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tIn this paper we 
arry a derivation of the equilibrium equations of two dimen-sional nonlinear elasti
ity with an added se
ond{gradient term proportional to asmall parameter " > 0. These equations are given by a fourth order semilinear sys-tem of pde's. We dis
uss di�erent types of possible boundary 
onditions for theseequations. We then spe
ialize the equations to a re
tangular slab and study the lin-earized problem about a homogenous deformation. We show that these equationsadmit solutions representable as Fourier series in one of the independent variables.Furthermore we obtain the 
hara
teristi
 equation for the eigenvalues (possible bi-fur
ation points) for the linear problem and derive asymptoti
 representations forthis equation for small ". We used these expressions to show that in the limit as"! 0 the 
hara
teristi
 equation for " > 0 
onverges uniformly (in 
ertain regionsof the parameter spa
e) to the 
orresponding 
hara
teristi
 equation for " = 0.When the base material (" = 0) is that of a Blatz{Ko type, we get 
onditions for�emontes�
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the existen
e of eigenvalues of the linear problem with " > 0 and small. Our nu-meri
al results in this 
ase indi
ate that the number of bifur
ation points is �nitewhen " > 0 and that this number monotoni
ally in
reases as "! 0. For the prob-lem with " > 0 we get 
onditions for the existen
e of lo
al bran
hes of non{trivialsolutions.1 Introdu
tionFor many years one of the most diÆ
ult open problems of non{linear elasti
ity theoryhas been the use of global 
ontinuation methods (via degree theory) to study the gov-erning quasilinear systems of partial di�erential equations of three{dimensional models,
f. Antman in [3℄. Results along these lines for the displa
ement equations of equi-librium, together with boundary tra
tion and displa
ements, were re
ently obtained byHealey and Simpson in [14℄. Their approa
h is based upon the 
onstru
tion of a degreewhi
h has the same important properties of the 
lassi
al Leray{S
hauder degree. Thesenew methods make it possible, for the �rst time, to study global bifur
ation problemsin non{linear three{dimensional elasti
ity that are not redu
ible to ordinary di�erentialequations.At the level of generality of [14℄, the behavior of the global solution bran
hes would be
hara
terized, in addition to the two Rabinowitz alternatives, 
f. [20℄, by the possibilitythat they terminate due to loss of lo
al inje
tivity; and/or ellipti
ity; and/or the failure ofthe 
omplementing 
ondition. The 
omplementing 
ondition is an algebrai
 
ompatibilityrequirement between the prin
ipal part of a linear ellipti
 di�erential operator and theprin
ipal part of the 
orresponding boundary 
onditions (
f. [2℄, [25℄, [26℄, and referen
estherein). In the 
ontext of the linearized boundary value problems of elasti
ity, violationsof the 
omplementing 
ondition have been asso
iated to surfa
e wrinkling. Failure of lo
alinje
tivity and ellipti
ity 
an be ruled out by imposing physi
ally reasonable 
onstitutiveassumptions. (See e.g. [13℄.) However, the 
omplementing 
ondition 
an not be enfor
edas a 
onstitutive assumption on the stored energy fun
tion in the 
ontext of elasti
itybe
ause that would rule out many interesting materials. In addition the 
omplementing
ondition, being a 
ondition on the linearized boundary value problem, also depends onthe solution at whi
h the problem is linearized. In general, we do not have an expli
itlinearization at a non-trivial solution, hen
e we 
annot 
he
k the 
omplementing 
ondi-tion dire
tly along those bran
hes. We refer here to the works in [12℄, [22℄, [18℄, and [19℄where the 
omplementing 
ondition is violated at least on
e along the trivial solutionbran
h for Green-Hadamard type materials and for in
ompressible materials in [19℄. Itis obvious that the trivial solution bran
h, whi
h is expli
itly known, does not \stop" atpla
es where the 
omplementing 
ondition fails. This suggests that a bran
h of nontrivialsolutions does not ne
essarily stops at pla
es where the 
omplementing 
ondition fails.But, if we globally follow a nontrivial solution bran
h we have no way to a priori rule outfailure of the 
omplementing 
ondition for tra
tion boundary 
onditions within the 
on-text of the 
lassi
al theory of elasti
 materials. When the 
omplementing 
ondition fails2



the global 
ontinuation method developed by Healey and Simpson 
annot be applied,but that, by itself, does not ne
essarily implies that the global bran
h a
tually stops. Itmay very well 
ontinue, as the trivial solution bran
h does in the problems mentionedabove.One simple way to over
ome the failure of the 
omplementing 
ondition, 
f. the \Con-
luding Remarks" in [12℄, is to add to the stored energy fun
tion a term quadrati
 in these
ond order gradient of the deformation and proportional to a small parameter " > 0(
f. (2.1)). In the 
ontext of 3D nonlinear elasti
ity this would give us a semilinear fourthorder system of equations for the equilibrium 
on�gurations in whi
h the 
orrespondinglinearized problem never violates the 
omplementing 
ondition. In this paper we studythe lo
al bifur
ation of equilibrium 
on�gurations for deformations of a re
tangular slabbut with the stored energy fun
tion modi�ed as above. Our idea is to 
onsider the prob-lem with the added higher order gradient term as a singular perturbation of the problemstudied by Simpson and Spe
tor in [22℄.The problem of bars under uniaxial 
ompression have been studied among others by[8℄ and [9℄ (linearized equations for 2d and 3d problem), [22℄ with a lo
al bifur
ationanalysis for the 2d nonlinear problem, [23℄ and [24℄ with a linear analysis in
ludingstability results for the 3d problem, for Green{Hadamard and Blatz{Ko type materialsrespe
tively. In [12℄ a rigorous lo
al and global analysis is given for axisymmetri
 typesolutions for the 3d problem of a 
ylindri
al 
olumn under uniaxial 
ompression.Higher gradient models have been proposed by several authors to 
onsider next neigh-bor intera
tion, to introdu
e length s
ale in the theory of elasti
ity, to study boundaryphenomena, and have been studied extensively in the 
ontext of phase transitions, 
f.[11℄, [16℄, [17℄, [27℄, [29℄, and referen
es therein. But to the best of our knowledgethe only works with a rigorous global analysis are [11℄ for for
ed phase transitions inone{dimensional shape memory models, and [16℄ with results on global 
ontinuation innonlinear three dimensional elasti
ity.Although the non-violation of the 
omplementing 
ondition simpli�es the global studyfrom a fun
tional analyti
 point of view, it 
ompli
ates 
onsiderably the solution of thelinearized problem, and the veri�
ation of the hypothesis for the lo
al bifur
ation analysis.It seems to be impossible to verify these hypotheses in general! For example, for the twodimensional problem 
onsidered in this paper with a quadrati
 higher order term inthe stored energy fun
tion, the 
orresponding 
hara
teristi
 equation (
f. (4.25), (4.26))whose roots give the possible bifur
ation points, is given by a determinant with 36 highlynonlinear terms to be a

ounted for. Even for a generalized Blatz{Ko type material,whi
h has a relatively simple stored energy fun
tion, 
f. (7.1), we are for
ed to verifynumeri
ally some of the hypotheses for the linear analysis.In Se
tion (2) we 
arry a derivation of the equations of two{dimensional nonlinear elas-ti
ity with an added se
ond{gradient term. These equations are given by a fourth ordersemi{linear system of pde's. We dis
uss di�erent types of possible boundary 
onditionsfor these equations. In Se
tion (3) we then spe
ialize these equations to a re
tangularslab. By extending the domain periodi
ally along the y, we are able to re
ast our bound-3



ary value problem (
f. (3.3)) as an operator equation between suitable Bana
h spa
es.We then exploit some of the hidden symmetries in the Piola{Kir
hho� stress tensor toshow that the resulting equation is equivalent to the original problem. We establish theFr�e
het di�erentiability of the 
orresponding operator and 
hara
terize its linearization.In Se
tion (4) we study the linearized problem about the trivial homogenous deforma-tion (
f. (3.7)). We show that these equations admit solutions representable as Fourierseries in one of the independent variables. Furthermore we obtain the 
hara
teristi
 equa-tion for the eigenvalues (possible bifur
ation points) for the linear problem. The resultingeigenfun
tions 
an be 
lassi�ed a

