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Abstract

In this paper permutations of finite fields Fq given by monomials ax' are studied In particular, the necessary and

sufficient conditions in the coefficient a and the exponent i to obtain permutations that decompose into cycles of
length 2 are studied.
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1. Introduction

A permutation is a reordering of the elements in a set. Our principal interest is to find permutations of finite fields
that decompose in cycles of length 2. We study permutations of Fq’ q=p", pprime, that are given by monomials

of the form ax ' and decompose in cycles of length 2. Here we present some partial results on the necessary and
sufficient conditions on the coefficient a and the exponent i to obtain this type of permutations.

Permutations can be used for the construction of interleavers for error control codes. Error control codes are used
in communications systems to protect the information of errors that can occur during transmission. Permutations that

decompose in cycles of length 2 are particularly useful because they are their own inverse and hence the same
technology can be used for encoding and decoding.

2. Preliminaries
We begin by presenting the necessary background for the rest of the paper.

2.1. Finite fields

We are interested in permutations of finite fields Fq The following concepts and results about finite fields will be
used in the rest of the paper.

Let F be a non-empty set with two operations (+,*). We say that F is a field if it satisfies the following properties.
Forall a,b,c, in F one must have,



1)If acFandbe F then a+be F.

2)a+(b+c)=(a+b)+c.

3yat+tb=Db+a.

4) There is an element O in Fsuchthat a+ 0, =a =0 +a forevery a € F.
5) For each a € F, the equation a + X = 0F has a solution in F.

6)If ac Fand be F,then a*b e F.

7) a*(b*c)=(a*b)=c.

8) axb=Db=*a forall a,b e F.

9) There exist an element 1o # 0. suchthat a*1_ =a=1_ *aforall ae F.

10) For each @ # O, the equation @ * X =1_ has a solution in F.
11) a*x(b+c)=a*b+a=*c,and (a+b)*c=a=*c+b=c.

A finite field is a field with a finite number of elements. It is well known that every finite field has g = p"
elements, where p is a prime number. The none-zero elements of a finite field, Fq* =F\{3, can be generated by a
single element called a primitive root. More formally,

Definition 1. Let ¢ ¢ Fy We say that ¢ is a primitive root of Fq if and only if « generates all the elements of
R =R\ Thisis, F" ={a* a",...a" "}

Example 1. In Z ., 2 is a primitive root. Note that,

13

2°=1,2"=2,22=4,2=8,2"=3,2°=6,2°=12,2" =11, 2° =9, 2° =5, 2" =10, 2" =7.

It is known that every finite field Fq has a primitive root ¢ and it is easy to see that %" =1. The next
proposition follows easily from this fact.

Proposition 1. Let o < F,". Then ot =1,

Definition 2. Let ¢ ¢z, and gcd (o,n) =1. We say that j is the order of ¢ in z_and write j=ord,(a) ifj is the
smallest positive integer such that ¢! =1( mod n). Similarly, we say that j is the order of ¢ in K if j is the smallest
positive integer such that i =1 (mod q).

Note that, in Example 1, the smallest positive integer j such that 2! =1 (mod 13) is 12. This is not a coincidence;
in fact, the order of a primitive root in F . is always g-1.

2.2. Permutations

A permutation 77 of asetA isabijection z:A— A Let F be the finite field with g elements. Itis well known

that a monomial ax',a e Fq* gives a permutations of Fq if and only if gcd(i, g-1)=1. We call this type of
monomials permutation monomials.



Example 2. Let A=Z,, and define 7:Z,, — Z,, by z(x) = x>. Since gcd(3,10) = 1, z(x) is a permutation

monomial of Z, . This permutation can be represented in the following way, where all the elements of the domain
are in the first row and in the second row is their image:

012345678910
01859 47 26 310/

Another way to represent permutations is with its decomposition in cycles. To represent the permutations in this
way one takes an initial value b and place it in the beginning of a cycle (b). Then take the value that we obtained

when evaluating b in 7z(X) and place it to the side of b. Now take 7z (b) and evaluate it again in the same function.

If when doing this one obtains the initial value b, then the cycle finishes and the cycle is (b 7z (b) ). If not, one
repeats the evaluation with the previous result until the initial value b is obtained.

Note that the elements in the cycle are the result of composing the function with itself and evaluating it in b. The
cycle finishes when one obtains the initial value b . Each cycle will have the form,

(b z(b) z(z(b))... 7" (b) =b) where 7" (b) means 7 composed with itself n times and evaluated in b, and n
is the smaller value so that z"(b) =b. If 7(D) =b , then b is called a fixed point and one does not write the cycle.

Continuing with the previous example, the cyclic decomposition of the permutation of Z,; given by 7(X) = x3
is:

(2867) (3549).

