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Abstract 

 
 In this paper permutations of finite fields  given by monomials  are studied  In particular, the necessary and 
sufficient conditions in the coefficient a and the exponent  i to obtain permutations that decompose into cycles of 
length 2 are studied. 

qF iax
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1. Introduction 
 
A permutation is a reordering of the elements in a set. Our principal interest is to find permutations of finite fields 
that decompose in cycles of length 2. We study permutations of   p prime, that are given by monomials 

of the form  and decompose in cycles of length 2. Here we present some partial results on the necessary and 
sufficient conditions on the coefficient a and the exponent i  to obtain this type of permutations. 

,qF ,rpq =
iax

 
   Permutations can be used for the construction of interleavers for error control codes. Error control codes are used 
in communications systems to protect the information of errors that can occur during transmission. Permutations that 
decompose in cycles of length 2 are particularly useful because they are their own inverse and hence the same 
technology can be used for encoding and decoding. 
 
2. Preliminaries 
 
We begin by presenting the necessary background for the rest of the paper. 
 
2.1. Finite fields 
 
We are interested in permutations of finite fields . The following concepts and results about finite fields will be 
used in the rest of the paper. 

qF

 
   Let F be a non-empty set with two operations ( )∗+, . We say that F is a field if it satisfies the following properties. 
For all , in F one must have,  cba ,,
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1) If    F and  F, then  F. ∈a ∈b ∈+ ba
2)   .)()( cbacba ++=++
3)   .abba +=+
4) There is an element  in F such that F0 aaa FF +==+ 00  for every ∈a  F. 

5) For each  F, the equation  has a solution in F. ∈a Fxa 0=+
6) If  F and  F, then  F. ∈a ∈b ∈∗ba
7)  .)()( cbacba ∗∗=∗∗
8)  for all  F. abba ∗=∗ ∈ba,
9) There exist an element  such that FF 01 ≠ aaa FF ∗==∗ 11 for all ∈a  F. 

10) For each , the equation  has a solution in F. Fa 0≠ Fxa 1=∗
11) , and cabacba ∗+∗=+∗ )( .)( cbcacba ∗+∗=∗+   
 
 
   A finite field is a field with a finite number of elements. It is well known that every finite field has  
elements, where p is a prime number. The none-zero elements of a finite field,  , can be generated by a 
single element called a primitive root. More formally, 

rpq =
}0{\:*

qq FF =

 
Definition 1. Let qF∈α . We say that α is a primitive root of  if and only if  qF α  generates all the elements of   
 

}0{\*
qq FF = . This is,  }.,...,,{ 21,0* −= q

qF ααα
 

Example 1. In , 2 is a primitive root. Note that, 13Z
 

72  ,102  ,52  ,92  ,112 ,122  ,62  ,32  ,82  ,42  ,22  ,12 11109876543210 ============ . 
 

 
   It is known that every finite field  has a primitive root qF α  and it is easy to see that . The next 
proposition follows easily from this fact. 

11 =−qα

 
Proposition 1.  Let . Then ,  *

qF∈α .11 =−qα
 

Definition 2.  Let nZ∈α  and gcd 1),( =nα . We say that j is the order of α  in  and write  if j is the 

smallest positive integer such that ( mod n). Similarly, we say that j is the order of 
nZ )(aordj n=

1≡jα α  in qF  if j is the smallest 
positive integer such that  (mod q). 1≡jα
 
   Note that, in Example 1, the smallest positive integer  j such that 12 ≡j  (mod 13) is 12. This is not a coincidence; 
in fact, the order of a primitive root in  is always q-1. qF
 
 
2.2. Permutations 
 
A permutation π  of a set A  is a bijection  .: AA →π  Let  be the finite field with  q elements.  It is well known 

that a monomial  gives a permutations of    if and only if  gcd(i, q-1)=1. We call this type of 
monomials permutation monomials. 

qF
*, q

i Faax ∈ qF

 2



Example 2.  Let  and define 11ZA = 1111: ZZ →π   by . Since gcd(3,10) = 1, 3)( xx =π )(xπ  is a permutation 

monomial of . This permutation can be represented in the following way, where all the elements of the domain 
are in the first row and in the second row is their image: 

11Z

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
103627495810
109876543210

. 

 
   Another way to represent permutations is with its decomposition in cycles. To represent the permutations in this 
way one takes an initial value b and place it in the beginning of a cycle (b). Then take the value that we obtained 
when evaluating b in )(xπ  and place it to the side of  b.  Now takeπ (b) and evaluate it again in the same function. 
If when doing this one obtains the initial value b, then the cycle finishes and the cycle is (b  π (b) ). If not, one 
repeats the evaluation with the previous result until the initial value b is obtained. 
 