ording to their symmetry, or la
k of it, as of barrellingor bu
kling type respe
tively. We obtain asymptoti
 representations as " & 0 for the
hara
teristi
 equations with the other variables �xed, and used these to show that inthe limit as "& 0 both 
hara
teristi
 equations of bu
kling and barrelling type 
onvergeuniformly (in regions in whi
h � is bounded away from zero) to the 
orresponding 
har-a
teristi
 equations in [22℄. For 
ompleteness of the presentation, we show in Se
tion(5) that the linearization of our boundary value problem about the trivial homogeneoussolution satis�es the 
omplementing 
ondition for all values of � > 0 whenever " > 0.In Se
tion (6) we establish 
onditions that guarantee the existen
e of bran
hes ofnontrivial solutions to our boundary value problem bifur
ating lo
ally from the trivialbran
h. The presentation in this se
tion is greatly simpli�ed as 
ompared to that ofthe usual mixed tra
tion{displa
ement boundary value problem of nonlinear elasti
ity,be
ause by the presen
e of the se
ond order gradient term in the stored energy fun
tion,our operator automati
ally satis�es both the strong ellipti
ity and the 
omplementing
onditions. These imply that 
ertain spe
tral and apriori estimates on solutions of thelinearization of our boundary value problem hold, whi
h in turn imply that the linearizedoperator is Fredholm of index zero. Thus we get existen
e of lo
al bifur
ation from asimple eigenvalue satisfying the so 
alled 
rossing 
ondition. We then show that this
rossing 
ondition is equivalent to the eigenvalue being a simple root of the 
orresponding
hara
teristi
 equation. This result is established by generalizing the proof in [22℄ (seealso [12℄) to a

ount for the added se
ond order gradient term in the stored energyfun
tion.In se
tion (7) we 
onsider, as an example, Blatz-Ko type materials. Even for thissimple material, we are for
ed to do numeri
al studies to partially 
he
k some of thehypothesis of the lo
al bifur
ation analysis made in general in the previous se
tions. Ouranalysis suggests that when the higher order gradient term is present, i.e. " > 0 , forthis material the problem admits only a �nite number of possible bifur
ation points for� 2 (0; 1℄, and that this number of possible bifur
ation points monotoni
ally in
reasesas " approa
hes zero, a

umulating pre
isely at the value of � for whi
h the linearizedproblem for the 
ase " = 0 fails to satisfy the 
omplementing 
ondition.
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1.1 NotationThe Einstein summation 
onvention is used for repeated latin indi
es. The dyadi
 produ
tof two ve
tors a;b 2 Rn is denoted by ab and is de�ned by ab = aibjeiej, where a = aiei,et
., with respe
t to a �xed (
onstant) orthonormal basis e1; : : : ; en. For any se
ond ordertensor A and ve
tor a we write A � a = Aijajei and a �A = Aijaiej where A = Aijeiej.For any given two se
ond order tensors we write A �B = AikBkjeiej for the produ
t or
omposition of the tensors. The inner produ
t of two ve
tors is de�ned by a � b = aibiand that of two se
ond order tensors by A : B = AijBij = tra
e (At �B). If A and B arese
ond and third order tensors respe
tively, then A k: B denotes the result of 
ontra
tingthe dyadi
 produ
t AB on all indexes in B ex
ept the k{th. For exampleA 2: B = AijBikjek:We use the following notation for partial derivatives of s
alar valued fun
tions:f;j = �f�xj ; f;ij = �2f�xj�xi ; et
.:Now with f = (f1; : : : ; fn) we have thatrf = fi;jeiej; div f = r � f = fi;i:For a se
ond order tensor A we have thatrA = Aij;keiejek; divA = r �A = Aij;jei:For a third order tensor B we have thatrB = Bijk;leiejekel; divB = r �B = Bijk;keiej:It follows now thatr2f = fi;jkeiejek ; r3f = fi;jkleiejekel; r � r2f = �(fi;j)eiej:If n is the outer unit normal to the surfa
e S, we de�ne the surfa
e gradient andsurfa
e divergen
e respe
tively of the ve
tor �eld f by (see [6℄):rsf = (I� nn) � rf t ; rs � f = (I� nn) : rf : (1.1)We let Lin denote the spa
e of all linear transformations from Rn into Rn and writeLin+ = fH 2 Lin : detH > 0g ;where det denotes the determinant.The S
hauder spa
e Cm;�(
) denotes the Bana
h spa
e of fun
tions with up to m
ontinuous derivatives in 
 with the derivatives of order m satisfying a H�older 
onditionwith exponent �. The norm in Cm;�(
) is denoted by k�km;�;
.If G : (x;y) � X � Y ! Z is a mapping between the Bana
h spa
es X ;Y;Z, thenGx; Gy; Gxy. et
., denote the 
orresponding (partial) Fr�e
het derivatives of G.5



2 Formulation of the Governing EquationsIn this se
tion we out 
arry a derivation of the equations of equilibrium for nonlinearelasti
ity with an added se
ond order gradient term to the stored energy fun
tion. Formore general derivations see [16℄ and [17℄. In [16℄ there are as well results 
on
erningglobal 
ontinuation for these problems in the 
ontext of three dimensional elasti
ity.We 
onsider a body that, for 
onvenien
e, we identify with the region B that ito

upies in a �xed referen
e 
on�guration in Rn . A deformation f of the body is amember of the spa
e Def = �f 2 C4(B;Rn) : detrf > 0	 :Let Ŵ (F;G) = W (F) + "2G...G; (2.1)where F, G are se
ond and third order tensors respe
tively, the triple dots ... denote theinner produ
t of third order tensors, and W : Lin+ ! R. Now the total energy due tothe deformation f : B ! Rn is given by:E(f) = ZB Ŵ (rf ;r2f) dx:The derivatives S(F) = ddFW (F); C(F) = d2dF2W (F); (2.2)are the usual (Piola{Kir
hho�) stress and elasti
ity tensors, respe
tively, when " = 0.We assume that C(F) is strongly ellipti
, i.e. thatab : C(F)[ab℄ > 0; (2.3)for all a;b 2 R2n f0g and all F 2 Lin+.If v is any smooth admissible variation, we have thatdd�E(f + �v)�����=0 = dd� ZB �W (rf + �rv)+"2(r2f + �r2v)...(r2f + �r2v)� dx�����=0= ZB �S(rf) : rv + "r2f ...r2v� dx:Integrating by parts on
e we get thatZB S(rf) : rv dx = Z�B (S(rf) � n) � v ds� ZB (divS(rf)) � v dx;6



where n is the outer unit normal to �B. Also integrating by parts twi
e we get thatZBr2f ...r2v dx = Z�B(r2f � n) : rv ds� Z�B(�(rf) � n) � v ds+ ZB(�2f) � v dx;where �2f = (�2fi)ei and �(rf) = (�fi;j)eiej. Combining all of these results we getthatdd�E(f + �v)�����=0 = ZB �"�2f � divS(rf)� � v dx+ Z�B "(r2f � n) : rv ds + Z�B (S(rf) � n� "�(rf) � n) � v ds:We now work with the se
ond term of the right hand side of this expression. We 
anwrite rvt = nn � rvt + (I� nn) � rvt:Hen
e (r2f � n) : rv = (r2f � n)t : rvt= (r2f � n)t : (nn � rvt) + (r2f � n)t : [(I� nn) � rvt℄= (r2f � n)t : (nn � rvt) + (r2f t � n) : [(I� nn) � rvt℄; (2.4)where the transposition in r2f is done with respe
t to its �rst two indexes. But(r2f � n)t : (nn � rvt) = (r2f : nn) �Dv;where Dv = rv � n ; r2f : nn � (r2f � n) � n = r2f 1: nn:To simplify the se
ond term in (2.4) we use the following identity.Lemma 2.1. For any two se
ond order tensor �elds A;B and ve
tor �eld v, we havethat A : (B � rvt) = B : r(A � v)� v � (B 2: rA):Proof : With A = Aijeiej ; B = Blkelek ; rv = vp;qepeq;we have thatA : (B � rvt) = (Aijeiej) : (Blpvq;p eleq) = AlqBlpvq;p = Blp(Alqvq;p):Using the identity (Alqvq);p = Alq;pvq + Alqvq;p;7



