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Abstract

In this paper we carry a derivation of the equilibrium equations of two dimen-
sional nonlinear elasticity with an added second—gradient term proportional to a
small parameter £ > 0. These equations are given by a fourth order semilinear sys-
tem of pde’s. We discuss different types of possible boundary conditions for these
equations. We then specialize the equations to a rectangular slab and study the lin-
earized problem about a homogenous deformation. We show that these equations
admit solutions representable as Fourier series in one of the independent variables.
Furthermore we obtain the characteristic equation for the eigenvalues (possible bi-
furcation points) for the linear problem and derive asymptotic representations for
this equation for small e. We used these expressions to show that in the limit as
e — 0 the characteristic equation for £ > 0 converges uniformly (in certain regions
of the parameter space) to the corresponding characteristic equation for ¢ = 0.
When the base material (¢ = 0) is that of a Blatz—Ko type, we get conditions for
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the existence of eigenvalues of the linear problem with ¢ > 0 and small. Our nu-
merical results in this case indicate that the number of bifurcation points is finite
when € > 0 and that this number monotonically increases as € — 0. For the prob-
lem with € > 0 we get conditions for the existence of local branches of non—trivial
solutions.

1 Introduction

For many years one of the most difficult open problems of non—linear elasticity theory
has been the use of global continuation methods (via degree theory) to study the gov-
erning quasilinear systems of partial differential equations of three—dimensional models,
cf. Antman in [3]. Results along these lines for the displacement equations of equi-
librium, together with boundary traction and displacements, were recently obtained by
Healey and Simpson in [14]. Their approach is based upon the construction of a degree
which has the same important properties of the classical Leray—Schauder degree. These
new methods make it possible, for the first time, to study global bifurcation problems
in non—linear three—dimensional elasticity that are not reducible to ordinary differential
equations.

At the level of generality of [14], the behavior of the global solution branches would be
characterized, in addition to the two Rabinowitz alternatives, cf. [20], by the possibility
that they terminate due to loss of local injectivity; and/or ellipticity; and/or the failure of
the complementing condition. The complementing condition is an algebraic compatibility
requirement between the principal part of a linear elliptic differential operator and the
principal part of the corresponding boundary conditions (cf. [2], [25], [26], and references
therein). In the context of the linearized boundary value problems of elasticity, violations
of the complementing condition have been associated to surface wrinkling. Failure of local
injectivity and ellipticity can be ruled out by imposing physically reasonable constitutive
assumptions. (See e.g. [13].) However, the complementing condition can not be enforced
as a constitutive assumption on the stored energy function in the context of elasticity
because that would rule out many interesting materials. In addition the complementing
condition, being a condition on the linearized boundary value problem, also depends on
the solution at which the problem is linearized. In general, we do not have an explicit
linearization at a non-trivial solution, hence we cannot check the complementing condi-
tion directly along those branches. We refer here to the works in [12], [22], [18], and [19]
where the complementing condition is violated at least once along the trivial solution
branch for Green-Hadamard type materials and for incompressible materials in [19]. Tt
is obvious that the trivial solution branch, which is explicitly known, does not “stop” at
places where the complementing condition fails. This suggests that a branch of nontrivial
solutions does not necessarily stops at places where the complementing condition fails.
But, if we globally follow a nontrivial solution branch we have no way to a priori rule out
failure of the complementing condition for traction boundary conditions within the con-
text of the classical theory of elastic materials. When the complementing condition fails



the global continuation method developed by Healey and Simpson cannot be applied,
but that, by itself, does not necessarily implies that the global branch actually stops. It
may very well continue, as the trivial solution branch does in the problems mentioned
above.

One simple way to overcome the failure of the complementing condition, cf. the “Con-
cluding Remarks” in [12], is to add to the stored energy function a term quadratic in the
second order gradient of the deformation and proportional to a small parameter £ > 0
(cf. (2.1)). In the context of 3D nonlinear elasticity this would give us a semilinear fourth
order system of equations for the equilibrium configurations in which the corresponding
linearized problem never violates the complementing condition. In this paper we study
the local bifurcation of equilibrium configurations for deformations of a rectangular slab
but with the stored energy function modified as above. Our idea is to consider the prob-
lem with the added higher order gradient term as a singular perturbation of the problem
studied by Simpson and Spector in [22].

The problem of bars under uniaxial compression have been studied among others by
[8] and [9] (linearized equations for 2d and 3d problem), [22] with a local bifurcation
analysis for the 2d nonlinear problem, [23] and [24] with a linear analysis including
stability results for the 3d problem, for Green-Hadamard and Blatz—Ko type materials
respectively. In [12] a rigorous local and global analysis is given for axisymmetric type
solutions for the 3d problem of a cylindrical column under uniaxial compression.

Higher gradient models have been proposed by several authors to consider next neigh-
bor interaction, to introduce length scale in the theory of elasticity, to study boundary
phenomena, and have been studied extensively in the context of phase transitions, cf.
[11], [16], [17], [27], [29], and references therein. But to the best of our knowledge
the only works with a rigorous global analysis are [11] for forced phase transitions in
one-dimensional shape memory models, and [16] with results on global continuation in
nonlinear three dimensional elasticity.

Although the non-violation of the complementing condition simplifies the global study
from a functional analytic point of view, it complicates considerably the solution of the
linearized problem, and the verification of the hypothesis for the local bifurcation analysis.
It seems to be impossible to verify these hypotheses in general! For example, for the two
dimensional problem considered in this paper with a quadratic higher order term in
the stored energy function, the corresponding characteristic equation (cf. (4.25), (4.26))
whose roots give the possible bifurcation points, is given by a determinant with 36 highly
nonlinear terms to be accounted for. Even for a generalized Blatz—Ko type material,
which has a relatively simple stored energy function, cf. (7.1), we are forced to verify
numerically some of the hypotheses for the linear analysis.

In Section (2) we carry a derivation of the equations of two—dimensional nonlinear elas-
ticity with an added second—gradient term. These equations are given by a fourth order
semi-linear system of pde’s. We discuss different types of possible boundary conditions
for these equations. In Section (3) we then specialize these equations to a rectangular
slab. By extending the domain periodically along the y, we are able to recast our bound-



ary value problem (cf. (3.3)) as an operator equation between suitable Banach spaces.
We then exploit some of the hidden symmetries in the Piola-Kirchhoff stress tensor to
show that the resulting equation is equivalent to the original problem. We establish the
Fréchet differentiability of the corresponding operator and characterize its linearization.

In Section (4) we study the linearized problem about the trivial homogenous deforma-
tion (cf. (3.7)). We show that these equations admit solutions representable as Fourier
series in one of the independent variables. Furthermore we obtain the characteristic equa-
tion for the eigenvalues (possible bifurcation points) for the linear problem. The resulting
eigenfunctions can be classified according to their symmetry, or lack of it, as of barrelling
or buckling type respectively. We obtain asymptotic representations as ¢ ~\, 0 for the
characteristic equations with the other variables fixed, and used these to show that in
the limit as € ™\, 0 both characteristic equations of buckling and barrelling type converge
uniformly (in regions in which A is bounded away from zero) to the corresponding char-
acteristic equations in [22]. For completeness of the presentation, we show in Section
(5) that the linearization of our boundary value problem about the trivial homogeneous
solution satisfies the complementing condition for all values of A > 0 whenever £ > 0.

