
Proceedings of the National Conference 
On Undergraduate Research (NCUR) 2007 

Dominican University of California 
San Rafael, California 

April 12-14, 2007 
 
 

Permutations of  as Interleavers for Turbo Codes rpZ
 
 

Joyce M. Fernandez 
Mathematics Department 

University of Puerto Rico at Humacao 
Humacao, Puerto Rico 

 
Faculty Advisor: Dr Ivelisse Rubio  

 
Abstract     

 
Interleavers for error correcting codes are permutations of . Permutations of  constructed from permutations 

of finite fields  using monomials and the performance of Turbo Codes using them as interleavers have been 

studied by C. Corrada and I. Rubio
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1. We construct permutations of  from permutations of finite fields  that 

decompose in cycles of length 2 using monomials . We study the dispersion and the spreading of these 
permutations and the performance of Turbo Codes using them as interleavers.  

rp
Z rpF

icx

 
Keywords: permutation, interleaver, turbo code.  
 
 
1. Introduction  
 
Error control codes are used in digital communication systems to correct errors that might occur during the 
transmission of messages. Some examples of systems that use error correcting codes are satellite communication, 
cellular phones, storage of information in compact discs (CD), computer memory and others. Figure 1 shows a 
message passing thru a channel that could have noise. The received message could have errors. On Figure 2, the 
message passes thru an encoder, the encoder adds redundancy to the message and we obtain a codeword. At the 
receiver, the decoder detects and corrects the errors.   
 
   On the compact disc example the channel is the disc and the noise can be dirt. The information on the CD is 
encoded, so that when the CD is played, the player decodes to detect and correct the errors. On the cellular phone 
example the digital signal is transmitted over the air and an antenna receives it. But while the signal is traveling, 
interruptions could occur, for example, if we are near to a mountainous area. These are some examples of why error 
correcting codes are necessary in digital communication systems.        
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Figure 1. Message transmission without codifying. 
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Figure 2. Digital communication. 

 
   Turbo Codes are appropriated for wireless communication systems because they have an effective performance in 
the correction of errors and provide a reduction to the transmitter power levels. The interleaver is an important 
component of Turbo Codes and its function is to permute the information symbols. One of its advantages is that 
consecutive information symbols might not be affected if consecutive errors occur during the message transmission. 
We study some properties like the dispersion and the spreading of the permutations and the performance of Turbo 
Codes using them as interleavers. We also have interest in permutations that decompose in cycles of length 2 
because these permutations are their own inverse and this has an implementation advantage because the same 
technology that is constructed to encode the information, could be used to decode it.  
 
   The interleavers that we study are permutations of  constructed with monomials  over  and the 

performance of Turbo Codes using them as interleavers. This would generalize our study
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2. Permutations and Interleavers 
 
A permutation is a reordering of the elements of a set. This is, a permutation of a set A is a bijective function 

AA →:π . An interleaver is an important component of some codes that permutes the information symbols. This 
means that an interleaver is a permutation. The following figure shows the encoding process of a Turbo Code. The 
codeword c is the concatenation of the original message m with the encoded message  and with the message 
permuted by the interleaver I and then encoded with encoder 
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Figure 3. Turbo Code. 
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    Choosing interleavers randomly is one way to construct them. Turbo Codes with interleavers constructed in this 
way have good performance, but the performance has to be analyzed by simulations and the permutations have to be 
stored in memory. Another method to construct interleavers is algebraically. Interleavers constructed in this way 
have the advantage that they could be analyzed in advance and can be generated in the moment. In this way memory 
space is saved and good constructions could be characterized. We want interleavers that result in codes with good 
performance. Some properties that have been associated to the performance of the codes are the dispersion and the 
spreading.  
 
 
2.1. permutation monomials 
 
Now we introduce the function that we use to construct permutations of  and hence permutations of . qF qZ
 
Definition 1.  A monomial is a permutation monomial if and only if the polynomial function 

;  is a permutation of the finite field . 
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Example 2.  The function 77:)( FFx →π ,  is a permutation monomial of  and it can be represented as  5)( xx =π 7F
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The cyclic decomposition is (2,4) (3,5). 
 

   On this representation, the elements of the first row are the elements of and the elements of the second row are 
their images under 

7F
π . The following is a well known characterization of permutation monomial. 