we have that A : (B � rvt) = Blp(Alqvq);p � BlpAlq;pvq= Blp(A � v)l;p � vq(BlpAlq;p)= B : r(A � v)� v � (B 2: rA):Taking A = (r2f t � n) and B = I� nn in this lemma, we get that(r2f t � n) : [(I� nn) � rvt℄ = (I� nn) : r((r2f t � n) � v)�v � ((I� nn) 2: r(r2f t � n))= rs � ((r2f t � n) � v)� v � ((I� nn) 1: r(r2f � n))= rs � ((r2f t � n) � v)� v � ( 1rs �(r2f � n));where we have used the operators de�ned by (1.1) and introdu
ed the notation1rs �(r2f � n) = (I� nn) 1: r(r2f � n):Using the surfa
e divergen
e theorem [6℄, sin
e the surfa
e �B is 
losed, we get now thatZ�Brs � ((r2f t � n) � v) ds = Z�B(rs � n)n � ((r2f t � n) � v) ds= Z�B(rs � n)(r2f : nn) � v ds:We now have thatdd�E(f + �v)�����=0 = ZB �"�2f � divS(rf)� � v dx + Z�B "(r2f : nn) �Dv ds+ Z�B �(S(rf) � n� "�(rf) � n� " 1rs �(r2f � n)+ "(rs � n)(r2f : nn)� � v ds:Sin
e this has to vanish for any admissible variation v, we have that the following musthold: "�2f � divS(rf) = 0 ; in B: (2.5)As for the boundary 
onditions, they will depend on whether or not we spe
ify either orboth of f or Df on �B. For example if neither is spe
i�ed on �B, thenS(rf) � n� "�(rf) � n� " 1rs �(r2f � n)+"(rs � n)(r2f : nn) = 0 ; on �B;"r2f : nn = 0 ; on �B:8



If f = g on �B but Df is not spe
i�ed, we have thatf = g ; "r2f : nn = 0 ; on �B:If f is not spe
i�ed but Df = h on �B, then we have thatS(rf) � n� "�(rf) � n� " 1rs �(r2f � n)+"(rs � n)(r2f : nn) = 0 ; on �B;Df = h ; on �B:We 
ould as well spe
ify 
omponents of f or Df in the normal and tangent dire
tions to�B. For example, if f � n and Df � t are spe
i�ed, where t is any ve
tor tangent to �B,then the boundary 
onditions are given byt � �S(rf) � n� "�(rf) � n� " 1rs �(r2f � n)+ "(rs � n)(r2f : nn)� = 0 ; on �B;f � n = g ; Df � t = h ; (r2f : nn) � n = 0 ; on �B:Further, we 
an have �B be the union of sub{boundaries on ea
h of whi
h we 
an spe
ifyany 
ombination of f , Df , or any of its normal or tangential 
omponents.3 The Equations for a Re
tangular SlabWe now spe
ialize to the 
ase in whi
h B � R2 is a re
tangular slab. Thus we letB = f(x; y) : �R < x < R ; 0 < y < Lg : (3.1)We write �B = Ct [ Cb [ L whereCt = f(x; y) : �R � x � R ; y = Lg ; (3.2a)Cb = f(x; y) : �R � x � R ; y = 0g ; (3.2b)L = f(x; y) : x = �R ; 0 � y � Lg : (3.2
)
9
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Figure 1: Possible deformations of a re
tangular slab, 
ompressed along its verti
al axis,of either barrelling or bu
kling type.We 
onsider the spe
ial 
ase of the boundary value problem of the previous se
tion for adeformation f = (f1; f2) of B in whi
h we spe
ify1 f � n and Df � t on Ct [ Cb:"�2f � divS(rf) = 0 ; in B; (3.3a)S(rf) � n� "�(rf) � n� " 1rs �(r2f � n) = 0 ; on L; (3.3b)"r2f : nn = 0 ; on L; (3.3
)t � �S(rf) � n� "�(rf) � n� " 1rs �(r2f � n)� = 0 ; on Ct [ Cb; (3.3d)f2 = 0 ; on Cb ; f2 = �L ; on Ct; (3.3e)Df � t = 0 ; " �r2f : nn� � n = 0 ; on Ct [ Cb; (3.3f)where t � n = 0, and � 2 [0;1) � R. Sin
e n is 
onstant on ea
h of Ct; Cb;L, we havethat rs � n = 0 on ea
h of them. (See Figure (1).)In order to eliminate trivial nonuniqueness of solutions due to translations, we imposethe following additional 
ondition: ZB f1 dx = 0: (3.4)1The slab is 
ompressed along the y{axis by a fa
tor of � with the top and bottom free to slide alongthe x dire
tion. 10



Note that on Ct [ Cb we have that n = �e2, and that n = �e1 on L. Thus withS = Sijeiej, i; j = 1; 2, we have that the boundary value problem (3.3) redu
es to:"�2(fi)� Si1;1 � Si2;2 = 0 ; in B ; i = 1; 2; (3.5a)S11 � "�(f1;1)� "f1;212 = 0 ; on L (3.5b)S21 � "�(f2;1)� "f2;212 = 0 ; on L; (3.5
)"f1;11 = 0 ; "f2;11 = 0 ; on L; (3.5d)S12 � "f1;222 = 0 ; on Ct [ Cb; (3.5e)f1;2 = 0 ; "f2;22 = 0 ; on Ct [ Cb; (3.5f)f2 = 0 ; on Cb ; f2 = �L ; on Ct; (3.5g)where the argument of Sij and Sij;k is rf .We assume that the fun
tion W : Lin+ ! R whi
h 
orresponds to the stored energyfun
tion (2.1) with " = 0, satis�es the usual frame{indi�eren
e and isotropy 
onditionsof nonlinearly elasti
ity. In that 
ase it is well known (see e.g. [10℄, [28℄) that there existsa fun
tion � : R+ � R+ ! R su
h thatW (F) = ��12F : F; detF� ; F 2 Lin+: (3.6)We assume � is of 
lass Cm, m � 5. Under the same 
onditions as for the 
ase where" = 0, one 
an 
he
k now that2 f�(x) = (�(�)x; �y); (3.7)is a solution of (3.5) where �(�) is the unique solution (see [22℄) of the equation:�(�)�; 1 + ��; 2 = 0; (3.8)with �; i = �; i (12(�2 + �2); ��), i = 1; 2.In order to re
ast our boundary value problem (3.3) as an operator equation betweensuitable spa
es, we �rst extend the domain B periodi
ally along the y dire
tion. Thenwe exploit some of the hidden symmetries in the Piola{Kir
hho� stress tensor to showthat the resulting equation is equivalent to the original problem. Thus we letB1 = f(x; y) : �R < x < R; �1 < y <1g : (3.9)For any deformation f = (f1; f2) we writeu = f � f�; (3.10)where f� is given by (3.7). Thus u = (u1; u2) is the displa
ement ve
tor. We impose thefollowing even{odd 
ondition on the 
omponents of u:u1(x; y) = u1(x;�y); u2(x;�y) = �u2(x; y): (3.11)2The subs
ript � here does not denote partial di�erentiation.11



We de�ne the following spa
es of fun
tions:Z = �u 2 C4;�(B1;R2) : u is 2L periodi
 in y and satisfy (3.4), (3.11) and;"r2u : nn = 0 on �B1	 ; (3.12)Y0 = �v 2 C0;�(B1;R2) : v is 2L periodi
 in y and satisfy (3.11)	 ; (3.13)Y1 = �w 2 C1;�(�B1;R2) : w is 2L periodi
 in y and satisfy (3.11)	 ; (3.14)Y = Y0 � Y1; (3.15)with 
orresponding norms:k�kZ = k�k4;�;B ; k�kY = k�k0;�;B + k�k1;�;�B :We de�ne now U = f(�;u) 2 (0;1)�Z : det(rf� +ru) > 0g ; (3.16)and the operator G : U ! Y by:G(�;u) = ("�2u� divS(rf� +ru); B(�;u)); (3.17)where B(�;u) = S(rf� +ru) � n� "�(ru) � n� " 1rs �(r2u � n): (3.18)We now 
an prove the following:Proposition 3.1. Let u be any solution of the operator equationG(�;u) = 0: (3.19)Then f = f� + u with u restri
ted to B, is a solution of the boundary value problem(3.3). On the other hand, if f is a solution of (3.3), then u = f � f� 
an be extendedperiodi
ally in y to a solution of (3.19).Proof : First we observe that an easy 
omputation using (2.2)1, (3.6), and (3.7), showsthat S12(rf� +ru) = [S(rf� +ru)e2℄ � e1 = �;1u1;2 � �;2u2;1 :>From (3.5g) we have that u2;1 = 0 on Ct [ Cb , and from strong ellipti
ity, 
f. (2.3), it
an be dedu
ed that, 
f. [22℄, �;1 > 0. Hen
e, for any fun
tion u satisfying u1;2 = 0 onCt [ Cb, the 
ondition (3.5e):S12(rf� +ru)� "u1;222 = 0; on Ct [ Cb;is equivalent to u1;222 = 0 on Ct [ Cb.Thus 
learly, if u is a solution of (3.19), then the even{odd 
onditions (3.11) and theperiodi
ity in the y dire
tion imply that u2 = u1;222 = 0 on Ct[Cb and that the boundary
ondition (3.5f) is satis�ed. Hen
e f = f� + u is a solution of (3.3)12