In Section (6) we establish conditions that guarantee the existence of branches of
nontrivial solutions to our boundary value problem bifurcating locally from the trivial
branch. The presentation in this section is greatly simplified as compared to that of
the usual mixed traction—displacement boundary value problem of nonlinear elasticity,
because by the presence of the second order gradient term in the stored energy function,
our operator automatically satisfies both the strong ellipticity and the complementing
conditions. These imply that certain spectral and apriori estimates on solutions of the
linearization of our boundary value problem hold, which in turn imply that the linearized
operator is Fredholm of index zero. Thus we get existence of local bifurcation from a
simple eigenvalue satisfying the so called crossing condition. We then show that this
crossing condition is equivalent to the eigenvalue being a simple root of the corresponding
characteristic equation. This result is established by generalizing the proof in [22] (see
also [12]) to account for the added second order gradient term in the stored energy
function.

In section (7) we consider, as an example, Blatz-Ko type materials. Even for this
simple material, we are forced to do numerical studies to partially check some of the
hypothesis of the local bifurcation analysis made in general in the previous sections. Our
analysis suggests that when the higher order gradient term is present, i.e. ¢ > 0, for
this material the problem admits only a finite number of possible bifurcation points for
A € (0,1], and that this number of possible bifurcation points monotonically increases
as ¢ approaches zero, accumulating precisely at the value of A for which the linearized
problem for the case ¢ = 0 fails to satisfy the complementing condition.



1.1 Notation

The Einstein summation convention is used for repeated latin indices. The dyadic product
of two vectors a,b € R" is denoted by ab and is defined by ab = a;b;e;e;, where a = a;e;,
etc., with respect to a fixed (constant) orthonormal basis ey, . .., e,. For any second order
tensor A and vector a we write A - a = A;;ja;e;, and a - A = A;ja;e; where A = A;;e;e;.
For any given two second order tensors we write A - B = A;;By;e;e; for the product or
composition of the tensors. The inner product of two vectors is defined by a-b = a;b;
and that of two second order tensors by A : B = A;;B;; = trace (A'-B). If A and B are

second and third order tensors respectively, then A : B denotes the result of contracting
the dyadic product AB on all indexes in B except the k—th. For example

2
A:B= Ai]‘Bikjek.
We use the following notation for partial derivatives of scalar valued functions:

_of 0%
f,j N 6—.'.53 ’ fﬂj o &rjﬁxz ’

Now with £ = (fi,..., fn) we have that
Vit = fz-,jel-ej, divf =V . .f= fz’z

etc..

For a second order tensor A we have that
VA = Ajjreejer, divA=V-A=A4;e;.
For a third order tensor B we have that
VB = B eiejere;, divB =V -B = B, .e;e;.
It follows now that
V= fineiejer , V= fineeee, V-VE=A(fiepe;.

If n is the outer unit normal to the surface S, we define the surface gradient and
surface divergence respectively of the vector field f by (see [6]):

Vd&=(I-nn) -V | V,-f=(I-nn): Vf. (1.1)
We let Lin denote the space of all linear transformations from R” into R" and write
Lin® = {H € Lin : detH > 0},

where det denotes the determinant.

The Schauder space C™%(Q) denotes the Banach space of functions with up to m
continuous derivatives in Q with the derivatives of order m satisfying a Holder condition
with exponent . The norm in C™%(Q) is denoted by [l .05

If G:(x,y) » X x) — Z is a mapping between the Banach spaces X,), Z, then

Gx, Gy, Gxy. etc., denote the corresponding (partial) Fréchet derivatives of G.
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2 Formulation of the Governing Equations

In this section we out carry a derivation of the equations of equilibrium for nonlinear
elasticity with an added second order gradient term to the stored energy function. For
more general derivations see [16] and [17]. In [16] there are as well results concerning
global continuation for these problems in the context of three dimensional elasticity.

We consider a body that, for convenience, we identify with the region B that it
occupies in a fixed reference configuration in R". A deformation f of the body is a
member of the space

Def = {f € C*(B;R") : det Vf > 0} .

Let

~

W(F,G) = W(F) + %GEG, (2.1)

where F, G are second and third order tensors respectively, the triple dots : denote the
inner product of third order tensors, and W : Lin™ — R. Now the total energy due to
the deformation f : B — R" is given by:

E(f) = /BW(Vf, V2f) du.

The derivatives 1 P2
F)=—W(F F)=—

are the usual (Piola-Kirchhoff) stress and elasticity tensors, respectively, when ¢ = 0.
We assume that C(F) is strongly elliptic, i.e. that

W(F), (2.2)

ab : C(F)[ab] > 0, (2.3)
for all a,b € R?\ {0} and all F € Lin".

If v is any smooth admissible variation, we have that

%E(H av)

d
= /. (W(Vf+aVv)

a=0

+%(v2f + aV2v)I(VRE + aV2V)) dz

a=0

- / (S(Vf) : vV+ev2f5v2v) da.
B
Integrating by parts once we get that

/BS(Vf):Vvdx:/aB (S(Vf)-n)-vds—/(divS(Vf))-vdx,

B



where n is the outer unit normal to 0B. Also integrating by parts twice we get that
/V2f5V2V de = / (V2f -n): Vvds
B oB

—/88(A(Vf) ) -vds+/(A2f) -vde,

B

where A?f = (A%f;)e; and A(VE) = (Af;;)e;e;. Combining all of these results we get
that

d
@E(f+ av)

= / (5A2f — divS(Vf)) - vdz

a=0

+/ 6(V2f-n):Vvds+/ (S(Vf) -n —eA(Vf) -n) - vds.

We now work with the second term of the right hand side of this expression. We can
write
Vvi=nn-Vv'+ (I -nn)-Vv.

Hence
(V2f-n): Vv = (Vf.n): Vv
= (V*-n)': (on-Vv')+ (V*f-n) : [(I-nn)- Vv
= (Vf-n)':(nn-Vv') + (Vf' . n):[(I-nn) Vv], (24)

where the transposition in V2f is done with respect to its first two indexes. But
(V*f-n)": (nn-Vv') = (V?f:nn)-Dv,

where .
Dv=Vv:n , V¥:nn=(V*f-n) -n=V*:nn
To simplify the second term in (2.4) we use the following identity.

Lemma 2.1. For any two second order tensor fields A, B and vector field v, we have
that
A:(B-Vv)=B:V(A-v)—v(B?VA)

Proof: With
A=A eie; , B=DByee, , Vv=u,.e,€,,

we have that
A:(B- Vvt) = (Ajjeie;) : (Bypvgpeey) = AyyBipyvgp = Bip(Aigvgy).

Using the identity
(Alqvq),p = Algpvg + AlgVgp,
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we have that

A:(B- V"t) = Blp(Alqvq),p — BipAjgpvg
= Blp(A ' V)l,p - Uq(BlpAlq,p)

= B:V(A-v)—v-(B?VA).

Taking A = (V?*f! -n) and B =1 — nn in this lemma, we get that
(V' n): [(I—nn)-Vv'] = (I-nn): V(V -n) v)
—v-((I-nn) ? V(V - n))
= V, ((V¥'-n)-v)—v-((I-nn):V(V¥ n))
= V, (V' n)-v)—v- (%s (V*f - n)),
where we have used the operators defined by (1.1) and introduced the notation
V, -(Vf-n) = (I—nn) ! V(V?f- ).