   Note that the elements in the cycle are the result of composing the function with itself and evaluating it in b. The 
cycle finishes when one obtains the initial value b . Each cycle will have the form, 

))( ... ))((  )(  ( bbbbb n =ππππ  where  means )(bnπ π  composed with itself n times and evaluated in b, and n 
is the smaller value so that . If bbn =)(π bb =)(π  , then b is called a fixed point and one does not write the cycle. 
 
   Continuing with the previous example, the cyclic decomposition of the permutation of  given by  
is: 

11Z 3)( xx =π

 
( 2 8 6 7 )  ( 3 5 4 9 ). 

 
   We are interested in permutations of   given by monomials  that decompose in cycles of length 2. For 

example, the permutation of  given by  decomposes in cycles of length 2. The permutation is: 

qF iax

13Z 112)( xx =π
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1112861049375120
1211109876543210

. 

 
   The cyclic decomposition of this permutation is: 
 

( 1  2)  ( 3  5 )  ( 4  7 )  ( 6  9 )  (10  8)  (11  12 ). 
 

3. Permutation Monomials 
 
A permutation monomial in A  is a monomial such that when it is evaluated in the elements of A  produces a 
permutation of A . Consider , the finite field with q elements. It is well known that the function  

defined by ,  produces a permutation of  if and only if  gcd(i, q-1)=1. We are interested in 

permutations of  that decompose in cycles of length 2 and are obtained using monomials . 

qF qq FF →:π
*,)( q

i Faaxx ∈=π qF

qF iax

 
 3.1. Permutation monomials  ix
 
Theorem 2 in [2] gives the necessary and sufficient conditions to obtain permutation monomials  that decompose 
in cycles of the same length. The following proposition is a corollary to Theorem 2 and gives the necessary and 
sufficient conditions on the exponent i to obtain permutations that decompose in cycles of length 2 and are given by 
monomials . 

ix

ix
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Proposition 2. Let .  The permutation of  given by  decomposes in 
cycles of the length 2 if and only if one of the followings holds for each l=1…r. 

1 ,,...1 21
21 ≥∈=− ii

k
r

kk kZkpppq r
qF ix

 

   1)  ) (mod  1 lk
lpi ≡

  2)  )(2 iord lk
lp

=
 
Example 3. Consider . Table 1 illustrates Proposition 2. 17Z
 
Table 1. cyclic decomposition of permutations given by and the order of i mod 16. ix
 

i Cyclic decomposition )(42
iord  

3 ( 2  8 ) ( 3  10  14  7 ) ( 4  13 ) ( 5  6  12  11) ( 9  5 ) 4 
5 ( 2  15 ) ( 3  5  14  12 ) ( 6  7  11  10 ) ( 8  9 ) 4 
7 ( 2  9 ) ( 3  11 ) ( 4  13 ) ( 5  10 ) ( 6  14 ) ( 7  12 ) ( 8  15 ) 2 
9 ( 3  14 ) ( 5  12 ) ( 6  11 ) ( 7  10 ) 2 

11 ( 2  8 ) ( 3  7  14  10 ) ( 4  13 ) ( 5  11  12  6 ) ( 9  15 ) 4 
13 ( 2  15 ) ( 3  12  14  5 ) ( 6  10  11  7 ) ( 8  9 ) 4 
15 ( 2  9 ) ( 3  6 ) ( 4  13 ) ( 5  7 ) ( 8  15 ) ( 10  12 ) ( 11  14 ) 2 

 
 
 
      Also in [2], Theorem 5 gives a formula for counting the number of monomials  that produce permutations of 

 that decompose in cycles of the same length j. The following proposition is a corollary to this theorem and 

counts the number of monomials  that decompose in cycles of length 2. 

ix
qF

ix
 
Proposition 3. Let  . The number of permutations  of  that 
decompose in cycles of length 2 is: 

1  ,0 ,, ,...21 1
1 ≥≥∈=− ii

k
r

kk kkZkkppq r ix qF

 

⎪
⎩

⎪
⎨

⎧

≥−
=−
=−

+

+

312
212

1,0  12 

2

1

kif
kif
kif

r

r

r

. 