On the other hand if f is a solution of (3.3) or equivalently (3.5), then with u = f� f�and by the observation made above, (3.5e) is equivalent to u1;222 = 0 on Ct [ Cb. Thistogether with the boundary 
onditions (3.5f) and (3.5g) allow us to extend u periodi
allyin y a

ording to (3.11) to a solution of (3.19).A simple modi�
ation of the results in Valent [30℄, due to the unboundedness of B1,allows us to get the following:Proposition 3.2. The fun
tion G : U ! Y is of 
lass C2 andGu(�;u)[h℄ = ("�2h� divC(rf� +ru)[rh℄; Bu(�;u)[h℄); (3.20a)Gu�(�;u)[h℄ = ��div dCdF (rf� +ru)[rh;rf 0�℄;�dCdF (rf� +ru)[rh;rf 0�℄� � n� ; (3.20b)where f 0� = df�=d� andBu(�;u)[h℄ = C(rf� +ru)[rh℄ � n� "�(rh) � n�" 1rs �(r2h � n):4 The Linearized ProblemSin
e (3.7) is a solution of (3.5), we have that for the operator (3.17),G(�; 0) = 0; � � 0:We look for nontrivial solutions of (3.19) bifur
ating from the trivial bran
h f(�; 0) : � � 0g.For this we need to study the linearized problem about the trivial bran
h whi
h by Propo-sition (3.2) is given by:L(�)[h℄ � Gu(�; 0) = ("�2h� divC(rf�)[rh℄; Bu(�; 0)[h℄) = 0; h 2 Z: (4.1)In parti
ular, we need to determine, for whi
h values of �, this boundary value problemhas nontrivial solutions h.An elementary but otherwise lengthy 
omputation shows that the boundary valueproblem (4.1) is equivalent to:" (u1;1111 + 2u1;1122 + u1;2222)�Ku1;11 � Pu1;22 �Mu2;12 = 0; in B; (4.2a)" (u2;1111 + 2u2;1122 + u2;2222)� Pu2;11 �Qu2;22 �Mu1;12 = 0; in B; (4.2b)"u1;11 = 0; Ku1;1 +Nu2;2 � " (u1;111 + 2u1;122) = 0; on L; (4.2
)"u2;11 = 0; Pu2;1 + (M �N)u1;2 � " (u2;111 + 2u2;122) = 0; on L; (4.2d)u1;2 = 0; "u1;222 = 0; u2 = 0; "u2;22 = 0; on Ct [ Cb; (4.2e)13



where we have written h = (u1; u2),K = �; 1 +P2i;j=1 �; ij �i�j; N = �; 2 +P2i;j=1 �; ij �i�j; (4.3a)Q = �; 1 +P2i;j=1 �; ij �i�j; M = N � �; 2 ; P = �; 1 ; (4.3b)and �1 = �(�), �2 = �, �1 = �, �2 = �(�). One 
an show (see [23℄) that the elasti
itytensor C(rf�) (
.f. (2.2)) satis�es the strong ellipti
ity 
ondition:ab : C(rf�)[ab℄ > 0; 8 a;b 2 R2n f0g ;if and only if K > 0; P > 0; Q > 0; P + (KQ)1=2 > jM j :By a proof very similar to that of Proposition (4.2) in [23℄, we get that any (u1; u2) 2C4([�R;R℄ � [0; L℄) satisfying (4.2a){(4.2b) and the boundary 
onditions (4.2e) musthave a Fourier series representation of the form3:u1(x; y) = 1Xk=1 ak(x) 
os(qky); u2(x; y) = 1Xk=1 bk(x) sin(qky); (4.4)where qk = k�=L and both of these series 
onverge uniformly in [�R;R℄� [0; L℄.If we multiply (4.2a) and the se
ond equation in (4.2
) by 
os(qky), (4.2b) and these
ond equation in (4.2d) by sin(qky), and 
arry the required integration by parts usingthe remaining boundary 
onditions, then we get that ak; bk are solutions of the boundaryvalue problem:"a(4)k (x)� (2"q2k +K)a00k(x) + ("q4k + Pq2k)ak(x)�Mqkb0k(x) = 0; (4.5a)"b(4)k (x)� (2"q2k + P )b00k(x) + ("q4k +Qq2k)bk(x) +Mqka0k(x) = 0; (4.5b)�R < x < R, with"a00k(�R) = 0; (2"q2k +K)a0k(�R)� "a000k (�R) +Nqkbk(�R) = 0; (4.6a)"b00k(�R) = 0; (2"q2k + P )b0k(�R)� "b000k (�R)� (M �N)qkak(�R) = 0; (4.6b)The solutions of this boundary value problem are 
hara
terized by the roots of the fol-lowing polynomial equation:"2r8 � "(Bk +Dk)r6 + (BkDk � "(Ak + Ck))r4+ (DkAk + E2k +BkCk)r2 + CkAk = 0; (4.7)where Ak = �("q4k + Pq2k); Bk = 2"q2k +K; Ck = �("q4k +Qq2k); (4.8)Dk = 2"q2k + P; Ek =Mqk: (4.9)3One 
an show that the 
ondition (3.4) and the se
ond boundary 
ondition in (4.2
) imply that a0(x)must be identi
ally zero in the series for u1 in (4.4).14



With the substitution $ = r2 this redu
es to:"2$4 � "(Bk +Dk)$3 + (BkDk � "(Ak + Ck))$2+ (DkAk + E2k +BkCk)$ + CkAk = 0: (4.10)We have now the following:Lemma 4.1. For " suÆ
iently small the equation (4.10) has four roots (
ounting multi-pli
ity) with positive real part.Proof : When " = 0 the above equation redu
es to:KP$2 + (M2 � P 2 �KQ)q2k$ + PQq4k = 0; (4.11)with roots $1(0); $2(0) with positive real parts. (See Simpson and Spe
tor [22℄.) Weseek now solutions of (4.10) of the form$j(") = 1Xl=0 $(l)j (0) "ll! ; j = 1; 2: (4.12)If we substitute $j(") into (4.10), di�erentiate with respe
t to " on
e and then set " = 0,we �nd that$0j(0) = �2KP$j(0) + (M2 � P 2 �KQ)q2k��1 � �(K + P )$3j (0)�(3P + 2K +Q)q2k$2j (0) + (3P + 2Q+K)q4k$j(0)� (P +Q)q6k� ;(4.13)for j = 1; 2. Similarly we 
an 
ompute higher order derivatives of $j("). If $3("); $4(")are the other two roots of (4.10), then using that$1(") +$2(") +$3(") +$4(") = Bk +Dk" ;$1(")$2(")$3(")$3(") = AkCk"2 ;we �nd that2"$3(") = Bk +Dk � "($1(") +$2("))+ �(Bk +Dk � "($1(") +$2(")))2 � 4 AkCk$1(")$2(")�1=2 ; (4.14)with a similar expression for $4(") with a minus in front of the bra
keted square root.Sin
e Bk +Dk = K + P > 0 when " = 0, we 
an use this and the fa
t that $1(0); $2(0)have positive real parts, to get the result.Note that Ak; Bk; : : : through K;P;Q, and M , are fun
tions of �. Thus the roots inthe previous lemma are fun
tion of � as well. We then have:15