Using the surface divergence theorem [6], since the surface 0B is closed, we get now that
/ v, (V' -n)-v)ds — / (V,-n)n- (V2 - n) - v) ds
oB oB

= / (V,-n)(V*f : nn) - vds.
a8
We now have that

d
@E(f + av)

= / (eA*f — divS(VS)) - vdz —|—/ e(V*f :nn) - Dvds
B B)

a=0

+ /88 ((S(VH) -m— cA(VE) n— < Vv, -(V*f - n)
+ &(V, - n) (V3 nn)) -vds.

Since this has to vanish for any admissible variation v, we have that the following must
hold:
eA’f —divS(VF) =0 , in B. (2.5)

As for the boundary conditions, they will depend on whether or not we specify either or
both of f or Df on 0B. For example if neither is specified on 0B, then

1
S(Vf) -n—cA(Vf) - n—¢eV, - (V* n)

+&(V,-n)(V*:nn) = 0 , on JB,

eVf:nn = 0 , ondB.



If f =g on 0B but Df is not specified, we have that
f=g , eVf:nn=0 , ondB.

If f is not specified but Df = h on 0B, then we have that

S(VE)-n—eA(VE) -n—¢ V, (V- )
+e(V,-n)(V*:nn) = 0 , on 0B,
Df = h , on0B.

We could as well specify components of f or Df in the normal and tangent directions to
0B. For example, if f - n and Df - t are specified, where t is any vector tangent to 0B,
then the boundary conditions are given by

£ (S(Vf) ‘n—cA(VE)-n—¢ v, (V- n)
+6(Vs-n)(V2f:nn)> = 0, on 0B,

f-n=¢g, Df-t=h , (V¥:nn)-n = 0 , ondB.
Further, we can have 0B be the union of sub-boundaries on each of which we can specify
any combination of f, Df, or any of its normal or tangential components.
3 The Equations for a Rectangular Slab
We now specialize to the case in which B C R? is a rectangular slab. Thus we let
B={(r,y): —R<xz<R,0<y<L}. (3.1)

We write 0B = C; U Cy U L where

¢ = {(z,y): —-R<z<R,y=1L}, (3.2a)
C = {(z,y): —=R<xz <R, y=0}, (3.2b)
L = {(z,y) :z=+R, 0<y<L}. (3.2¢)
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Figure 1: Possible deformations of a rectangular slab, compressed along its vertical axis,
of either barrelling or buckling type.

We consider the special case of the boundary value problem of the previous section for a
deformation f = (f1, fo) of B in which we specify! f-n and Df -t on C; U Cy:

eA’f —divS(VE) = 0 , inB, (3.3a)

1
S(Vf) n—cA(Vf) n—ecV,-(V¥-n) = 0, onCL, (3.3b)
eV¥:nn = 0, oncZL, (3.3¢)
t- (S(VE) n—cA(VE) n—cv,(V¥:n) = 0, onCGUG,  (3.3d)
fa=0, onC, , fo=AL , onC, (3.3¢)
Df-t=0, ¢(V¥:nn)-n = 0, onC UG, (3.3f)

where t - n = 0, and A € [0,00) C R. Since n is constant on each of C;,Cy, £, we have
that Vs -n = 0 on each of them. (See Figure (1).)

In order to eliminate trivial nonuniqueness of solutions due to translations, we impose
the following additional condition:

Lﬁdx:& (3.4)

!The slab is compressed along the y—axis by a factor of A with the top and bottom free to slide along
the z direction.
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Note that on C; U C, we have that n = +e,, and that n = +e; on £. Thus with
S = S;;e;€j, 1, = 1,2, we have that the boundary value problem (3.3) reduces to:

eN*(f) = Siugi—Sies = 0, inB,i=1,2, (3.5a)
Si1 —eA(fir) —efize = 0, onCL (3.5b)
So1 —eA(fo1) —efaz = 0, on L, (3.5¢)
5f1,11 =0, 5f2,11 = 0, onCZ, (3-5d)
Sig—¢efiee = 0, onC UG, (3.5€)

fia=0, efsoo = 0, onC UG, (3.5f)
fo=0, onCy , fo = AL, onCy, (3.5g)

where the argument of S;; and S;; is Vf.

We assume that the function W : Lin™ — R which corresponds to the stored energy
function (2.1) with ¢ = 0, satisfies the usual frame-indifference and isotropy conditions
of nonlinearly elasticity. In that case it is well known (see e.g. [10], [28]) that there exists
a function o : R x Rt — R such that

1
W(F) =0 (§F : F, det F) , Felin". (3.6)

We assume o is of class C"™, m > 5. Under the same conditions as for the case where
e = 0, one can check now that?

fr(x) = (u(A)z, Ay), (3.7)
is a solution of (3.5) where u()) is the unique solution (see [22]) of the equation:
,U/()\)O"l + )\0"2 = 0, (38)

with o; = 0,; (5(p* + A2), p)), i = 1,2

In order to recast our boundary value problem (3.3) as an operator equation between
suitable spaces, we first extend the domain B periodically along the y direction. Then
we exploit some of the hidden symmetries in the Piola—Kirchhoff stress tensor to show
that the resulting equation is equivalent to the original problem. Thus we let

B ={(z,y) : —R<xz <R, —oc0o<y<oc}. (3.9)
For any deformation f = (f1, f2) we write
u="f-f,, (3.10)

where f) is given by (3.7). Thus u = (uy, us) is the displacement vector. We impose the
following even—odd condition on the components of u:

ur(z,y) = ui(z, —y), us(z,—y) = —us(x,y). (3.11)

2The subscript A here does not denote partial differentiation.
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We define the following spaces of functions:

Z = {ue 0" (B, R’ : uis 2L periodic in y and satisfy (3.4), (3.11) and,

eV*u:nn =0 on 9B}, (3.12)
Vo = {veC"™(Bx,R?) : vis 2L periodic in y and satisfy (3.11)}, (3.13)
Vi = {weC"(0B,R*) : wis 2L periodic in y and satisfy (3.11)}, (3.14)
Y = Do x W, (3.15)

with corresponding norms:

Iz = llgas: [y =loez + lI-.06s-
We define now
U={(\u) € (0,00) x Z : det(VEy + Vu) > 0}, (3.16)
and the operator G : U/ — Y by:
G(A\u) = (eA%u — divS(Vfy + Vu), B(A, u)), (3.17)
where .
B(A\u) =S(Vfy+Vu) - n—cA(Vu) -n—¢V, -(V2u-n). (3.18)

We now can prove the following:

Proposition 3.1. Let u be any solution of the operator equation
G(A\u)=0. (3.19)

Then f = f\ +u with u restricted to B, is a solution of the boundary value problem
(3.3). On the other hand, if £ is a solution of (3.3), then u = f — £\ can be extended
periodically in y to a solution of (3.19).

Proof: First we observe that an easy computation using (2.2);, (3.6), and (3.7), shows
that

Slg(Vf/\ + VU) = [S(Vf)\ + VU)GQ] ‘€1 =0 1U12 —O02U21 .

.From (3.5g) we have that us; =0 on C; UC,, and from strong ellipticity, cf. (2.3), it
can be deduced that, cf. [22], o, > 0. Hence, for any function u satisfying u; » = 0 on
C; U Gy, the condition (3.5e):

512(Vf/\ + VU) — U220 = 0, on Ct U Cb,

is equivalent to 1,999 = 0 on C; U Cy,.

