
A model for the dynamis of a kite with an arbitrarylift oeÆientPablo V. Negr�on{Marrero� and Carlos Avenanio{De Le�onUniversity of Puerto RioDepartment of MathematisHumaao, PR 00791{4300May 1, 2006AbstratIn this paper we onsider a generalization of a model for kite ight studied byAdomaitis (1989). In that paper the lift oeÆient Cl is taken as b sin 2� where �is the angle that the string of the kite, assumed to be ompletely straight, makeswith the horizontal. In our analysis we assumed on Cl only properties observedexperimentally in wind tunnels, namely that Cl is onave downward. We showthat in this general senario there an be multiple turning points for the urve ofsteady states as a ertain parameter (inversely proportional to the square of windspeed) hanges. We show as well that there an be multiple branhes of stablesteady states solutions and Hopf bifurations.1 IntrodutionIn this paper we onsider a generalization of a model for kite ight studied originallyby Adomaitis [1℄. Experiments with wind tunnels show that the lift oeÆient funtionis in general onave downward. In [1℄ the lift oeÆient is taken as b sin 2� where � isthe angle that the string of the kite, assumed to be ompletely straight, makes with thehorizontal. This assumption on the lift oeÆient although onsistent with the observedbehavior is rather restritive and rules out many interesting situations that ould haveimportant physial onsequenes. In our analysis we assumed on only properties observedexperimentally in wind tunnels, namely that the lift oeÆient funtion Cl is onavedownward. We show that in this general senario there an be multiple turning pointsfor the urve of steady states vs a ertain parameter � whih is inversely proportional to�pnm�mate.uprh.edu



the square of wind speed. We show as well that there an be multiple branhes of stablesteady states solutions and Hopf bifurations.In Setion (2) we present the basi equations for the equilibrium states of the kitemodel that we onsider. We state our main hypotheses on the lift oeÆient funtionCl, namely onditions (4). Under these general onditions we establish the existeneof turning points for the urve of � vs �. In Setion (3) we desribe the dynamialsystem governing the motion of the kite, the equilibrium states of whih are preiselythose disussed in Setion (2). We then show that there exists at least one value of � forwhih there is a Hopf bifuration, i.e., a branh of periodi solutions bifurates from thispoint. We also show that the stability pattern of the states states, hanges preisely atthe points of Hopf bifuration.2 Equilibrium StatesThe fores ating on the kite during ight are the lift (Fl), drag (Fd), tension of the string(T ), and the weight of the kite (mg). On equilibrium, these fores must balane alongthe vertial and horizontal diretions, leading to the following system of equations:Fl = T sin � +mg; Fd = T os �; (1)where � is the angle between the horizontal and the kite string assumed to be straight.The drag and lift fores are given by the relations:Fd = 12 �Cd(�)�2A; Fl = 12 �Cl(�)�2A; (2)where Cd; Cl are the drag and lift oeÆients respetively, � is the air density, � is thewind speed, and A is the area of the kite.If we assumed that string is normal to the surfae of the kite, a reasonable model forCd is given by: Cd(�) = a os �; (3)for some positive onstant a.Experiments in wind tunnels give that Cl is in general a nonnegative onave down-ward funtion. Thus we only assume thatCl(0) = 0; (4a)C 0l(�) > 0; 0 � � < �d; (4b)C 0l(�) < 0; �d < � � �u; (4)C 00l (�) < 0; 0 < � < �u; (4d)for some �d < �u < �=2.If we use (2) and (3) to eliminate T from (1), we arrive at the following expression:� = Cl(�)a � sin �; (5)2



where � = 2mga��2A: (6)Equation (5) desribes the equilibrium states of the kite (values of �) given a value of �.In general there an be multiple values of � satisfying (5) given a value of �. Sine � anbe view as a funtion of �, the values of � at whih d�=d� = 0 represent turning pointsfor the graph of � vs �. These turning points are the solutions of the equation:C 0l(�) = a os �: (7)We now have:Lemma 2.1. Assume that Cl satis�es assumptions (4) and that C 0l(0) > a. Then (7)has at least one solution.Proof : Let g(�) = C 0l(�)�a os �. Then g(0) = C 0l(0)�a > 0. Moreover, sine C 0l(�u) < 0,we have that g(�u) < 0. Thus g has a least one root in [0; �u℄.Note that, If the number of solutions is �nite and eah root is simple, then thenumber of solutions of (7) must be odd.Under the hypothesis of the lemma, � 0(0) > 0. We further assume that �u in (4) issuh that �(�) > 0; � 2 (0; �u); �(�u) = 0: (8)3 Stability AnalysisThe dynamis of the kite is given (see e.g. [3℄, [4℄) by the following system of equations:d�(t)dt = �(t); (9a)d�(t)dt = �gr os �(t) + 12mr�A�2e(�(t); �(t)) os �e(�(t); �(t))� (9b)(Cl(�e(�(t); �(t)))� a sin �e(�(t); �(t))) ;where the e�etive quantities �e; �e are given by:�2e(�; �) = �2 + r2�2 + 2r�� sin �; �e(�; �) os �e(�; �) = � os �: (10)Note that if � � 0 so that �(t) = onstant, then �e � � and �e = �. Hene the steadystates or equilibrium states of the system (9) are preisely the solutions of (5).Let �s be any solution of the equilibrium equation (5). We study the linearizationof the system (9) about the steady state (�; �) = (�s; 0). For this purpose we use thefollowing partial derivatives whih an be omputed from (10):��e�� (�s; 0) = 0; ��e�� (�s; 0) = r sin �s; (11a)��e�� (�s; 0) = 1; ��e�� (�s; 0) = r� os �s: (11b)3