Corollary 4.2. The roots of equation (4.7) are given by �!1;k(�; "); �!2;k(�; ");�!3;k(�; "); �!4;k(�; ") where the !'s have positive real part.Notation: To emphasize when some of the arguments �, ", or k are �xed, we will dropits dependen
e from !i;k(�; "). For example if we hold " �xed while � and k are variable,we write !i;k(�). On the other hand if � and k are �xed while " is variable, we write!i("), et
..If the f!i;k(�)g are all distin
t, then (4.5) has the eight linearly independent solutions:� ak;i(x)bk;i(x) � = � F (!i;k(�)) sinh(!i;k(�)x)
osh(!i;k(�)x) � ; i = 1; : : : ; 4; (4.15)� ak;i+4(x)bk;i+4(x) � = � F (!i;k(�)) 
osh(!i;k(�)x)sinh(!i;k(�)x) � ; i = 1; : : : ; 4; (4.16)where F (r) = Ekr"r4 �Bkr2 � Ak :If some of the f!i;k(�)g are equal, say !3;k(�) = !4;k(�) with the other two distin
t, then(4.5a){(4.5b) has the eight linearly independent solutions:� ak;i(x)bk;i(x) � = � F (!i;k(�)) sinh(!i;k(�)x)
osh(!i;k(�)x) � ; i = 1; 2; 3; (4.17)� ak;4(x)bk;4(x) � = � xF (!3;k(�)) 
osh(!3;k(�)x) + F 0(!3;k(�)) sinh(!3;k(�)x)x sinh(!3;k(�)x) � ; (4.18)� ak;i+4(x)bk;i+4(x) � = � F (!i;k(�)) 
osh(!i;k(�)x)sinh(!i;k(�)x) � ; i = 1; 2; 3; (4.19)� ak;8(x)bk;8(x) � = � xF (!3;k(�)) sinh(!3;k(�)x) + F 0(!3;k(�)) 
osh(!3;k(�)x)x 
osh(!3;k(�)x) � ; (4.20)The solutions (4.15) or (4.17) and (4.18), when substituted into (4.4) represents solutionsof the linearized problem of barrelling type, while those obtained from (4.16) or (4.19)and (4.20), are of bu
kling type.In the 
ase f!i;k(�)g are all distin
t, we de�ne the matri
es:Mak (�) = [wa(!1;k(�));wa(!2;k(�));wa(!3;k(�));wa(!4;k(�))℄ ; (4.21)M sk(�) = [ws(!1;k(�));ws(!2;k(�));ws(!3;k(�));ws(!4;k(�))℄ ; (4.22)wherewa(!) = �F (!)!2 
osh(!R); !2 sinh(!R);�(!) sinh(!R);�(!) 
osh(!R)�t ;ws(!) = �F (!)!2 sinh(!R); !2 
osh(!R);�(!) 
osh(!R);�(!) sinh(!R)�t ;�(!) = (Bk! � "!3)F (!) +Nqk;�(!) = Dk! � "!3 � (M �N)qkF (!):16



If !3;k(�) = !4;k(�) with the other two distin
t, then the 
orresponding matri
es aregiven by Mak (�) = [wa(!1;k(�));wa(!2;k(�));wa(!3;k(�));w0a(!3;k(�))℄ ; (4.23)M sk(�) = [ws(!1;k(�));ws(!2;k(�));ws(!3;k(�));w0s(!3;k(�))℄ ; ; (4.24)where w0s(!) = dws(!)d! ;et
.. Sin
e the general solution of (4.5) is given by a linear 
ombination of (4.15){(4.16)or (4.17){(4.20), it follows that (4.6) implies that (4.5){(4.6) has nontrivial solutions ifand only if detM sk(�) = 0; (4.25)or detMak (�) = 0: (4.26)We summarize our results in the following:Proposition 4.3. The boundary value problem (4.1) or equivalently (4.2) has nontrivialsolutions if and only if � is a root of either (4.25) or (4.26). The nontrivial solutionsare given by (4.4) where the sum is taken over all k's su
h that detM sk(�) = 0 with the
oeÆ
ients given by (4.15) or (4.17) and (4.18), and over all k's su
h that detMak (�) = 0with the 
oeÆ
ients given by (4.16) or (4.19) and (4.20).In the following dis
ussion we are going to �x the values of � and qk and study thelimiting behavior of (4.25) as "! 0+, the analysis for (4.26) been similar. From equation(4.14) we get that !i(") � 
ip"; "! 0+; i = 3; 4; (4.27)where 2
2i = K + P � �(K + P )2 � 4 PQq4k$1(0)$2(0)�1=2 ;= K + P � jK � P j :Thus 
23 = K; 
24 = P; or vi
eversa, if K � P 6= 0; (4.28a)
23 = 
24 = K + P; if K � P = 0: (4.28b)We 
onsider only the 
ase in whi
h K � P 6= 0. That of K � P = 0 would 
orrespondto a repeated root of (4.10), and (4.25) would have to be modi�ed with the matrix in(4.24). Using (4.27) and the identity("r4 �Bkr2 � Ak)("r4 �Dkr2 � Ck) + E2kr2 = 0;17



whi
h holds for any of the roots r in Corollary (4.2), one 
an show now that the followingasymptoti
 estimates hold:F (!3(")) = O("�1=2); �(!3(")) = O(1); �(!3(")) = O("�1=2); (4.29a)F (!4(")) = O(p"); �(!4(")) = O(1); �(!4(")) = O(p"); (4.29b)as "! 0+. It follows now thatdetM sk(")�4j=1 
osh(!j(")R) � 
1"5=2 (�(!1("))�(!2(")) tanh(!2(")R)��(!2("))�(!1(")) tanh(!1(")R)) ;� 
1"5=2 q2k (p1(!1(0))p2(!2(0)) tanh(!2(0)R)�p1(!2(0))p2(!1(0)) tanh(!1(0)R)) ; (4.30)as "! 0+, for some nonzero 
onstant 
1, and wherep1(r) = KMr2 +N(P �Kr2)P �Kr2 ;p2(r) = P (P � Lr2)r � (M �N)MrP �Kr2 :If we let f s" (�; qk) = "5=2 detM sk(")
1q2k�4j=1 
osh(!j(")R) ; (4.31)f s(�; qk) = p1(!1(0))p2(!2(0)) tanh(!2(0)R)�p1(!2(0))p2(!1(0)) tanh(!1(0)R); (4.32)then the same analysis leading to (4.30) shows that:f s" (�; qk) = f s(�; qk) + "
g(�; qk; ");where 
 > 0 and g is a 
ontinuous fun
tion over (0; 1℄� (0;1)� [0;1). Thus we have:Proposition 4.4. Let �0; Æ1; Æ2 be su
h that 0 < �0 � 1, 0 < Æ1 < Æ2 <1. Thenf s" ! f s; as "! 0;uniformly over [�0; 1℄� [Æ1; Æ2℄.Remark 4.5. After multipli
ation by the denominators in p1; p2, the equationf s(�; qk) = 0; (4.33)redu
es to the same equation found in Simpson and Spe
tor [22℄ for the 
riti
al loads ofbarrelling type. 18



Remark 4.6. A similar result holds for the equation of bu
kling type (4.26).We 
lose this se
tion with a result about the dimension of the kernel of the matri
esM sk(");Mak ("). We use the notation M rk (�; "), r 2 fs; ag, to emphasize the dependen
eof M rk on both � and ".Proposition 4.7. Let �k(") be a root of either (4.25) or (4.26). Then for " suÆ
ientlysmall, dimkerM rk (�k("); ") = 1 where r 2 fs; ag.Proof : We do the analysis for the 
ase r = s the other one been similar. We letM̂ sk(�; ") = �(�; ")M sk(�; "); �(�; ") = diag �
osh(!j(�; ")R)�1� :Sin
e �(�; ") is nonsingular, thendimkerM sk(�; ") = dimker M̂ sk(�; "):If �k(") is a root of (4.25), then dimkerM sk(�k("); ") � 1. Using the asymptoti
 expan-sions (4.29), we get that as "! 0+,M̂ sk(�k("); ") = 2664 O(1) O(1) O("�3=2) O("�1=2)O(1) O(1) O("�1) O("�1)O(1) O(1) O(1) O(1)O(1) O(1) O("�1=2) O(p") 3775 :A simple inspe
tion of the powers of " in the last two 
olumns of this matrix shows thatthese last two 
olumns must be linearly independent as "! 0+. Similarly neither 
olumnone or 
olumn two 
an be a linear 
ombination of the last two 
olumns for " suÆ
ientlysmall. Hen
e rank M̂ sk(�k("); ") � 3, but sin
e dimker M̂ sk(�k("); ") � 1, the rank mustbe exa
tly three, i.e., dimker M̂ sk(�k("); ") = 1.5 The Complementing ConditionIn this se
tion we show that the linearized problem (4.1) satis�es the 
omplementing
ondition for every value of �. The 
omplementing 
ondition is an algebrai
 
onditionbetween the 
oeÆ
ients of the prin
ipal part of a di�erential operator and that of anasso
iated boundary operator, that among other things guarantees 
ertain apriory esti-mates on the solutions of the 
orresponding boundary value problem. We say that the
omplementing 
ondition holds if the only exponentially de
aying solution to a 
ertainauxiliary boundary value problem on a half spa
e, is the zero solution. Thompson in [26℄made the observations that in the 
ontext of linearized elasti
ity the 
omplementing 
on-dition is equivalent to the 
ondition that all Rayleigh waves travel with nonzero velo
ity(see also [25℄). 19