Thus clearly, if u is a solution of (3.19), then the even—-odd conditions (3.11) and the
periodicity in the y direction imply that uy = u; 909 = 0 on C;UC, and that the boundary
condition (3.5f) is satisfied. Hence f = f) + u is a solution of (3.3)

12



On the other hand if f is a solution of (3.3) or equivalently (3.5), then with u = f —f),
and by the observation made above, (3.5e) is equivalent to uj 999 = 0 on C; U Cp. This
together with the boundary conditions (3.5f) and (3.5g) allow us to extend u periodically
in y according to (3.11) to a solution of (3.19). O

A simple modification of the results in Valent [30], due to the unboundedness of By,
allows us to get the following:

Proposition 3.2. The function G : U — Y is of class C? and

Gu(A,u)[h] = (¢A%h — div C(Vfy + Vu)[Vh], B,(\, u)[h]), (3.20a)
Gur(\u)[h] = (—div %(Vﬁ + Vu)[Vh, Vf}],
(g(vg 4 Vu)[Vh, vﬂ]) - n> , (3.20D)

where £} = dfy/d\ and
Buy(A,u)[h] = C(Vfy,+Vu)[Vh] -n—-cA(Vh)-n
1
—eV, +(V*h - n).

4 The Linearized Problem

Since (3.7) is a solution of (3.5), we have that for the operator (3.17),

We look for nontrivial solutions of (3.19) bifurcating from the trivial branch {(A,0) : A > 0}.
For this we need to study the linearized problem about the trivial branch which by Propo-
sition (3.2) is given by:

L(A)[h] = Gy(\,0) = (eA%h — div C(V£,)[Vh], By(\,0)[h]) =0, he Z.  (4.1)

In particular, we need to determine, for which values of A, this boundary value problem
has nontrivial solutions h.

An elementary but otherwise lengthy computation shows that the boundary value
problem (4.1) is equivalent to:

e (up 111 + 2ug 1192 + U1 99292) — Kuygp — Puygg — Mug o =0, in B, (4.2a)
€ (U2,1111 + 2U2,1122 + U2,2222) - PU2,11 - QU2,22 - MU1,12 =0, in B, (4-2b)
curn =0, Kuyy+ Nugo — e (w11 + 2uy192) =0, on L, (4.2¢)
cugyn =0, Pugs+ (M — N)uygs —e(ugi11 +2us122) =0, on L, (4.2d)
uip =0, euion =0, uy=0, cuys =0, onC UG, (4.2e)
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where we have written h = (uy, us),
K = 0.1 +Z?’j:1 0,ij 05, N = 0,2 +Zij:1 0,ij Oéiﬁj, (43&)
Q:O'71 +Z?’j:10,ijﬁiﬁja M:N—O"Q, P:O"l, (43b)

and a1 = p(A), as = A, B1 = A, B2 = p(A). One can show (see [23]) that the elasticity
tensor C(V1)) (c.f. (2.2)) satisfies the strong ellipticity condition:

ab: C(Vfy)[ab] >0, Va,be R*\ {0},

if and only if
K>0, P>0, Q>0, P+ (KQ)?Y > |M|.

By a proof very similar to that of Proposition (4.2) in [23], we get that any (uq, us) €
C*([-R, R] x [0, L]) satisfying (4.2a)-(4.2b) and the boundary conditions (4.2e) must
have a Fourier series representation of the form?:

uy(z,y) = Z ar(z) cos(qry), wue(z,y) = Z bi(x) sin(gry), (4.4)

k=1

where ¢ = kn/L and both of these series converge uniformly in [-R, R] x [0, L].

If we multiply (4.2a) and the second equation in (4.2¢) by cos(qry), (4.2b) and the
second equation in (4.2d) by sin(gxy), and carry the required integration by parts using
the remaining boundary conditions, then we get that ay, bx are solutions of the boundary
value problem:

cap’ (z) — (220} + K)aj(z) + (cqt + Paf)ar(x) — Mapbj(z) = 0, (4.52)
bV () — (2eq? + P)b(x) + (eq) + Qad)be(z) + Myyay(z) = 0, (4.5D)

—R <z < R, with

eay(+R) =0, (2e¢? + K)a},(£R) — ca}'(£R) + Nqpbr(+R) = 0, (4.6a)
ebl(£R) =0, (2eq} + P)b}(+R) —eb}'(+R) — (M — N)grax(£R) =0, (4.6b)

The solutions of this boundary value problem are characterized by the roots of the fol-
lowing polynomial equation:

£2r® — e(By + Dp)r® 4+ (BiDy — (A 4 Cp))r?

+ (DyAg + E} + BrCp)r* + Cr Ay, = 0, (4.7)

where
Ay = —(eqp + Pqp), By, = 2:¢; + K, Cr, = —(cq; + Qqp), (4.8)
Dy = 2eq; + P, Ey = Mqy. (4.9)

30ne can show that the condition (3.4) and the second boundary condition in (4.2c) imply that ag(z)
must be identically zero in the series for u; in (4.4).
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With the substitution o = r2 this reduces to:

g2t — S(Bk + Dk)w3 + (Bka - 6(Ak + C’k))w2
+ (DyAg + E} + BCp)w + Cr A, = 0. (4.10)

We have now the following:

Lemma 4.1. For ¢ sufficiently small the equation (4.10) has four roots (counting multi-
plicity) with positive real part.

Proof: When € = 0 the above equation reduces to:
KPw* + (M* — P’ — KQ)gi@ + PQq; =0, (4.11)

with roots @ (0),w2(0) with positive real parts. (See Simpson and Spector [22].) We
seek now solutions of (4.10) of the form

l £ .
ag(s)::EZ:cq§X0)jT, j=1,2. (4.12)
If we substitute w,(¢) into (4.10), differentiate with respect to ¢ once and then set ¢ = 0,

we find that

@i(0) = [2KPuw,(0) + (M* ~ P>~ KQ)¢?] "' x [(K + P)w'(0)
~(3P + 2K + Q)giw?(0) + (3P +2Q + K)gjw;(0) — (P + Q)qf] (4.13)

for j = 1,2. Similarly we can compute higher order derivatives of w;(e). If ws(e), wy(e)
are the other two roots of (4.10), then using that

21() + @a(E) + 3(e) + male) = @%ii
@ mlOmslelmsle) = 25,
we find that
2ews(e) = Bp+ Dy —e(w(e) + wa(e))
1/2
+ (Bk+Dk —8(’@'1(8)4—’@'2(8)))2—4% s (414)

with a similar expression for w,(¢) with a minus in front of the bracketed square root.
Since By + Dy, = K + P > 0 when ¢ = 0, we can use this and the fact that w;(0), w4(0)
have positive real parts, to get the result. O

Note that Ay, By, ... through K, P,Q, and M, are functions of A. Thus the roots in
the previous lemma are function of A as well. We then have:
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Corollary 4.2. The roots of equation (4.7) are given by £w k(X €), £war(A, e),
+ws (A, €), Lwak(N, e) where the w’s have positive real part.

Notation: To emphasize when some of the arguments A, €, or k£ are fixed, we will drop
its dependence from w; (A, €). For example if we hold ¢ fixed while A and k are variable,
we write w;x(A). On the other hand if A and & are fixed while ¢ is variable, we write
wi(g), etc..

