
Proceedings of the National Conference 
On Undergraduate Research (NCUR) 2006 

The University of North Carolina at Asheville 
Asheville, North Carolina 

April 6 – 8, 2006 

 
Properties of Some Classes of Interleavers for Error Correcting Codes 

 
Joyce M. Fernandez 

Mathematics Department 
University of Puerto Rico at Humacao 

Humacao, Puerto Rico 
 

Faculty Advisor: Dr. Ivelisse Rubio 
 

Abstract 
 

Interleavers are an essential component of codes such as Turbo Codes and Multi-user Codes. The interleaver 
permutes the information symbols. We study some properties of certain permutations given by monomials that could 
be related to the performance of the codes constructed with them. These properties are the dispersion and the 
spreading of the permutation and the distance between the different permutations on a family. We study 
permutations of obtained with certain monomials    where the coefficient icx 11 −≤≤ pcpZ . 
Keywords: Interleaver, Error Control Codes, Permutation, Turbo Code, Multi-user Code.   
 
1. Introduction 
 
Error control codes are used in digital communication systems to correct errors that might occur during transmission 
of messages. When a message passes thru an encoder, the encoder adds redundancy to the message and we obtain 
the codeword. Then the codeword passes thru a channel that could have noise; this adds errors to the codeword. But, 
at the receiver, the decoder detects and corrects the errors. An example is the information stored on a compact disc. 
Here the channel is the disc. The noise can be dirt. The information on the CD is encoded, so that when the CD is 
played, the player decodes to detect and correct the errors. Another example is the cellular phone, the digital signal 
is transmitted over the air and it is received by an antenna. But while this signal is traveling, interruptions could 
occur, for example, if we are near to a mountainous area. These are some examples of why error control codes are 
necessary in digital communication systems.  
 
   Turbo codes are appropriated for wireless systems because they have an effective performance on correcting errors 
and provide a reduction to the transmitter power levels.  The interleaver is an important component of turbo codes 
and its function is to permute the information symbols. One of its advantages might be that consecutive information 
symbols will not be affected if there are consecutive errors during the message transmission. Interlerleavers can also 
be useful to distinguish multi-users signals. If a message is send to many antennas and signals are crossed the 
interleaver could also prevent that they cancel each other.   
 
   The purpose of our research is to study some properties of certain permutations that could tell us if these 
permutations are adequate to construct good interleavers for the above applications. The properties that we will 
study are the dispersion and spreading of the permutations and the distance between them. We are studying these 
properties in permutations of obtained with monomials , icxpZ 11 −≤≤ pc  for certain exponents i . Our goal is to 

generalize and extend results obtained in [1] for monomials . ix
 
 
 



2. Interleavers 
 

nn ZZ →:πThe interleaver is an important component of some codes. The interleaver is a bijective function  that 
permutes the information symbols.  
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Figure 1. Turbo Code.  

 
Figure 1  shows the encoding process of a turbo code. The codeword is the concatenation of the original message, 
the message encoded with encoder , and the message permuted by the interleaver and then encoded with encoder 
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   Choosing interleavers randomly is one way to construct them. Turbo codes with interleavers constructed in this 
way have good performance, but they have to be analyzed by simulations and be stored in memory. Another method 
to construct interleavers is algebraically. Interleavers constructed in this way have the advantage that they could be 
analyzed in advance and can be generated in the moment. In this way memory space is saved and good constructions 
could be characterized. Unfortunately most of the interleavers that have been constructed algebraically do not have 
good properties. 
 
   We want interleavers that result in codes with good performance. We are using an algebraic method to construct 
them. Specifically, we are using permutation monomials . We are basing our work on permutation monomials 

 that have worked well. In particular, we have interest in permutations that decompose in cycles of length two 
because these permutations are their own inverse. Therefore, these permutations have an implementation advantage 
because the same technology that is constructed to encode the information, could be used to decode it. 
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2.1. Interleaver properties  
 
Let π  be a permutation of . The dispersion and the spreading are properties of a permutation that have been 
associated to the performance of turbo codes. The distance between permutations has been associated to the 
performance of codes for multiple users, where several interleavers are used at the same time. We want to study 
these properties for permutations given by monomials . 

nZ

icx
 
   There are several results for permutations of finite fields , q =  and p a prime, obtained with monomials . 

We need permutations of . One can obtain permutations of , by ordering the elements of the finite field  

and then associating them to . 
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   In [2] Y. Luis and L. Pérez studied permutations of  constructed from permutations of   that were given 

by monomials . Here we study permutations of  given by monomials . 
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2.1.1. dispersion  
 
The dispersion is a factor that measures the interleaver randomness. The dispersion is given by the number of 
elements in the set }.0|))()(,{()( njiijijD <<≤−−= πππ  After obtaining the dispersion, we calculate the 

normalized dispersion 
)1(
)(|2

−
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nn
D πγ . The closer the normalized dispersion is to 1, the best it is. 