For the problem (4.1) the 
orresponding auxiliary boundary value problem on a halfspa
e is given by (see eg. [21℄) "�2h = 0; in H; (5.1a)�"�(rh) � n� " 1rs �(r2h � n) = 0; "r2h : nn = 0; on �H; (5.1b)where H = �x 2 R2 : (x� x0) � n < 0	 ;x0 2 �B1 is arbitrary but otherwise �xed, and n = �e1 is the unit normal to �B1. Welook for exponentially bounded solutions of this boundary value problem, i.e. solutionsof the parti
ular form h(x) = z(t)ei��(x�x0); (5.2)where � 2 R2 is nonzero and perpendi
ular to n, t = �(x�x0) �n, and z : [0;1)! R2 ,with kz(�)k bounded. Writing z(t) = (z1(t); z2(t)), after some simpli�
ations we get thatthe above boundary value problem redu
es to:z(4)1 (t)� 2�2z001 (t) + �4z1(t) = 0; z(4)2 (t)� 2�2z002 (t) + �4z2(t) = 0; t > 0;z001 (0) = 0; z0001 (0)� 2�2z01(0) = 0;z002 (0) = 0; z0002 (0)� 2�2z02(0) = 0;where � 2 R, � 6= 0. This problem de
ouples to:z(4)(t)� 2�2z00(t) + �4z(t) = 0; t > 0;z00(0) = 0; z000(0)� 2�2z0(0) = 0:An easy 
omputation shows that the bounded solutions of this problem have the form:z(t) = 
1e�j�jt + 
2xe�j�jt:Applying the boundary 
onditions we get that 
1; 
2 must satisfy� �2 �2 j�jj�j�2 �2 �� 
1
2 � = � 00 � :Sin
e the determinant of the 
oeÆ
ient matrix is 3�4 6= 0, we get that 
1 = 
2 = 0 is theonly solution, and thus that the only exponentially bounded solution of (5.1) is the zerosolution. Hen
e (4.1) satis�es the 
omplementing 
ondition for any value of �.6 Lo
al Bifur
ationWe dis
uss now 
onditions for the existen
e of nontrivial solutions for the problem (3.19).The presentation in this se
tion is greatly simpli�ed as 
ompared to that of the usual20



mixed tra
tion{displa
ement boundary value problem of nonlinear elasti
ity ([14℄), be-
ause by the presen
e of the se
ond order gradient term in the stored energy fun
tion(2.1), the operator in (3.19) automati
ally satis�es both the strong ellipti
ity and the
omplementing 
onditions (see [16℄).In referen
e to the linear operator L(�) in equation (4.1), we have that standardresults for ellipti
 systems (see [1℄, [2℄, [4℄, and [16℄) imply thatkhkZ � C �kL(�)[h℄kY + khkY0� ;for any � � 0 and for some 
onstant C > 0 independent of h but depending on ". By aLemma of Peetre and a now standard homotopy argument (see [14℄), we get:Theorem 6.1. The operator L(�) : Z ! Y is a self{adjoint Fredholm operator of indexzero.Using the Fredholm property in this theorem, the proof of the following result is wellknown (see e.g. [7℄):Theorem 6.2 (Lo
al Bifur
ation). Let the operator G : U ! Y be given by (3.17)and assume that �� 2 (0; 1) is su
h thati) dimkerL(��) = 1,ii) if kerL(��) = span fh�g, and M = Gu�(��; 0), thenMh� =2 rangeL(��):Then (��; 0) is a bifur
ation point of a lo
al 
ontinuous bran
h of nontrivial solutions of(3.19).Remark 6.3. Remember that kerL(��) 6= f0g if and only if �� is a root of equations(4.25) or (4.26) for some k 2 N.We look now for an alternate 
hara
terization of 
ondition (ii) in this theorem. Forthat we use the following identity whi
h follows from the results in Se
tion (2):ZB �"r2f ...r2v +rv : C(rf�)[rf ℄� dx =ZB �"�2f � divC(rf�)[rf ℄� � v dx + ZL(Bu(�; 0)[rf ℄) � v ds; (6.1)for all f ;v 2 Z, with Bu(�; 0) given in Proposition (3.2), and L is given in (3.2
)4. Wenow 
an prove the following:4The boundary terms on Cb [Ct are zero by the even{odd 
onditions (3.11) and the periodi
ity alongthe y dire
tion. 21



Lemma 6.4. Let �� be as in Theorem (6.2). Then 
ondition (ii) of Theorem (6.2) isequivalent to dd� �ZBrh� : C(rf�)[rh�℄ dx������=�� 6= 0; (6.2)whi
h in turn is equivalent to �� being a simple root of either of the 
hara
teristi
 equa-tions (4.25) or (4.26).Proof : Consider the linear fun
tional  : Y ! R given by: (w; g) = ZB h� �w dx+ ZL h� � g ds:If (w; g) 2 rangeL(��), then there exists h 2 Z su
h that (
.f. (4.1)):"�2h� divC(rf��)[rh℄ = w;Bu(��; 0)[h℄ = g:It follows now that (w; g) = ZB h� � �"�2h� divC(rf��)[rh℄� dx+ ZL h� �Bu(��; 0)[h℄ ds= ZB �"r2h ...r2h� +rh� : C(rf�)[rh℄� dx;where we used formula (6.1) with v = h� and f = h. Sin
e the tensorC has the symmetryproperty: H : C(F)[G℄ = G : C(F)[H℄;for any se
ond order tensors F;G;H with detF > 0, we 
an use (6.1) again to get that (w; g) = ZB �"r2h ...r2h� +rh� : C(rf�)[rh℄� dx= ZB �"r2h ...r2h� +rh : C(rf�)[rh�℄� dx= ZB h � �"�2h� � divC(rf��)[rh�℄� dx+ ZL h �Bu(��; 0)[h�℄ ds = 0;where for the last equality we used that h� is a solution of (4.1) for � = ��. This resulttogether with Theorem (6.1) and 
ondition (i) of Theorem (6.2) imply that rangeL(��) =22



ker . It follows now that 
ondition (ii) in Theorem (6.2) is equivalent to� ZB h� � div dCdF (rf��)[rh�;rf 0�� ℄ dx+ ZL h� � �dCdF (rf��)[rh�;rf 0�� ℄� � n 6= 0 ;or equivalently dd� �� ZB h� � divC(rf�)[rh�℄ dx+ ZL h� � (C(rf�)[rh�℄) � n������=�� 6= 0 ;whi
h after an integration by parts yields 
ondition (6.2).For the se
ond part of the lemma, let nu(i)� : i = 1; : : : ; 4o be a set of four linearlyindependent fun
tions that satisfy (4.2a), (4.2b), (4.2e), depending 
ontinuously on �,and su
h that h� = 4Xi=1 
�iu(i)�� ;with the f
�ig not all zero. The fun
tions nu(i)� : i = 1; : : : ; 4o are given byu(i)� (x; y) = (ak;i(x) 
os(qky); bk;i(x) sin(qky))t; i = 1; : : : ; 4;where k is the mode 
orresponding to h� and fak;i : i = 1; : : : ; 4g are given by (4.15)if h� is of barrelling type and the roots in Corollary (4.2) are all distin
t. The otherpossibilities, namely barrelling type with repeated roots, or bu
kling type with distin
troots, or bu
kling type with repeated roots, are handled similarly.Let 
 : (�� � Æ; �� + Æ)! R4 be a smooth 
urve, to be 
hosen below, su
h that
(��) = (
�1; 
�2; 
�3; 
�4)t = 
�;and de�ne h� = 4Xi=1 
i(�)u(i)� :Using formula (6.1), the symmetry property of C(rf�℄, and that h� is a solution of (4.1)for � = ��, we get thatdd� �ZBrh� : C(rf�)[rh�℄ dx������=��= dd� �ZB �"r2h�...r2h� +rh� : C(rf�)[rh�℄� dx������=��23