If the {w; x(\)} are all distinct, then (4.5) has the eight linearly independent solutions:
oute) | L[ Pl |y g

bi.i(2) cosh (w; (M) z)
apiva(z) | | F(wig(A)) cosh(w;k(N)x) o
[ bk iva() ] B [ sinh (w; ;(\)z) ] , i=1,...,4, (4.16)
where .
F(r) = KT

ert — BkT2 — Ak .
If some of the {w; ()} are equal, say ws x(A) = wy () with the other two distinct, then
(4.5a)—(4.5b) has the eight linearly independent solutions:

[ Z:((g ] - [ F(”i”éﬁiﬂ)(ii;}}&“;;';“)“ ] L i=1,2,3, (4.17)
[ 1 e R v e B
[ R il REETEX ST
[ Z::((i)) } _ [ 2 F(wa k() sinh(wgﬁ(cf\))si)( L,ﬂﬁ;ﬁ;’m cosh (ws () }  a0)

The solutions (4.15) or (4.17) and (4.18), when substituted into (4.4) represents solutions
of the linearized problem of barrelling type, while those obtained from (4.16) or (4.19)
and (4.20), are of buckling type.

In the case {w; ()} are all distinct, we define the matrices:

Mi(A) = [Wa(wik(A), Wa(w2(A), Wa(wsk(A)), Walwar(N))], (4.21)
MP(A) = [Ws(wik(A), Ws(wa k(A)) We(ws (A)), Wa(war(A))] (4.22)
where
wo(w) = [F(w)w’cosh(wR),w”sinh(wR), A(w)sinh(wR), A(w) cosh(cuR)]lt :
wi(w) = [F(w)w’sinh(wR),w”cosh(wR), A(w) cosh(wR), A(w) sinh(wR)]t :
(W) = (Byw — ew?)F(w) + Ny,
Aw) = Dyw—ew® — (M — N)gpF(w).
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If wsk(A) = war(A) with the other two distinct, then the corresponding matrices are
given by

Mi(A) = [Wa(wi(A), Walwak(A)), Wa(wsk(A)), Wo(ws k()] (4.23)

Mi(A) = [w(wik(A)), wi(wa k() Wi(ws i (A)), We(wse(A))] (4.24
where dw.(w)
wiw) = S,

etc.. Since the general solution of (4.5) is given by a linear combination of (4.15)—(4.16)
or (4.17)—(4.20), it follows that (4.6) implies that (4.5)—(4.6) has nontrivial solutions if
and only if

det M (\) = 0, (4.25)

or

det Mg(\) =0. (4.26)
We summarize our results in the following:

Proposition 4.3. The boundary value problem (4.1) or equivalently (4.2) has nontrivial
solutions if and only if X is a root of either (4.25) or (4.26). The nontrivial solutions
are given by (4.4) where the sum is taken over all k’s such that det M (\) = 0 with the
coefficients given by (4.15) or (4.17) and (4.18), and over all k’s such that det M (\) =0
with the coefficients given by (4.16) or (4.19) and (4.20).

In the following discussion we are going to fix the values of A\ and ¢; and study the
limiting behavior of (4.25) as ¢ — 0T, the analysis for (4.26) been similar. From equation
(4.14) we get that

wi(e) ~ % e 0%, =34 (4.27)
where
PQq4 1/2
2¢2 = K+P+ |(K+P)?—4— | |
B
= K+P+|K - P|.
Thus
=K, ci=P, orviceversa, if K — P #0, (4.28a)
ca=ci=K+P, if K-P=0. (4.28b)

We consider only the case in which K — P # 0. That of K — P = 0 would correspond
to a repeated root of (4.10), and (4.25) would have to be modified with the matrix in
(4.24). Using (4.27) and the identity

(er® — Byr® — Ap)(er? — Dypr® — Cy) + Ejr? = 0,
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which holds for any of the roots r in Corollary (4.2), one can show now that the following
asymptotic estimates hold:

o
—
&

w
—
™
N—
N—
I
Q
—
o)
L
~
[\
S—
—
—
&
w
—
™
N—
N—
I
@)
—~
[a—y
S—
b
&
w
—
o)
S—
S—
I
@)
—
\
o~
~
[N}
S—

(4.29a)
Fwy(e)) = O(VeE), AMwal(e)) =0(1), Alwsle)) = O(Ve), (4.29D)
as ¢ — 07. Tt follows now that
—A(w2(8))A(w1(8)) tanh(w; (2) 1)),
w1(0))p2(w2(0)) tanh(w,(0) k)
pa(w1(0)) tanh(wq (0)R)), (4.30)

as ¢ — 07, for some nonzero constant ¢;, and where

KMr? + N(P - Kr?)

nir) = P — Kr? ’
P(P—Lr*)r — (M — N)Mr
plr) = P—Kr? '

If we let

. _ %2 det M (¢)
feAs ) = c1gp11;_, cosh(w;(e)R) (431)
fF A ar) = pi(wi(0))pa(w2(0)) tanh(wz(0) R

) )
—p1(w2(0))p2(w1(0)) tanh(w, (0) R), (4.32)

then the same analysis leading to (4.30) shows that:

fgs()‘a qk) = fs()\a Qk) + 679()‘7 d; 8),
where v > 0 and ¢ is a continuous function over (0, 1] x (0,00) X [0,00). Thus we have:

Proposition 4.4. Let )y, 01,09 be such that 0 < Mg <1, 0 < d; < 3 < 00. Then
2= f5 as £ —0,
uniformly over [Xg, 1] X [01, da].
Remark 4.5. After multiplication by the demominators in py, pa, the equation
N a) =0, (4.33)

reduces to the same equation found in Simpson and Spector [22] for the critical loads of
barrelling type.
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Remark 4.6. A similar result holds for the equation of buckling type (4.26).

We close this section with a result about the dimension of the kernel of the matrices
Mi(e), Mi(e). We use the notation M} (A, e), r € {s,a}, to emphasize the dependence
of M on both A and ¢.

Proposition 4.7. Let \y(¢) be a root of either (4.25) or (4.26). Then for e sufficiently
small, dim ker M} (\g(€),e) =1 where r € {s,a}.

Proof: We do the analysis for the case r = s the other one been similar. We let
M\ e) =0\ e)Mi(\e), O(\e) = diag (cosh(w;(N,e)R)™") .
Since O(A, ) is nonsingular, then
dim ker M (), €) = dimker M7 (), €).