 
   Note that this proposition predicts that there are 3 monomials  that produce permutations of  that 
decompose in cycles of length 2 and this is exactly what we saw in Example 3. 

ix 17Z

 
   The previous results apply to case of monomials of the form . The purpose of this work is to generalize these 

results. We want to find results for monomials  where .  We found that, in some cases, 

decompose in cycles of length 2 for all , in others, we need additional conditions to obtain cycles of 

length 2 for . Here we present some partial results of when the permutations given by  decompose in 
cycles of length 2.  

ix
iax 1,* ≠∈ aFa q

iax *
qFa∈

1≠a iax
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   Our first result presents a case where the permutations given by  decompose in cycles of length 2 for all 

. 

iax
*

qFa∈
 
Theorem 1. Let . Then *2 ,)( q

q Faaxx ∈= −π π  gives a permutation of  that decomposes  in cycles of length 2 

for all . 

qF
*

qFa∈
 
Proof: We first prove that  is a permutation monomial of . We have to see that gcd(q-1, q-2)=1. 2−qax qF
 
   Suppose that d  is the greatest common divisor of q-2 and q-1.  Then q-2=dk and q-1=dl where k,l Z∈ . This 
implies that dl=q-1=q-2+1=dk+1 and dl=dk+1. Therefore d(l-k)=1 and this implies that d divides 1. Since d is a 
positive integer, d=1. Hence  is a permutation monomial of . 2−qax qF
 
   To construct the cycles of the permutation of   given by , an element  is evaluated in the 

function  and the result is evaluated again in the same function  to obtain: 

qF 2−qax *
qFb∈

2)( −= qaxxπ
 

...))(      ( 222 −−− qqq abaabb  
 
   To have cycles of the length 2, we must have, .   Now,  baba qq =−− 22 )(
 

bbababaaba qqqqqqqqqqq 1311)3)(1(144122 )()(
2 −−−+−−−+−−−− === . 

 
   Using Proposition 1, we have that   and therefore the cycles have length 2.   bbba qqq =−−− 131 )(

  
 
   Before, we mentioned that the monomials are permutations monomials of   if and only if  iax qF

gcd(q-1,i) =1. The next lemma gives the condition for the monomials 2
3−q

ax . 
 

Lemma 1. Let .  Then 2, ≠= ppq r 2
3−q

ax  is a permutation monomial of  if and only if  4 | (q-1). qF
 

Proof:  Suppose that 4 | (q-1). Then  q-1=4k. To see that  )(⇐ 2
3−q

ax  gives permutation of , we must prove that qF

⎟
⎠
⎞

⎜
⎝
⎛ −

−
2

3
,1gcd

q
q =1. 

 
      Since 

2
21

2
3 −−
=

− qq , replacing q-1 by 4k , we obtain: 
2

24
2

3 −
=

− kq =2k-1. Therefore  

⎟
⎠
⎞

⎜
⎝
⎛ −

−
2

3
,1gcd

q
q =1 if and only if gcd(4k, 2k-2)=1. 

 
      Suppose that d is the greatest common divisor of 4k and  2k-1. Then , 4k=dl and 2k-1=dm for some l,m Z∈ . 
Now multiplying 2k-1 by 2, we obtain 4k-2=2dm. But from the first equation we have that 4k-2=dl-2. Hence, dl-
2=2dm. This implies that 2=d(l-2m) and d divides 2. Since d is a positive integer, this means that that d=1 or d=2. 
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Since d divide 2k-1,  d must be 1. Therefore, gcd ⎟
⎠
⎞

⎜
⎝
⎛ −

−
2

3,1 qq = gcd(4k, 2k-1)=1. This implies that 2
3−q

ax  

is a permutation monomial of . qF
 

)(⇒    Suppose that 2
3−q

ax  is a permutation monomial of . Then gcd  qF ⎟
⎠
⎞

⎜
⎝
⎛ −

− 1,
2

3 qq =1. Also  2≠p and 

 imply that 2 | (q-1). Now gcdrpq = ⎟
⎠
⎞

⎜
⎝
⎛ −
− 1,
2

3 qq  =1 implies that 2 does not divide 
2

3−q .  Therefore,  

2
3−q  =2k+1,k Z∈ .  Now solving for q, we obtain that q=4k+4+1. This implies that q-1=4(k+1) and hence,  4|(q-

1). 
 