 
Theorem 1. The monomial  is a permutation monomial of  if and only if gcd      ][xFx q

i ∈ qF .1)1,( =−qi
 
   The next theorem tells us that we can use any permutation of  to obtain a permutation of  it was proved in 
our previous work

qF qZ
2. 

 
Theorem 2. Let , p a prime, rpq = { } qq F=−110 ,..., ξξξ  and  any function. The function qq FFf →: qq ZZ →:π  

defined as ,)( mn =π where mnf ξξ =)( , is a permutation of  if and only if is a permutation of .  qZ f qF
 
   When we write 110 ,...,, −qξξξ we are assuming that we ordered the elements of the field. This associates the 

elements of the field with integers of 0 to q-1. After applying the permutation to the elements of , the qF π  function 

“follows” these elements and we obtain a permutation of . qZ

 
   L. Cruz3 characterized the monomials  such that the permutations of given by them decomposed in cycles 

of length 2. These results together with Theorem 2 guaranty that we can obtain permutations 

iax qF

qq ZZ →:π  that 

decompose in cycles of length 2 from permutations  that decompose in cycles of length 2 using certain 

. 
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2.2. interleaver properties 
 
The dispersion and the spreading are properties of a permutation that have been associated to the performance of 
Turbo Codes. We want to study these properties for permutations of  given by monomials .    qF icx
 
   Let π  be a permutation of . The dispersion is a factor that measures the interleaver randomness. The 
dispersion is given by the number of elements in the set 

nZ
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compare permutations of different lengths, we calculate the normalized dispersion 
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normalized dispersion is to 1 the best it is.    
 
   The spreading measures how separate are the elements that originally were near. An interleaver has spreading 
factor s, if s is the largest integer such that sjisji ≥−⇒≤−  |)()(|  || ππ . The closer the 

spreading is to 
2
n , the best it is. 

 
 
 
 



 
3.  Permutations of  obtained from permutations of  rpZ rpF
 
We need to construct permutations of . Our constructions use monomials  that give permutations of 

. Theorem 2 guaranties that we can do this. We construct permutations of  in the following manner: first we 

associate the elements of , to r-tuples of integers between 0 and p-1.  Then we order the r-tuples using vector 

orderings. In this way we create a correspondence between the elements of  and the integers between 0 and 

, the elements of . Finally we apply the monomial  to the elements of and taking the indices n 

from the 
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nξ  we obtain a permutation of . We will illustrate this process with an example. rpZ

 
 
3.1. representations of finite fields  
 
There are several ways in which one can represent the elements of a finite field. One of them is to write the non-zero 
elements as powers of a primitive root.  
 
Definition 2. Let qF∈α , α is a primitive root of  if and only if qF α  generates all the elements of . 

This is,

}0{\*
qq FF =

{ }210 ,...,, −= q
prF ααα . 

 
Definition 3.  A polynomial of degree  is called a primitive polynomial over  if it is the minimal 

polynomial over  of a primitive element of . 

][xFf q∈ 1≥m qF
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   It is known that a finite field  is isomorphic to a quotient rp
F

)(
][

xp
xZ p  where p(x), is an irreducible primitive 

polynomial over  that has degree r. The elements in this quotient can be identified with polynomials with 
coefficients in  and degree less than r. These polynomials can be associated to vectors of length r and entries in 

.  This gives a representation of  as a vector space over .  If the polynomial p(x) is primitive, this will 

give us a correspondence between the primitive root representation and the polynomial and the r-tuple 
representation. The following example illustrates how to get the different representations. 
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Example 3. Consider 2/][ 2

332 ++≈ xxxZF  and let α be a primitive root of . 23
F

    The following table shows the different representations of the finite field 2/][ 2
332 ++≈ xxxZF . In the first 

column is the primitive root representation, in the second is the polynomial representation that is obtained in the 
following way: The primitive root α of  is a zero of the primitive polynomial . Therefore, 

and from here we can obtain that because the coefficients are in . In this 
way we can reduce all the powers of 

23
F 22 ++ xx

022 =++αα 1222 +=−−= ααα 3Z
α that are greater or equal to 2 and write them as polynomials of degree less 

than 2.  Finally, in the third column is the r-tuple representation that it is obtained taking the coefficients of the 
polynomials. 
 