 
Example 1. We present an example of the calculation of the dispersion that will help us to understand some of the 
results below. 
 
   To calculate the dispersion, we first fix the distance j-i between the images of the permutation. This gives the first 
entry of the tuples )).()(,( ijij ππ −−  Then, for each j-i we calculate the difference between the images that are j-i 
units apart and count the number of different differences. The dispersion is the total of different tuples.  
 
   Consider, . The permutation obtained can be represented by 7

11 2)(  , xxZ =π
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)).()(  ,( ijij ππ −−   The following “dispersion triangle” has all the tuples  The column at its right is the  number of 

different differences for each distance j-i.  
 

j-i = 1   (1,1) (1,4) (1,3) (1,-4) (1,-1) (1,-4) (1,3)(1,4) (1,1)         5 
j-i = 2   (2,5) (2,7) (2,-1) (2,-5) (2,-5) (2,-1) (2,7) (2,5)               4 
j-i = 3   (3,8) (3,3) (3,-2) (3,-9) (3,-2) (3,3) (3,8)                         4 
j-i = 4   (4,4) (4,2) (4,-6) (4,-6) (4,2) (4,4)                                   3 
j-i = 5   (5,3) (5,-2) (5-3) (5,-2) (5,3)                                            3 
j-i = 6   (6,-1) (6,1) (6,1) (6,-1)                                                     2 
j-i = 7   (7,2) (7,5) (7,2)                                                                2 
j-i = 8   (8,6) (8,6)                                                                         1 
j-i = 9   (9,7)                                                                                  1 
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D πγ , we obtain that the normalized spreading of    Using the formula π  is 
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2.1.2. spreading 
 
The spreading measures how separate are the elements that originally were near. An interleaver has spreading factor 

s, if s is the largest integer such that 
2
nsjisji ≥−⇒≤−  |)()(|  || ππ . The closer the spreading is to , the best it is. 

 



2.1.3 distance between interleavers 
 
This parameter relates two different permutations. It measures how far apart are images of one permutation 2π  that, 
as images of the other permutation 1π , were near. Formally, let 1π  and 2π  be permutations of . The distance 

between 

pZ
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2 ππππ is the largest s such that  and . 1π 2π

The distance between permutations is associated to the performance of codes for multi-user.  
 
Example 2.  Consider   7
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   In the above example, note that all the images of  that are at most 2 units apart are images in 1π 2π  that are at 
least 2 units apart. Also note that 5 and 1 are images under  that are 3 units apart but, as images of 1π 2π , they  are 1 
unit apart. This implies that the distance between  and  is 2. 1π 2π
    
3. Interleavers Constructed Using Monomials  icx
 
 C. Corrada and I. Rubio [1] studied permutations of  given by monomials . They obtained bounds for the 

dispersion and good simulation results for turbo codes with interleavers  for constructed with . Since the 
results with this monomial were good, we decided to study generalizations of this monomial first. We studied the 
dispersion, spreading of permutations obtained with , 

r
pZ ix

2−pxpZ

2−pcx 11 −≤≤ pc , and the distances between them. 
 
   In [1] an upper bound and a lower bound for the dispersion of  permutations of  given by  were obtained. 

Here we will prove that the dispersion of is the same for all 

2−pxpZ
2−pcx .11 −≤≤ pc  If one looks carefully to Example 1, 

one notes that, for each j-i, there are pairs of tuples that are the same and they occur in the same positions. This is 
not a coincidence. To prove this we use polynomials with roots related to the number of elements in the “dispersion 
triangle” that are the same and note that the number of roots of the polynomial is not affected when we multiply by a 
constant. From now on, π  is a permutation of .  pZ
 
   In the following proposition we construct a polynomial g(x) so that for each distance s=j-i, the number of roots of 
the polynomial is equal to the number of tuples that are equal to ))()( ,( ijijs ππ −−= ,  where . The 
proposition says that, for each s and each i, there are at most 2 tuples that are the same.         

2)( −= pcxxπ

 
Proposition 1.  Let p be a prime, s . Consider the polynomial 

, where

}2,...,2,1{ −∈ p

][)()()()( 2222 xZxicsxiccisicxg p
pppp ∈++++−−+= −−−− 0≠c ,  and . Then, the 

only roots of g(x) in  such that 

1≥i 1−≤+ psi

, are *
pZi ∈+α  and . si ++α si −−= 2αpZ 0=α

 
Proof: Let . Then, 

= cd(x), where 

. Hence, g(x) and d(x) have exactly the same roots. It was proven 
in [1] that the roots of d(x) are 

2222 )()()()( −−−− ++++−−+= pppp xicsxiccisicxg

] x) (i s)x(i is) c[(ig(x) pppp 2222 −−−− ++++−−+=
2222 p- p-pp x) (is)x(i - is) (id(x) ++++−+= −−

si −−= 2α and .  0=α
 □ 

 



The following corollary says that, for each s=j-i, the only i for which there could only be one tuple equal to  

2
spi −

=))()(,( ijijs ππ −−=  is  .  