The fun
tion h� satisfy the even{odd 
onditions (3.11), is 2L periodi
 in y but need notsatisfy the boundary 
ondition "r2u : nn = 0 on L. Thus a modi�
ation of formula(6.1) taking this into 
onsideration yields thatZB �"r2h�...r2h� + rh� : C(rf�)[rh�℄� dx= ZB �"�2h� � divC(rf�)[rh�℄� � h� dx+ ZL �(Bu(�; 0)[h�℄) � h� + "(r2h� : nn) �Dh�� ds= ZL �(Bu(�; 0)[h�℄) � h� + "(r2h� : nn) �Dh�� ds;where for the last equality we have used that sin
e h� satis�es (4.2a), (4.2b), (4.2e), then"�2h� � divC(rf�)[rh�℄ = 0; in B:Hen
e dd� �ZBrh� : C(rf�)[rh�℄ dx������=��= dd� �ZL �(Bu(�; 0)[h�℄) � h� + "(r2h� : nn) �Dh�� ds������=��An easy 
omputation now based on formulas (4.15) and (4.23) gives that:ZL [(Bu(�; 0)[h�℄) � h� + "(r2h� : nn) �Dh�� ds= 2 Z L0 [(Bu(�; 0)[h�℄) � h�+"(r2h� : nn) �Dh�� jx=R dy= L
t(�)A(�)
(�); (6.3)where A(�) = �tk(�)Mak (�); �k(�) = 2664 ak;1(R) ak;2(R) ak;3(R) ak;4(R)bk;1(R) bk;2(R) bk;3(R) bk;4(R)a0k;1(R) a0k;2(R) a0k;3(R) a0k;4(R)b0k;1(R) b0k;2(R) b0k;3(R) b0k;4(R) 3775 :The matrix �k(�) is nonsingular by the linear independen
e of the fu�g. Note that sin
eL(��)[h�℄ = 0, then 
� is an eigenve
tor of A(��) 
orresponding to the eigenvalue zero.We take the 
urve 
(�) to satisfy:A(�)
(�) = �1(�)
(�); � 2 (�� � Æ; �� + Æ);24



where �1 : (���Æ; ��+Æ)! R is smooth, �1(��) = 0, and 
(��) = 
�. With this sele
tionof 
(�) and using (6.3) we get thatdd� �ZBrh� : C(rf�)[rh�℄ dx������=�� = L dd� ��1(�)
t(�)
(�)��=��= �01(��)
t(��)
(��)Thus (6.2) is equivalent to �01(��) 6= 0. If zero is an eigenvalue of A(��) of multipli
itym � 1 then detA(�) = g(�) mYi=1 �i(�); g(��) 6= 0;with g and f�i(�)g smooth (�1(�) as above), and �i(��) = 0, i = 1; : : : ; m. Thusdd� detA(�)j�=�� = g(��) mXi=1 �0i(��)Yj 6=i �j(��);whi
h is nonzero if and only if m = 1 and �01(��) 6= 0. Hen
e (6.2) is equivalent todd� detA(�)j�=�� 6= 0;whi
h in turn is equivalent to dd� detMak (�)j�=�� 6= 0;by the nonsingularity of �k(�).7 An Example: Blatz{Ko Type MaterialsAs we mentioned before, the presen
e of the se
ond order gradient term in the storedenergy fun
tion (2.1) simpli�es greatly the global analysis, be
ause the operator in (3.19)automati
ally satis�es both the strong ellipti
ity and the 
omplementing 
onditions.However the lo
al bifur
ation analysis be
omes extremely diÆ
ult due to the 
omplexityof the 
hara
teristi
 equations (4.25) and (4.26). (Ea
h determinant has 36 terms to bea

ounted for!) This is so even for spe
i�
 materials like the Blatz{Ko type, 
f. [5℄,
onsidered in this se
tion making it ne
essary to 
he
k the lo
al bifur
ation 
onditionsnumeri
ally.We assume that the stored energy fun
tion W in (2.1), whi
h 
orresponds to theproblem with " = 0, is of Blatz{Ko type, i.e., is given by:W (F) = 12 F : F + 1m (detF)�m; (7.1)25



where m > 0. In this 
ase (4.3) redu
es to:K = m+ 2; N = m�1=2; Q = 1 + (m + 1)�; P = 1; M = (m + 1)�1=2; (7.2)where � = ��4[m+1m+2 ℄:We have as well that (4.8) and (4.9) simplify to:Ak = �("q4k + q2k); Bk = 2"q2k +m+ 2;Ck = �("q4k + (1 + (m + 1)�)q2k); Dk = 2"q2k + 1; Ek = (m + 1)�1=2qk:The roots of (4.10) are given now by $j = q2k%j, j = 1; 2; 3; 4 where%1 = 1; %2 = 1 + m + 22"q2k � [(m + 2)2 + 4"(m+ 1)(1� �)q2k℄1=22"q2k ;%3 = 1 + m + 22"q2k + [(m+ 2)2 + 4"(m+ 1)(1� �)q2k℄1=22"q2k ;%4 = 1 + 1"q2k :Note that %4 > %1 and1. %2 = %1 at � = 1,2. %2 = %4 at �u = �1 + 1"q2k �� (m+2)4(m+1) ;3. %3 = %2 at �d = �1 + (m+ 2)24"(m+ 1)q2k �� (m+2)4(m+1) ; (7.3)with �d < �u.For " and qk �xed, we have that %1; %4 are 
onstant. As we let � de
rease from oneto �u, we get that %2 in
reases from %1 to %4. As we further de
rease � from �u to �d,%2 in
reases from %4 to %3 = 1 + (m + 2)=(2"q2k). As � de
rease from one to �d, %3de
reases from its maximum value down to 1 + (m + 2)=(2"q2k). As we further de
rease� from �d to zero, both %2; %3 be
ome 
omplex 
onjugates, with 
onstant real part givenby 1 + (m + 2)=(2"q2k), and going to in�nity in modulus as �& 0. We summarize theseobservations in the diagram in Figure (2). In fa
t witha = 1 + m+ 22"q2k ; b = [j(m + 2)2 + 4"(m+ 1)(1� �)q2kj℄1=22"q2k ;26
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Figure 2: Diagram of %j, j = 1; 2; 3; 4 as �& 0 from � = 1.then for � < �d we 
an write %2 = a � b{; %3 = a + b{. Thus with r = pa2 + b2 we havethat %1=22 =rr + a2 � {rr � a2 ; %1=23 =rr + a2 + {rr � a2 :It follows now that%1=22 �r b2 (1� {) ; %1=23 �r b2 (1 + {) ; as �& 0;where we have used the prin
ipal part of the square root fun
tion.If we view �d as a fun
tion of qk, this 
urve divides the (qk; �) plane in two regions: onein whi
h %3; %4 are real (to the left of the 
urve), and another in whi
h they are 
omplex(to right of the 
urve). (See Figure (3).) Thus above this 
urve the determinants in (4.25)and (4.26) are real{valued fun
tions and below the 
urve they are purely imaginary valuedfun
tions. Thus from the numeri
al point of view, when looking for the roots of (4.25)or (4.26), we are essentially dealing with real{valued fun
tions.Let M sk(�) be given by the matrix (4.22) for those values of � 6= �d; �u; 1, and bythe 
orresponding formula (4.24) if � = �d or � = �u or � = 1. A similar de�nition isgiven for Mak (�) using (4.21) and (4.23). The fun
tions detM sk(�); detMak (�) need not be
ontinuous. However if we let 27
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Figure 3: Curve � = �d as a fun
tion of qk.
M̂ sk(�) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
detM sk(�)�j 6=2(!j;k(�)� !2;k(�)) ; � 6= �d; �u; 1;detM sk(�)(!1;k(�)� !2;k(�))(!4;k(�)� !2;k(�)) ; � = �d;detM sk(�)(!1;k(�)� !2;k(�))(!3;k(�)� !2;k(�)) ; � = �u;detM sk(�)(!4;k(�)� !2;k(�))(!3;k(�)� !2;k(�)) ; � = 1;

(7.4)
with a similar de�nition for M̂ak (�), then these fun
tions are 
ontinuous fun
tions of �and the 
riti
al loads or possible bifur
ation points for the problem (3.5) for Blatz{Kotype materials are given by the roots of M̂ sk(�) (barrelling type) or M̂ak (�) (bu
kling type).Note that the dependen
e of M̂ak (�), M̂ sk(�) on the mode index k 
omes through qk.Thus we let qk to vary 
ontinuously on (0;1) and letM̂a(�; qk) = M̂ak (�); M̂s(�; qk) = M̂ sk(�); (�; qk) 2 (0; 1℄� (0;1):28