If we denote by H(�; �) the right hand side of (9), then using (11) we get that:�H�� (�s; 0) = �A�22mr os �s (C 0l(�s)� a os �s) � �(�s); (12a)�H�� (�s; 0) = �A�2m os �s (Cl(�s) sin �s + C 0l(�s) os(�s)� a) � �(�s): (12b)Using these expressions we get that the linearization of (9) about the equilibrium state(�s; 0) is given by: ddt � �(t)�(t) � = � 0 1�(�s) �(�s) �� �(t)�(t) � : (13)Using (5) we an get the following alternate formulas for �;�:�(�s) = gr � 0(�s)�(�s) os �s; (14)�(�s) = ra�Ag2m "�(�s) sin �s + � 0(�s) os �sp�(�s) # os �s: (15)Note that the zeros of � are exatly those of � 0 whih in turn are those predited byLemma (2.1). If we let �b be the smallest suh root, then sine � 0(0) > 0, we have that� 0(�) > 0; � 2 [0; �b):Thus from (15) it follows as well that�(�) > 0; � 2 [0; �b℄:Sine �(�u) < 0, it follows that there exists a �h, with �h > �b, suh that �(�h) = 0. Wean now prove the following theorem.Theorem 3.1. Let �h be the smallest zero of �, �h > �b. Assume that �h is a root of oddalgebrai multipliity of �. Then the equilibrium states of the system (9) are unstable for�s < �h, they are stable for �s > �h up to the next root of � if any, and there is a Hopfbifuration at �s = �h.Proof : From (15) we get that �(�) � 0 only if � 0(�) � 0, or equivalently form (14) that�(�) � 0 only if �(�) � 0. Thus if �h is a root of odd algebrai multipliity of �, wehave the following pattern of signs for � and �:�(�s) > 0; 0 < �s < �h; (16)�(�s) < 0; �(�s) < 0; �s > �h; up to next root of �: (17)The eigenvalues of the oeÆient matrix of the linearized system (13) are given by:�� = 12 h�(�s)�p�2(�s) + 4�(�s)i :4



Thus for the pattern (16), the eigenvalues are either real with at least one of thempositive, or omplex with positive real part. Hene the orresponding equilibrium statesare unstable. For the pattern (17) the eigenvalues are either omplex with negativereal part or real with both negative and hene, the orresponding equilibrium states arestable. (See e.g. [2℄.) Furthermore, at �s = �h we have that:��(�h) = �2ip��(�h); �(�h) 6= 0;and the odd algebrai multipliity ondition on �h implies that we have a strit rossingof the two eigenvalues on the imaginary axis. Hene there is a Hopf bifuration at �h.(See e.g. [2℄.)In general there an be multiple points of Hopf bifurations and branhes of stablesolutions, the stability of whih hanges every time a Hopf bifuration is rossed. In thenext setion we give a numerial example of this situation.4 Numerial ExamplesIn this setion we desribe some numerial examples illustrating the results of the previoussetion in partiular those in Theorem (3.1). The examples are onstruted in suh away that the funtion �(�) has an M{shaped pro�le. We �rst onstrut a fourth degreepolynomial that interpolates os � at three point in (0; �=2), whih would be the solutionsof (7) in this ase, and with a value at zero greater than one and negative at �=2. Thispolynomial will be set equal to C 0l(�)=a, whih upon integration using the onditionCl(0) = 0, give us Cl(�)=a. The three interpolation points and the values at zero and�=2 are hosen in suh a way that onditions (4) are satis�ed.An example in whih only one Hopf bifuration ours happens for the following liftoeÆient funtion:1a Cl(�) = �0:6425�5 + 0:8737�4 + 0:6498�3 � 1:8459�2 + 2:0000�: (18)Conditions (4) an be heked numerially. For this ase �d = 1:156 and �u = 1:3381approximately. In Figure (1) we show Cl(�)=a and the orresponding funtion �(�) with �on the vertial axis. In Figure (2) we show the orresponding plots for �(�) and �(�). Itfollows from the last �gure that the dotted part of the urve for �(�) represents unstableequilibria while those on the solid urve are stable. Also we get that there is a Hopfbifuration, indiated by a irle in the �gure, at approximately �h = 1:1502.An example in whih three Hopf bifurations our happens for the following liftoeÆient funtion:1a Cl(�) = �0:7246�5 + 1:0754�4 + 0:6479�3 � 2:0412�2 + 2:0000�: (19)5
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βFigure 1: The lift oeÆient funtion (18) (left) and the orresponding �(�). The dottedurve represents unstable equilibria while those on the solid urve are stable. There isone point of Hopf bifuration (irle).
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Figure 2: The funtion �(�) (solid), �(�) (dotted) orresponding to the lift oeÆientfuntion (18). 6
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Figure 4: The funtion �(�) (solid), �(�) (dotted) orresponding to the lift oeÆientfuntion (19).
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