We are interested in permutations of Fq given by monomials ax' that decompose in cycles of length 2. For

example, the permutation of Z , given by 7(X) = 2x1 decomposes in cycles of length 2. The permutation is:

0123456 789 10 11 12
0 2157 39 410 6 8 12 11)

The cyclic decomposition of this permutation is:
(12)(35)(47)(69) (10 8) (11 12).

3. Permutation Monomials

A permutation monomial in A is a monomial such that when it is evaluated in the elements of A produces a
permutation of A . Consider Fq , the finite field with g elements. It is well known that the function 7 : Fq — Fq

defined by 7(x) = ax',a e Fq*, produces a permutation of Fq if and only if gcd(i, g-1)=1. We are interested in

permutations of Fq that decompose in cycles of length 2 and are obtained using monomials ax'.
3.1. Permutation monomials x'

Theorem 2 in [2] gives the necessary and sufficient conditions to obtain permutation monomials x' that decompose
in cycles of the same length. The following proposition is a corollary to Theorem 2 and gives the necessary and
sufficient conditions on the exponent i to obtain permutations that decompose in cycles of length 2 and are given by

monomials X'.



Proposition 2. Let  —1= plkl pzkz prkr K € Z,k; >1. The permutation of F, given by x' decomposes in
cycles of the length 2 if and only if one of the followings holds for each I=1...r.

1) i=1 (modp,“)
2) 2=ord o (i)

Example 3. Consider Z,,. Table 1 illustrates Proposition 2.

Table 1. cyclic decomposition of permutations given by x' and the order of i mod 16.

i Cyclic decomposition 0|’d24 (i)
3 (28)(310147)(413)(561211)(95) 4
5 (215)(351412)(671110)(89) 4
7 (29)(311)(413)(510)(614)(7 12)(8 15) 2
9 (314)(512)(611)(7 10) 2
11 (28)(371410)(413)(511126)(915) 4
13 (215)(312145)(610117)(89) 4
15 (29)(36)(413)(57)(815)(10 12)(11 14) 2

Also in [2], Theorem 5 gives a formula for counting the number of monomials X' that produce permutations of
Fq that decompose in cycles of the same length j. The following proposition is a corollary to this theorem and

counts the number of monomials X' that decompose in cycles of length 2.

Proposition 3. Let q—1=2p,“...p,", k,k; € Z,k >0, k; >1 . The number of permutations X' of F, that
decompose in cycles of length 2 is:

2'-1 if k=01
2™ -1 if k=2
2™ -1 if k>3

Note that this proposition predicts that there are 3 monomials X' that produce permutations of Z,, that
decompose in cycles of length 2 and this is exactly what we saw in Example 3.

The previous results apply to case of monomials of the form x'. The purpose of this work is to generalize these
results. We want to find results for monomials ax' where a € Fq* ,a#1. We found that, in some cases,

ax' decompose in cycles of length 2 for all a Fq*, in others, we need additional conditions to obtain cycles of

length 2 for @ # 1. Here we present some partial results of when the permutations given by ax' decompose in
cycles of length 2.



Our first result presents a case where the permutations given by ax' decompose in cycles of length 2 for all
aek, .
Theorem 1. Let 7z(x) = ax¥? ae Fq*. Then 7z gives a permutation of Fq that decomposes in cycles of length 2

forall a e Fq*.
Proof: We first prove that ax%? isa permutation monomial of Fq . We have to see that gcd(g-1, g-2)=1.

Suppose that d is the greatest common divisor of g-2 and g-1. Then g-2=dk and g-1=dl where k,I € Z . This
implies that dl=g-1=qg-2+1=dk+1 and dl=dk+1. Therefore d(I-k)=1 and this implies that d divides 1. Since d is a

positive integer, d=1. Hence ax"?isa permutation monomial of Fq .

To construct the cycles of the permutation of Fq given by ax®? anelement b e Fq* is evaluated in the

function 7(X) = ax?? and the result is evaluated again in the same function to obtain:
(b ab®* a(ab®?)??..)
To have cycles of the length 2, we must have, a(ab®?)%? =b. Now,
a(abq‘z)q‘z _ qlpaiAard _ g0l (@3t _ -l (bq—s )q‘lb.

Using Proposition 1, we have that a% (b9 )% b = b and therefore the cycles have length 2.

Before, we mentioned that the monomials ax' are permutations monomials of Fq if and only if
a-3

gcd(g-1,i) =1. The next lemma gives the condition for the monomials ax 2

q-3

Lemmal. Letq=p",p=2. Then ax 2 isa permutation monomial of Fq if and only if 4] (g-1).

q-3
Proof: (<=) Suppose that 4 | (g-1). Then g-1=4k. To see that ax 2 gives permutation of Fq , we must prove that

q_3 =1
cdlq-1, —— .
: [q 2 j

Since -3 _ 9-1-2 replacing g-1 by 4k , we obtain: =3 _ 4k=2 -5 1 Therefore
2 2 2 2

gcd(q S ;3j =1 if and only if gcd(4k, 2k-2)=1.