 

   It is known that the permutations given by 2
3−q

x  decompose in cycles of length 2 (see [3] ), but when the 

coefficient of 2
3−q

ax   is not equals to 1 not all the permutations decompose in cycles of length 2. The next theorem 

gives the necessary and sufficient conditions such that 2
3−q

ax  gives a permutations of  that decompose in cycles 
of length 2. 

qF

 

Theorem 2. Let  and let 2, ≠= ppq r α  be a primitive root of .  Then qF 2
3−q

ax  gives a permutation of   

that decompose in cycles of length 2 if and only if  and 4 | (q-1). 

qF

Zka k ∈= ,2α
 

Proof:   Suppose that 4 | (q-1) and . Then, by the previous lemma, )(⇐ ka 2α= 2
3−q

ax  is permutation monomial 

of . qF

To construct the cycles of the permutation of  given by qF 2
3−q

ax , an element  is evaluated in the function *
qFb∈

2
3

2)(
−

=
q

k xx απ  and the result is evaluated again in the same function. 
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⎟
⎠
⎞

⎜
⎝
⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

−
−−

...          2
3

2
3

2
32

2
2

3

2
3

222
3

2
qqqk

k

q
q

kk
q

k bbbb ααααα . 

 

   To have cycles of length 2, one must have that, bb
qqqk

k =
⎟
⎠
⎞

⎜
⎝
⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

2
3

2
3

2
32

2 αα . Now, 
 

  ( ) ( ) bbbbb lqkq
qqqkqqqkqqqk

k 114
4)5)(1(

2
12

4
96

2
312

2
3

2
3

2
32

2

2

−−
+−−⎟

⎠
⎞

⎜
⎝
⎛ −+−⎟

⎠
⎞

⎜
⎝
⎛ −
+⎟

⎠
⎞

⎜
⎝
⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

=== ααααα ,  
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where Zqql      
4

41
4

5
∈

−−
=

−
=  because 4 | (q-1). Using Proposition 1, we have that ( ) , 

and therefore the cycles have length 2. 

( ) bbb lqkq =−− 11α

 
 

)(⇒  Since 2
3

)(
−

=
q

axxπ  is permutation of , Lemma 1 implies that 4 | (q-1). Now, let  and . 

We have two cases:  1) b  is in a cycle of length 2,  or 2)  is a fixed point.     
qF ia α= *

qFb∈
b

 

Case 1): Suppose that  is in a cycle of length 2. Then , *
qFb∈ bb

q
q

ii =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

− 2
3

2
3

αα . Now we simplify  

2
3

2
3

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q

q
ii bαα  and obtain bbb

qqq
iqqq

i
i ==

+−⎟
⎠
⎞

⎜
⎝
⎛ −+−⎟

⎠
⎞

⎜
⎝
⎛ −

4
96

2
1

4
96

2
3 22

ααα . Now we rewrite 4
962 +− qq

b  as 

( )
bbbb lq

qq
== −

+⎟
⎠
⎞

⎜
⎝
⎛ −

−
)1(

1
4

51
, where 

4
5−

=
ql  and l is an integer. By Proposition 1 we have that . 

This implies that 

bbb lq =− )( )1(

bbb
qiqqqi ⎟

⎠
⎞

⎜
⎝
⎛ −+−⎟

⎠
⎞

⎜
⎝
⎛ −

== 2
1

4
96

2
1 2

αα .  This implies that 12
1

=
⎟
⎠
⎞

⎜
⎝
⎛ −qi

α  and hence 

)1(  mod  0
2

1
−≡⎟

⎠
⎞

⎜
⎝
⎛ − qqi . Therefore Zkkqqi ∈−=⎟

⎠
⎞

⎜
⎝
⎛ −   ,)1(

2
1 . Therefore, i=2k  and . Zk ∈ ka 2α=

 
 

Case 2): Suppose now that b  is a fixed point.  This means that bb
q

i =
−
2

3

α . Hence, 
⎟
⎠
⎞

⎜
⎝
⎛ −
−−

−
== 2

5

2
31

qq
i bbα . Since q-

1=4k ,Zk ∈  ,
2

4−1
2

5 −
=

− qq  =2k-2,  l=k-1,Also, since α  is a primitive root in  for some j
q bF α=   , Zj∈ . 

Therefore, ( ) ( ) lj
q

ji 2
2

5
−

−
− == ααα . This implies that hi 2= , some Zh∈  and hence . ha 2α=

 
 
 
4. Conclusions and work in progress 
 
The results presented on this paper are partials results. We found necessaries and sufficient conditions in the 
coefficient a, of some monomials , to obtain permutations that decompose in cycles of length 2. We are still 
working on the following problems. 

iax

   1. Given any exponent i such that  decomposes in cycles of length 2, find the necessary and sufficient 
conditions on the coefficient a such that  also decompose in cycles of length 2. 

ix
iax

   2. Are there permutations given by  that decompose in cycles of length 2 even if the permutation given by  
does not decompose in cycles of length 2? 

iax ix

   3. Is there another exponent i such that  decompose in cycles of length 2 for all ? iax *
qFa∈
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