If Ax(g) is a root of (4.25), then dimker M} (A(g),e) > 1. Using the asymptotic expan-
sions (4.29), we get that as ¢ — 0%,

M;(Ae(e),€) =

A simple inspection of the powers of ¢ in the last two columns of this matrix shows that
these last two columns must be linearly independent as € — 07. Similarly neither column
one or column two can be a linear combination of the last two columns for ¢ sufficiently
small. Hence rank M} (\y(¢),¢) > 3, but since dim ker M} (\,(¢),¢) > 1, the rank must
be exactly three, i.e., dim ker M (\z(c), ) = 1. O

5 The Complementing Condition

In this section we show that the linearized problem (4.1) satisfies the complementing
condition for every value of A\. The complementing condition is an algebraic condition
between the coefficients of the principal part of a differential operator and that of an
associated boundary operator, that among other things guarantees certain apriory esti-
mates on the solutions of the corresponding boundary value problem. We say that the
complementing condition holds if the only exponentially decaying solution to a certain
auxiliary boundary value problem on a half space, is the zero solution. Thompson in [26]
made the observations that in the context of linearized elasticity the complementing con-
dition is equivalent to the condition that all Rayleigh waves travel with nonzero velocity
(see also [25]).
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For the problem (4.1) the corresponding auxiliary boundary value problem on a half
space is given by (see eg. [21])

eA’h =
1
—eA(Vh) -n—¢V,-(V?h-n) =

in H, (5.1a)

0,
0, ¢V’h:nn=0, on OH, (5.1b)

where
H={xeR : (x—x0) n<0},

Xo € 0B is arbitrary but otherwise fixed, and n = +e; is the unit normal to 0B,,. We
look for exponentially bounded solutions of this boundary value problem, i.e. solutions

of the particular form .
h(x) = z(t)eza'(x_xo), (5.2)

where o € R? is nonzero and perpendicular ton, t = —(x —x¢)-n, and z : [0,0c) — R?,
with ||z(-)|| bounded. Writing z(¢) = (z1(t), 22(¢)), after some simplifications we get that
the above boundary value problem reduces to:

A1) = 2022 () + otz (t) = 0, ZV(1) = 20220(t) + atz(t) =0, t >0,
2/(0) = zi”(O) —2a%21(0) = 0,
23 (0) 23'(0) — 20%25(0) = 0,

where a € R, a # 0. This problem decouples to:

0,
0,

2 () — 2a%2"(t) + a*z(t) =0, t>0,
Z"(0) =0, 2"(0)—2a%(0) =

An easy computation shows that the bounded solutions of this problem have the form:
2(t) = cre” 1 4 come 1ol
Applying the boundary conditions we get that ¢y, c; must satisfy
(e ) (5) = (0)
laja?  a? co ) \0 )"

Since the determinant of the coefficient matrix is 3a* # 0, we get that ¢; = ¢, = 0 is the
only solution, and thus that the only exponentially bounded solution of (5.1) is the zero
solution. Hence (4.1) satisfies the complementing condition for any value of A.

6 Local Bifurcation

We discuss now conditions for the existence of nontrivial solutions for the problem (3.19).
The presentation in this section is greatly simplified as compared to that of the usual
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mixed traction—displacement boundary value problem of nonlinear elasticity ([14]), be-
cause by the presence of the second order gradient term in the stored energy function
(2.1), the operator in (3.19) automatically satisfies both the strong ellipticity and the
complementing conditions (see [16]).

In reference to the linear operator L(A) in equation (4.1), we have that standard
results for elliptic systems (see [1], [2], [4], and [16]) imply that

bz < CIZA) D[]y + [hy,]

for any A > 0 and for some constant C' > 0 independent of h but depending on ¢. By a
Lemma of Peetre and a now standard homotopy argument (see [14]), we get:

Theorem 6.1. The operator L(\) : Z — Y is a self-adjoint Fredholm operator of index
zero.

Using the Fredholm property in this theorem, the proof of the following result is well
known (see e.g. [7]):

Theorem 6.2 (Local Bifurcation). Let the operator G : U — Y be given by (3.17)
and assume that A, € (0,1) is such that

i) dimker L(\,) =1,
ii) if ker L(\,) = span {h,}, and M = Gux(\«,0), then
Mh, ¢ range L(\,).
Then (A4, 0) is a bifurcation point of a local continuous branch of nontrivial solutions of
(3.19).

Remark 6.3. Remember that ker L(\.) # {0} if and only if A\, is a root of equations
(4.25) or (4.26) for some k € N.

We look now for an alternate characterization of condition (ii) in this theorem. For
that we use the following identity which follows from the results in Section (2):

/B <5V2ffv2v + Vv : CWfA)Wf]) Ix —

/(sAZf—divC(Vf,\)[Vf])-vdx + /(BU(A,O)[Vf])-vds, (6.1)

for all f,v € Z, with B,(\,0) given in Proposition (3.2), and £ is given in (3.2¢)*. We
now can prove the following:

4The boundary terms on C, UC; are zero by the even—odd conditions (3.11) and the periodicity along
the y direction.
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Lemma 6.4. Let A\, be as in Theorem (6.2). Then condition (ii) of Theorem (6.2) is
equivalent to

d

4 { /B Vh, : C(V£)[Vh,] dx] #0, (6.2)

dA

which in turn is equivalent to N\, being a simple root of either of the characteristic equa-
tions (4.25) or (4.26).

A=A

Proof: Consider the linear functional ¢ : ) — R given by:

(w,g) = / h, -wdx+/h* - gds.
B c
If (w,g) € range L(\,), then there exists h € Z such that (c.f. (4.1)):

eA’h — divC(Vfy,)[Vh] = w,
Bu(A, 0)[h] = g

It follows now that
Y(w,g) = /Bh* - (eA%h — div C(Vf),)[Vh]) dx
+/£h* - Ba(\,, 0)[h] ds
_ /B <5V2h :V2h, + Vh, : C(VfA)[Vh]> dx,
where we used formula (6.1) with v = h, and f = h. Since the tensor C has the symmetry

property:
H:C(F)[G] = G : C(F)H],

for any second order tensors F, G, H with det F > 0, we can use (6.1) again to get that
Y(w,g) = /B<5V2hfv2h*+Vh* : C(Vfﬂ[Vh]) dx
_ /B <5V2hiv2h* + Vh: C(VfA)[Vh*]> dx
_ /B h- (eA%h, — div C(Vf,,)[Vh,]) dx
+/£h - Bu(\, 0)[h] ds = 0,

where for the last equality we used that h, is a solution of (4.1) for A = A,. This result
together with Theorem (6.1) and condition (i) of Theorem (6.2) imply that range L(\,) =
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ker ¢). It follows now that condition (ii) in Theorem (6.2) is equivalent to

ac
- / h., - div 52 (V£ )[Vh,, V£, ] dx
. aF *

ic
+/h*- 4 9, )[vh, V€ ]) n+£0 |
e lar *

or equivalently

d [ / h, - div C(V£,)[Vh,] dx
d\ B

+ /Ch* - (C(V£))[Vh,]) - n}

A=A

which after an integration by parts yields condition (6.2).

For the second part of the lemma, let {uE\i) ci=1,..., 4} be a set of four linearly

independent functions that satisfy (4.2a), (4.2b), (4.2e), depending continuously on A\,
and such that

with the {cf} not all zero. The functions

—N
=
>

: izl,...,4} are given by

ug\i)(x:y) = (an,i(x) cos(qry), bri(z) sin(gry))’s i=1,....4,

where k is the mode corresponding to h, and {ay,; : i =1,...,4} are given by (4.15)
if h, is of barrelling type and the roots in Corollary (4.2) are all distinct. The other
possibilities, namely barrelling type with repeated roots, or buckling type with distinct
roots, or buckling type with repeated roots, are handled similarly.