We show in Figure (4) the zero 
ontour plots for the surfa
es M̂a(�; qk) (solid 
urve) andM̂s(�; qk) (dotted 
urve), and the 
urve � = �1 (dashed 
urve) in the (�; qk) plane forthe 
ase m = 13:3, R = 1 and values of " = 10�j, j = 4; 5; 6; 7. Based on these �gureswe 
an 
onje
ture the following:i) For any given " > 0 and L > 0, there are only a �nite number of barrelling orbu
kling type 
riti
al loads given by the interse
tions of the verti
al lines qk = k�=L,k = 1; 2; : : :, with the 
ontour 
urves.ii) As "& 0, the number of barrelling or bu
kling type 
riti
al loads in
reases.iii) As "& 0, both 
ontour 
urves of bu
kling and barrelling type, be
ome horizontallyasymptoti
al to the line � = �1, where �1 is the value at whi
h the 
omplementing
ondition for the problem with " = 0 is violated5, 
f. [24℄.
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Figure 4: Zero 
ontour plots for the surfa
es M̂a(�; qk) (solid 
urve) and M̂s(�; qk) (dotted
urve), and the 
urve � = �1 (dashed 
urve) as fun
tions of qk for the 
ase m = 13:3,R = 1 and values of " = 10�j, j = 4; 5; 6; 7.In Simpson and Spe
tor [24℄ it is shown that equation (4.33) and the 
orrespondingone for bu
kling type deformations, has a unique solution whi
h is simple for ea
h mode5�1 = 0:5339 approximately for the Blatz{Ko type material with m = 13:3.29



qk = k�=L, k = 1; 2; : : :. We let �sk and �ak be the 
orresponding solutions of (4.33) andthe equation for bu
kling type solutions respe
tively. Using Proposition (4.4) and theresults in Simpson and Spe
tor [24℄ we have the following:Theorem 7.1. Let the material of the slab be given by (7.1) for " = 0. For any integerk � 1 let �sk and �ak be as above. Then there exists "k > 0 su
h that equations (4.25)and (4.26) with qk = k�=L, both have at least one solution �sk;" and �ak;" respe
tively forea
h " 2 (0; "k℄. Moreover if f�jg is su
h that �j ! 0, �j 2 (0; "k℄ for all j, then the
orresponding sequen
es of solutions n�sk;�jo and n�ak;�jo have subsequen
es 
onvergingto �sk and �ak respe
tively.Proof : Sin
e �sk is a simple root of f s(�; qk) = 0, there exist 0 < �1 < �2 � 1 su
hthat f s(�1; qk)f s(�2; qk) < 0. It follows from (7.3) that we 
an 
hoose "k;1 > 0 su
h that�d � �1 for any " � "k;1. Thus f s" assumes real values over the set f(�; qk) : �1 � � � �2g.Moreover, sin
e f s" (�; qk)! f s(�; qk) uniformly as "! 0 over [�1; �2℄, it follows that thereexists "k < "k;1 su
h that f s" (�1; qk)f s" (�2; qk) < 0 for 0 < " � "k. Hen
e f s" (�; qk) = 0has at least one solution �sk;" 2 (0; 1℄ for any " 2 (0; "k℄. The result on the 
onvergen
eto �sk of the subsequen
e of solutions, follows as well from the uniform 
onvergen
e offf s" (�; qk)g to f s(�; qk) and the fa
t that �sk is the only solution of f s(�; qk) = 0. The
orresponding result for (4.26) 
an be shown similarly.Remark 7.2. In general we 
an not 
on
lude that the root �sk;" of f s" (�; qk) = 0 predi
tedby the theorem, is simple (or even unique). This is an important 
ondition for the analysisof lo
al bifur
ation. Our numeri
al results for the 
ase m = 13:3 of (7.1) together withProposition (4.7) show that for this parti
ular 
ase, the bu
kling{type roots are indeedsimple and those of barrelling{type are generi
ally simple, for " small enough.Remark 7.3. The numeri
al results des
ribed in (i){(iii) above indi
ate that the sequen
ef"kg in the theorem tends to zero as k !1.8 Final RemarksWe have noti
ed that in the 
ontext of elasti
ity there is a re
urrent relation betweenviolation of the 
omplementing 
ondition and bifur
ation that has not yet been study indepth. In elasti
ity and many other areas of appli
ations, the problems under 
onsider-ation often 
an be written abstra
tly asG(�;u) = 0; � 2 (0;1);where u denotes the displa
ement from the 
orresponding trivial solution, � is somephysi
al parameter, and G is a di�erentiable nonlinear operator between appropriateBana
h spa
es with G(�; 0) = 0. Re
all that a ne
essary 
ondition for bifur
ation at30



� = �� is that the linearized problem Gu(��; 0) � v = 0 has nontrivial solutions v. Wehave observed for some boundary value problems (eg. [24℄, [18℄, [12℄, and [19℄) that if�
 is an a

umulation point of f� : Gu(�; 0) � v = 0 has nontrivial solutionsg , then thelinearized boundary value problem Gu(�
; 0) � v = 0 fails to satisfy the 
omplementing
ondition, 
f. Se
tion 5 above. This implies that if (�n) is a sequen
e of values of theparameter � in a 
ompa
t interval, su
h that for ea
h n, G(�;u) = 0 has a bran
hof nontrivial solutions bifur
ating from (�n; 0), then those bran
hes lo
ally a

umulateat points where the linearized problem fails to satisfy the 
omplementing 
ondition.This is a
tually 
onsistent with previous physi
al interpretations of the 
omplementing
ondition as asso
iated with os
illatory instabilities at the boundary, but it may alsosuggest a limitation in the theory of elasti
ity based on �rst order gradients to modelsu
h phenomena.We showed, in Se
tion 5 above, that the 
orresponding linearization along the trivialsolution of the problem studied in this paper satis�es the 
omplementing 
ondition forall values of � � 0. Hen
e, we expe
t that there exists only a �nite number of possiblebifur
ation points, (�; 0), with � 2 [0; 1℄. Indeed, our numeri
al results for Blatz{Ko typematerials, 
f. Se
tion 7, indi
ate that when a quadrati
 se
ond{gradient term is addedto the stored{energy fun
tion, there are only a �nite number of possible bifur
ationpoints in the interval � 2 [0; 1℄. Furthermore, we observed that for this example thenumber of possible bifur
ation points, (�; 0), were � 2 [0; 1℄, in
reases monotoni
allyas " ! 0 and they a

umulate pre
isely at a point (�
; 0) at whi
h the 
omplementing
ondition 
ondition for the problem with " = 0 fails along the trivial solution bran
h,
f. [22℄. Therefore, our analysis provides more eviden
e that suggests that failure ofthe 
omplementing 
ondition indu
es the existen
e of an in�nite number of bifur
atingbran
hes a

umulating at the value of the parameter � at whi
h the 
omplementing
ondition fails.In general it would be interesting to study and 
larify the relationship between bi-fur
ating bran
hes of nontrivial solutions and violation of the 
omplementing 
onditionin the 
ontext of more general boundary value problems. For example, it would be in-teresting to study the following: if �
 is a value of � at whi
h the linearized boundaryvalue problem fails to satisfy the 
omplementing 
ondition, is it true that there exists anin�nite sequen
e of bifur
ation points that a

umulates at �
 ? We shall pursue thesequestions in a future work.Our analysis of this problem also indi
ates that for higher order gradient modelsthe fun
tional analyti
 aspe
ts are greatly simpli�ed due to the non{violation of the
omplementing 
ondition. This has impli
ations for a global analysis that we shall explorein a forth
oming paper. However the veri�
ation of the 
onditions for lo
al bifur
ationbe
omes extremely diÆ
ult due to the 
omplexity of the 
orresponding 
hara
teristi
equations (4.25) and (4.26).The problem of the 
onvergen
e of the lo
al bran
hes of nontrivial solutions as "! 0remains as a major open problem. The solution of this problems would require 
ertainapriori estimates on the solutions of (3.3) uniform in ". However there are serious te
h-31



ni
al diÆ
ulties in obtaining su
h estimates due to the singular limit in equations (3.3)as "! 0, where the operator for " > 0 is of fourth order while that for the problem with" = 0 is of se
ond order.A
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