Suppose that d is the greatest common divisor of 4k and 2k-1. Then , 4k=dl and 2k-1=dm for some I, m € Z .
Now multiplying 2k-1 by 2, we obtain 4k-2=2dm. But from the first equation we have that 4k-2=dI-2. Hence, dI-
2=2dm. This implies that 2=d(l-2m) and d divides 2. Since d is a positive integer, this means that that d=1 or d=2.



gq-3

Since d divide 2k-1, d must be 1. Therefore, gcd ( q-1, qu = gcd(4k, 2k-1)=1. This implies that ax

is a permutation monomial of ;.

9-3
(=) Suppose that ax is a permutation monomial of Fq . Then gcd (qT_S q —1} =1. Also p#2 and

g=p" implythat 2 | (g-1). Now gcd[qz_:g, q_1j =1 implies that 2 does not divide 4 ; 3 . Therefore,

9-3 =2k+1,ke Z . Now solving for g, we obtain that g=4k+4+1. This implies that g-1=4(k+1) and hence, 4|(q-
2
1).

a-3
It is known that the permutations given by X 2
9-3
coefficient of ax 2 is not equals to 1 not all the permutations decompose in cycles of length 2. The next theorem
9-3
gives the necessary and sufficient conditions such that ax 2 gives a permutations of Fq that decompose in cycles

of length 2.

decompose in cycles of length 2 (see [3] ), but when the

q-3

Theorem 2. Let = p", p # 2 and let & be a primitive root of Fq . Then ax ¢ gives a permutation of Fq
that decompose in cycles of length 2 if and only if a = a® keZ and4 | (g-1).

L_?’
Proof: (<=) Suppose that 4 | (g-1) and a = a® . Then, by the previous lemma, ax 2
of F,.

is permutation monomial

gq-3

To construct the cycles of the permutation of Fq givenby ax 2 ,anelement b e Fq* is evaluated in the function
a3
7(X) = a®X 2 and the result is evaluated again in the same function.

q-3

b a?'kbq%e’ a’ £a2kqu3j2 :a2ka2k(q7;3jb[q74j(%3)m

To have cycles of length 2, one must have that, a®a

M

2k[1+q;3] q°-60+9 Zk(L—lj (9-1)(a-5)+4 K at )
2 ¢ =g 2 = (@) ()b,

=



Wherelqu_Szu

—1-
4
and therefore the cycles have length 2.

e Z because 4 | (g-1). Using Proposition 1, we have that (a L )k (b‘H )I b=b,

a3 : *
(=) Since z(X) =ax > ispermutation of F_, Lemma 1 implies that 4 | (4-1). Now, let a = ' and b eF .

We have two cases: 1) b isinacycle of length 2, or 2) b is a fixed point.

q-3
* R R E T
Case 1): Suppose that b € Fq isin a cycle of length 2. Then, o' {a'b 2 J = b . Now we simplify

q-3

N =AY
a'[a'b ZJ

g-5
(qfl)(T}l =b@ 'y =b, where | = q

2
L‘3) q°-69+9 i(L-l q2-6q+9 q%-60+9
b

i
andobtainoc'o:(2 4 =g 2]b 4 —bh.Nowwerewritt b 4 as

2 and | is an integer. By Proposition 1 we have that (0" )b =b.

(e _ (% 8

(q;l] =0 mod (q—1). Therefore j qT_lj = (q—1)k, k e Z - Therefore, i=2k keZ and a=a?.

b

This implies that b = & b. This implies that o =1 and hence

o3 L Ln
Case 2): Suppose now that b is a fixed point. This means that o'b 2 =b. Hence, &' =b 2 =b{ 2 ) Since g-

1=4k, k € Z ,9=5_0d-1-4 —ok.2  |=k-1,Also, since ¢ is a primitive root in F b=a’ for some jeZ.
2 2
q-5

f i\2l .
Therefore, o' = (a") 2 = (05’J )2 . This implies that i = 2h, some h € Z and hence a = a".

4. Conclusions and work in progress

The results presented on this paper are partials results. We found necessaries and sufficient conditions in the

coefficient a, of some monomials ax', to obtain permutations that decompose in cycles of length 2. We are still
working on the following problems.

1. Given any exponent i such that X' decomposes in cycles of length 2, find the necessary and sufficient
conditions on the coefficient a such that ax' also decompose in cycles of length 2.

2. Are there permutations given by ax' that decompose in cycles of length 2 even if the permutation given by X'
does not decompose in cycles of length 2?

3. Is there another exponent i such that ax' decompose in cycles of length 2 for all a Fq*?
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