Let ¢: (A, — 4, A\, + ) — R* be a smooth curve, to be chosen below, such that

C()‘*) = (CT: C; C;;: Czkl)t = C*a

and define \

hy =Y a(Wuf.
i=1
Using formula (6.1), the symmetry property of C(Vf,], and that h, is a solution of (4.1)
for A = \,, we get that

5 | [ vn conyvn o

A=A

T A

A=A
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The function hy satisfy the even—odd conditions (3.11), is 2L periodic in y but need not
satisfy the boundary condition eV?u : nn = 0 on £. Thus a modification of formula
(6.1) taking this into consideration yields that

/B <5V2hAEV2hA + Vh, : C(ka)[VhA]> dx
_ /B (6A%h,, — div C(V£,)[Vhy]) - hy dx
+ /ﬁ [(Bu(X, 0)[hy]) - by + £(V2hy : nn) - Dhy] ds
= /E[(Bu()\,O)[hA])-hAJre(V?hA :nn) - Dh,] ds,

where for the last equality we have used that since hy satisfies (4.2a), (4.2b), (4.2e), then
eA’hy — div C(Vfy)[Vhy] =0, in B.

Hence

% [/B Vh, : C(Vf,)[Vh,] dx]

- % Uﬁ [(Bu(X,0)[hy]) - hy + £(V?hy : nn) - Dh,] ds}

A=A

A=A

An easy computation now based on formulas (4.15) and (4.23) gives that:

/[(Bu(A,O)[hA]) -hy + £(V?hy :nn) - Dhy] ds

9 / [(Ba(X. 0)[h]) - iyt

6(v2h/\ . nn) : Dh)\] ‘x:R dy
= Let (W) A(N)e(N), (6.3)

where
(R) (R) (R

A = L), @y = | D et bl

(R) (R) (R

The matrix O, () is nonsingular by the linear independence of the {u,}. Note that since
L(A.)[h,] = 0, then ¢* is an eigenvector of A(),) corresponding to the eigenvalue zero.
We take the curve c(+) to satisfy:

AN = m(Ne(N), A e (A — 8\, +4),
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where 1 @ (A —3d, A\, +9) = R is smooth, p(A.) =0, and c(A,) = c*. With this selection
of ¢(-) and using (6.3) we get that

dd)\ V Vh. C(Vf/\)[Vh]dx]

A=A

Thus (6.2) is equivalent to p}(As) # 0. If zero is an eigenvalue of A(\,) of multiplicity
m > 1 then

det A(\ H“l i) # 0,

with ¢ and {x;(-)} smooth (u(-) as above), and p;(\,) =0,i=1,...,m. Thus

d
adetA( )a=r. = g(A ZMZ )Hﬂj()\

J#

which is nonzero if and only if m =1 and p}(\,) # 0. Hence (6.2) is equivalent to

d
o det Ao £ 0,

which in turn is equivalent to

d
- det ME(N)|aon. # 0,

by the nonsingularity of O(\). O

7 An Example: Blatz—Ko Type Materials

As we mentioned before, the presence of the second order gradient term in the stored
energy function (2.1) simplifies greatly the global analysis, because the operator in (3.19)
automatically satisfies both the strong ellipticity and the complementing conditions.
However the local bifurcation analysis becomes extremely difficult due to the complexity
of the characteristic equations (4.25) and (4.26). (Each determinant has 36 terms to be
accounted for!) This is so even for specific materials like the Blatz—Ko type, cf. [5],
considered in this section making it necessary to check the local bifurcation conditions
numerically.

We assume that the stored energy function W in (2.1), which corresponds to the
problem with £ = 0, is of Blatz—Ko type, i.e., is given by:

W(F):%F Pyt (detF) (7.1)
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where m > 0. In this case (4.3) reduces to:
K=m+2 N=mv'? Q=14+m+1)ry, P=1, M= (m+1)w"? (7.2

where )
UV = )\_4[2_:::2] .

We have as well that (4.8) and (4.9) simplify to:
Ap=—(eqt +q7), Bp=2eqi +m+2,
Co=—(eqi + (1 +(m+1)v)g), Dp=2e¢? +1, Ep=(m+1)v"%q,.
The roots of (4.10) are given now by w@; = ¢o;, j = 1,2, 3,4 where

m+2  [(m+2)?+4e(m +1)(1 - v)g]”?

on=1 0=1+

2eq} 2eq} ’
m+2  [(m+2)?+4e(m+1)(1—v)g2]"?
03 = ].+ 9 2 + 2 ’
£q;, 2eq;,
1
04 =1+ —.
£qj;
Note that o4 > 0y and
1. 02 = 01 at)\:L
2. 02 = 04 at
_ (m+2)
1 4(m+1)
£q;;
3. 03 =02 at
(m+2)> | ¥
AN = — , (7.3)
de(m + 1)q;
with A\g < A,.

For ¢ and ¢ fixed, we have that g, o4 are constant. As we let A decrease from one
to A, we get that oy increases from p; to g4. As we further decrease A from A\, to A4,
0y increases from g4 to g3 = 1+ (m + 2)/(2e¢?). As X decrease from one to Ay, 03
decreases from its maximum value down to 1+ (m + 2)/(2e¢3). As we further decrease
A from Ay to zero, both gy, 03 become complex conjugates, with constant real part given
by 1+ (m+ 2)/(22¢}), and going to infinity in modulus as A \, 0. We summarize these
observations in the diagram in Figure (2). In fact with

peq a2 llm+2) 4+ Ae(m+ 1)(1 - v)g2))"?
a 2q 2eq? ’
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A<A

A=A P3

T
o O\

p,=p, P, P,=P, Py

5 A
Real(p)=1+(m+2)/(2¢ qk) l d

N\

Figure 2: Diagram of g;, j = 1,2,3,4 as A 0 from A = 1.

then for A < Ay we can write 0o = a — b1, 03 = a + br. Thus with r = V/a? + b> we have

that
1/2 r+a r—a 1/2 T+ a Ir—a

It follows now that

b b
gé/gm\/;(]_—l), gé/gw\/;(1+z), as A\, 0,

where we have used the principal part of the square root function.

If we view \g as a function of g, this curve divides the (gx, A) plane in two regions: one
in which g3, o4 are real (to the left of the curve), and another in which they are complex
(to right of the curve). (See Figure (3).) Thus above this curve the determinants in (4.25)
and (4.26) are real-valued functions and below the curve they are purely imaginary valued
functions. Thus from the numerical point of view, when looking for the roots of (4.25)
or (4.26), we are essentially dealing with real-valued functions.

Let M;(A) be given by the matrix (4.22) for those values of A # Ay, Ay, 1, and by
the corresponding formula (4.24) if A = Ay or A = A\, or A = 1. A similar definition is
given for M2 () using (4.21) and (4.23). The functions det M} (), det M2(-) need not be
continuous. However if we let
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Figure 3: Curve A = \; as a function of ¢.

( det M} ()

0 (wjk(A) — war(A))

det M} (N)

det M3 (A)

(Wi k(A) = w2k(A) (Wi (A) = war(N))

det M3(A)

(Wik(A) = w2k (X)) (W3 (A) = war(N))

([ (Wak(A) = wor(A) (w3 k(A) — wak(N))

’

’

A g A 1,
A=A,
A=Ay,
A=1,

(7.4)

with a similar definition for M¢(-), then these functions are continuous functions of A
and the critical loads or possible bifurcation points for the problem (3.5) for Blatz—Ko
type materials are given by the roots of M,;() (barrelling type) or Mg (-) (buckling type).

Note that the dependence of M (-), M;(-) on the mode index k£ comes through g.