 
Corollary 1. Let p be a prime, s  }.2,...,2,1{ −∈ p

Consider the polynomial where ][)()()()( 2222 xZxicsxiccisicxg p
pppp ∈++++−−+= −−−−  1  ,1 −≤+≤ psii . 

Then, the only root of g(x) in such that 
2

spi −
=,  is *

p Z  ∈+αi , if and only if s   ++αi pZ . 0=α

 
Proof: Like in the previous proposition, g(x)=cd(x), and therefore g(x) and d(x) have the same roots. It was proven 

in [1] that d(x) has only one root if and only if 
2

spi −
=. This happens if and only if  . 02 =−− si

□ 
 
Theorem 1. Let be a permutation of . The dispersion of is the same for all 2)( −= pcxxπ 2−pcx 11 −≤≤ pcpZ . 
 
Proof: The polynomial g(x) used in the previous proposition counted the number of tuples ))()(  ,( ijijs ππ −−= , 

 that are the same for each s and each i. We noted that this dot not change for different values of 

. This implies that the number of elements in the sets 

2)( −= pcxxπ

( ){ }11 ,)(|)()(  , 2 −≤<≤=−− − pjicxxijij pπππ0≠c  is 
the same for all . 0≠c
 

□ 
 
   We found that Theorem 1 is not true for a general exponent. For example, consider and  

as permutations of . For these polynomials, the normalized dispersion is 

7
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   We are computing the distances between permutations  for different values of c to see if we can characterize 
the coefficients that give permutations with large distances between them. The result in the following theorem will 
simplify our study because it says that some of the distances are the same. 

icx

 
Lemma 1. The monomial , , is its own inverse. *

p Z ∈c2−pcx
 
Proof: On Theorem 1 in [3], L. Cruz proved that the permutation of given by  decomposes in cycles of 

length 2 for all . This is equivalent to say that the monomial  is its own inverse.  

2−pcxpZ
2−pcx11 −≤≤ pc

□ 
 
Theorem 2. Let be a permutation of . The distance between and is the same as the 

distance between and for all 

2)( −= pcxxπ 2−px 2−pcxpZ
 p-(p-c)x 22−px 11 −≤≤ pc . 

 
Proof: Let  denote the distance between  and . We want to show that 

= . Suppose that and let and . 

Then and 

), 22 −− pp cxd (x 2−px 2−pcx

), 22 −− pp cxd (x ))(, 22 −− − pp xcpd (x ), 22 −−= pp cxd (xs 2
1 )( −= pxxπ 2

2 )( −= pcxxπ

syxsyx ≥−⇒≤− −−  |))(())((|  || 1
1

21
1

2 ππππ s  is the largest such that this happens. Since  is its 

own inverse,  and we have that  

2−pcx
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2 xx ππ =− syx ≥− |))(())((| 1212 ππππ . This is, 



( ) xx
pp =
−− 22sycxc pppp ≥− −−−− |)()(| 2222 . Again, since  is its own inverse, 2−px  and,  We want to 

see that, . Let . Since  

.|| scycx ≥−

sxcpd (x pp =− −− ))(, 22 2
3 )( −− pxcpπ scycxsyx ≥−⇒≤−  ||  || , we have that, 

 and  . Then, since -c= p-c in , pZscycx ≥−−− || sycpxcp ≥−−− |)()(|scycx ≥−− )( . This implies that 

and therefore sycpxcp pppp ≥−−− −−−− |))(())((| 2222 syx ≥− |))(())((| 1313 ππππ . Since  is its own 

inverse we have that . Hence, . By the symmetry of the 
argument,  s is the largest one such that this happens.  

2)( −pxp-c 

syx ≥− −− |))(())((| 1
1

31
1

3 ππππ sxcpxd pp =− −− 22 )(,(

□ 
      
4. Conclusions and Work in Progress 
 
 The results presented here are partial results. We are still working on the following  
1. We obtained examples where the spreading of permutations given by , where  is better than the 
spreading of the one given by . We have to study this more carefully to try to characterize the coefficient that give 
better spreading. 

icx 1≠c
ix

2. We need to try to characterize the coefficients c for which the distances between the permutations are better.  
3. We need to run simulations of the codes constructed with our interleavers and compare the results with the codes 
constructed with  that performed well. ix
4. We still need to study permutations of    and those given by . icxrpZ
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