 

〉+++〈= 3/ 34
5625 xxxZF  623 0.806277 0.813246 

 
Rubio and Corrada worked with pq = and found that the best dispersion was obtained when 2−= qi  

and calculated 
p

p
2

3+=ν  as the upper bound. The latter does not hold for our latest constructions (that 

consider 1 , ≠= rpq r ) as can be observed in Table 2 where the best dispersion is obtained for exponents 
different from 2−= qi . Furthermore, we have obtained permutations with a spreading higher than one 
which was seldom observed in our previous work. 
 
  
8. Future Work 
 
We still have to study our results further in order to find any patterns that would help us characterize the 
permutation monomials that give algebraic interleavers with good properties. We also need to run 
simulations to see the performance of codes constructed with our interleavers and study the relation of the 
spreading, cyclic decomposition and dispersion if there is any. Additionally we need to construct 
permutation monomials with other monomial orderings.  
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