Thus we let g to vary continuously on (0, 00) and let

Ma()‘a Qk) = Ml?()‘)a

MS()" Qk) = Ml:()‘)’
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We show in Figure (4) the zero contour plots for the surfaces M, (), q) (solid curve) and
M;(X, qx) (dotted curve), and the curve A = A, (dashed curve) in the (), ¢;) plane for
the case m = 13.3, R = 1 and values of ¢ = 1077, j = 4,5,6,7. Based on these figures

we can conjecture the following:

i) For any given € > 0 and L > 0, there are only a finite number of barrelling or
buckling type critical loads given by the intersections of the vertical lines ¢, = k7 /L,
k=1,2,..., with the contour curves.

ii) As € N\ 0, the number of barrelling or buckling type critical loads increases.

iii) As e\, 0, both contour curves of buckling and barrelling type, become horizontally
asymptotical to the line A\ = A\, where A\ is the value at which the complementing
condition for the problem with ¢ = 0 is violated®, cf. [24].

€=0.0001 e=1e-005
0.8
0.6
< e
0.4}
0.2
50 100 150 200 50 100 150 200
L%
e=1e-007
0.8
0.6
< L ScS~—
0.4
0.2 1 0.2
50 100 150 200 50 100 150 200
O R

Figure 4: Zero contour plots for the surfaces M, (), ;) (solid curve) and M, (), ;) (dotted
curve), and the curve A = A\, (dashed curve) as functions of g, for the case m = 13.3,
R =1 and values of ¢ = 1077, j = 4,5,6, 7.

In Simpson and Spector [24] it is shown that equation (4.33) and the corresponding
one for buckling type deformations, has a unique solution which is simple for each mode

®Aoo = 0.5339 approximately for the Blatz—Ko type material with m = 13.3.
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q = kn/L, k=1,2,.... Welet A} and A\{ be the corresponding solutions of (4.33) and
the equation for buckling type solutions respectively. Using Proposition (4.4) and the
results in Simpson and Spector [24] we have the following:

Theorem 7.1. Let the material of the slab be given by (7.1) for e = 0. For any integer
k > 1 let A} and A\ be as above. Then there ezists € > 0 such that equations (4.25)
and (4.26) with q,. = kr /L, both have at least one solution A}, . and A}, . respectively for
each € € (0,ex]. Moreover if {n;} is such that n; — 0, n; € (0,e4] for all j, then the

corresponding sequences of solutions {)\Z nj} and {)\z nj} have subsequences converging

to A} and A} respectively.

Proof: Since Aj is a simple root of f*()\, qx) = 0, there exist 0 < A\ < Ay < 1 such
that (A1, gx) f*(A2, q) < 0. It follows from (7.3) that we can choose e;; > 0 such that
Ag < Ay forany e < g5 1. Thus f? assumes real values over the set {(\, gx) : A <A < Ao}
Moreover, since f2(-, qr) — f*(-, gx) uniformly as € — 0 over [\, Ao], it follows that there
exists g < ex,1 such that f5(Ay, qr)f5 (A2, qx) < 0 for 0 < € < g, Hence f3(\,qx) =0
has at least one solution A; . € (0,1] for any € € (0,&;]. The result on the convergence
to A; of the subsequence of solutions, follows as well from the uniform convergence of
{f(-,qr)} to f*(-,qx) and the fact that A} is the only solution of f*(\,qz) = 0. The
corresponding result for (4.26) can be shown similarly. O

Remark 7.2. In general we can not conclude that the root A} . of f2(\, qr) = 0 predicted
by the theorem, is simple (or even unique). This is an important condition for the analysis
of local bifurcation. Our numerical results for the case m = 13.3 of (7.1) together with
Proposition (4.7) show that for this particular case, the buckling—type roots are indeed
simple and those of barrelling-type are generically simple, for ¢ small enough.

Remark 7.3. The numerical results described in (i)-(iii) above indicate that the sequence
{ex} in the theorem tends to zero as k — oo.

8 Final Remarks

We have noticed that in the context of elasticity there is a recurrent relation between
violation of the complementing condition and bifurcation that has not yet been study in
depth. In elasticity and many other areas of applications, the problems under consider-
ation often can be written abstractly as

G(A\,u)=0, X\ €(0,00),

where u denotes the displacement from the corresponding trivial solution, A is some
physical parameter, and G is a differentiable nonlinear operator between appropriate
Banach spaces with G(A,0) = 0. Recall that a necessary condition for bifurcation at
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A = )\, is that the linearized problem G,(),,0) v = 0 has nontrivial solutions v. We
have observed for some boundary value problems (eg. [24], [18], [12], and [19]) that if
A is an accumulation point of {A : G4(A,0) - v = 0 has nontrivial solutions}, then the
linearized boundary value problem G,(\.,0)-v = 0 fails to satisfy the complementing
condition, cf. Section 5 above. This implies that if (A,) is a sequence of values of the
parameter A in a compact interval, such that for each n, G(A,u) = 0 has a branch
of nontrivial solutions bifurcating from (\,,0), then those branches locally accumulate
at points where the linearized problem fails to satisfy the complementing condition.
This is actually consistent with previous physical interpretations of the complementing
condition as associated with oscillatory instabilities at the boundary, but it may also
suggest a limitation in the theory of elasticity based on first order gradients to model
such phenomena.

We showed, in Section 5 above, that the corresponding linearization along the trivial
solution of the problem studied in this paper satisfies the complementing condition for
all values of A\ > 0. Hence, we expect that there exists only a finite number of possible
bifurcation points, (A, 0), with A € [0, 1]. Indeed, our numerical results for Blatz—Ko type
materials, cf. Section 7, indicate that when a quadratic second—gradient term is added
to the stored—energy function, there are only a finite number of possible bifurcation
points in the interval A € [0,1]. Furthermore, we observed that for this example the
number of possible bifurcation points, (A, 0), were A € [0, 1], increases monotonically
as ¢ — 0 and they accumulate precisely at a point ()., 0) at which the complementing
condition condition for the problem with ¢ = 0 fails along the trivial solution branch,
cf. [22]. Therefore, our analysis provides more evidence that suggests that failure of
the complementing condition induces the existence of an infinite number of bifurcating
branches accumulating at the value of the parameter A\ at which the complementing
condition fails.

In general it would be interesting to study and clarify the relationship between bi-
furcating branches of nontrivial solutions and violation of the complementing condition
in the context of more general boundary value problems. For example, it would be in-
teresting to study the following: if A\, is a value of A at which the linearized boundary
value problem fails to satisfy the complementing condition, is it true that there exists an
infinite sequence of bifurcation points that accumulates at A\.? We shall pursue these
questions in a future work.

Our analysis of this problem also indicates that for higher order gradient models
the functional analytic aspects are greatly simplified due to the non-violation of the
complementing condition. This has implications for a global analysis that we shall explore
in a forthcoming paper. However the verification of the conditions for local bifurcation
becomes extremely difficult due to the complexity of the corresponding characteristic
equations (4.25) and (4.26).

The problem of the convergence of the local branches of nontrivial solutions as e — 0
remains as a major open problem. The solution of this problems would require certain
apriori estimates on the solutions of (3.3) uniform in . However there are serious tech-
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nical difficulties in obtaining such estimates due to the singular limit in equations (3.3)
as ¢ — 0, where the operator for £ > 0 is of fourth order while that for the problem with
e = 0 is of second order.
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