 



 Table 1. representations of the finite field  23
F

 
iα  polynomial r-tuple 
0α  1 (0,1) 
1α  α  (1,0) 
2α  12 +α  (2,1) 
3α  22 +α  (2,2) 
4α  2 (0,2) 
5α  α2  (2,0) 
6α  2+α  (1,2) 
7α  1+α  (1,1) 
8α  1 (0,1) 

 
 
3.2. vector orderings  
 
We can order a field using their vector representation and vector orderings. For this, it is necessary to decide how to 
order the vectors so that we always can decide when an element is greater than another one. Some examples of 
vector orderings are the Lexicographic Order and the Graded Lexicographic Order. 
 
3.2.1. lexicographic order  
 
The first type of vector orderings that we will utilize is the Lexicographic Ordering. Intuitively, ordering the vectors 
in this way is similar to the method used to order the words in a dictionary.  
 
Definition 3. Let ),...,,( 21 rγγγγ = and ),...,,( 21 rδδδδ = . We have δγ lex>  if and only if the left-most nonzero 
entry of δγ − is positive.  
 
Example 4. δγ =>= )1,1,0()0,0,1( lex since )1,1,1( −−=−δγ . 
 
 3.2.2. graded lexicographic order 
 
The second type of vector orderings that we will utilize is the Graded Lexicographic Order.  This order takes in 
consideration the total degree of the vectors.  

Definition 4. Let ),...,,( 21 rγγγγ = and ),...,,( 21 rδδδδ = , be such that ∑∑
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δγ grlex>  if and only if ||  || δγ > or , ||  || δγ = and δγ lex> . 
 
Example 5. Let )1,1,0(  and )0,0,1( == δγ . Then γδ grlex> . Note that δγ lex> . 

Continuing with Example 3, we will now order the elements of  using the Lexicographic Order. 23F
 



Table 2. orderings for  23
F

 
Natural 
number 

r –tuple 
Lexicographic 

Order 

r -tuple Graded 
Lexicographic 

Order 
0 (0,0) (0,0) 
1 (0,1) (0,1) 
2 (0,2) (1,0) 
3 (1,0) (0,2) 
4 (1,1) (1,1) 
5 (1,2) (2,0) 
6 (2,0) (1,2) 
7 (2,1) (2,1) 
8 (2,2) (2,2) 

 
 
3.3 permutations of  rpZ
 
C. Corrada and I. Rubio1 studied permutations of  given by monomials . They obtained bounds for the 

dispersion and good simulation results for Turbo Codes with interleavers for constructed with . Y. Luis and 

L. Pérez
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2 studied permutations of  constructed from permutations of  that were given by monomials . We 

studied
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 given by monomials .  We are interested in permutations that decompose in cycles of length 2. 
These types of permutations were characterized by L. Cruz and I. Rubio
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  One obtains permutations of , by ordering the elements of the finite field  and then associating them to 

. We construct a permutation of using the permutation monomial , and order the elements of 

using their vector representation and vector orderings.  In this way we create a correspondence between the 

elements of and the elements of . Finally we apply the monomial  to the elements of , follow their 

position in the ordering, and obtain a permutation of . We now conclude our example of the construction of a 

permutation of from a permutation of . 
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Example 6.  Let 2/][ 2

332 ++= xxxZF . We can construct a permutation of using the permutation of 

obtained with the monomial .  We order the elements of with the Lexicographic Order. Then we 

evaluate each element in  to obtain a permutation of and assign to the result the correspondent 

natural number, from the results obtained by L. Cruz

23Z

23F 72)( xx =π 23F
iα ][2 23

7 xFx ∈ 23F
3 we know that this is a permutation of that decompose in 

cycles of length 2. We “follow” the position in the ordering and this gives us the permutation.  
23F



374568120

0Root Primitive
2)(

0Root Primitive
| || || || || || || || || |

)2,2()1,2()0,2()2,1()1,1()0,1()2,0()1,0()0,0(Order hicLexicograp

876543210

12765304

7

32567140

r

r

r

r

p

p

p

p

Z

F
xx

F

Z

bbbbbbbbbb

bbbbbbbbb

αααααααα
π

αααααααα

↓↓↓↓↓↓↓↓↓=

                             

The permutation is . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
8

   
7
7

   
4
6

   
5
5

    
6
4

    
8
3

    
1
2

    
2
1

    
0
0

 
The cyclic decomposition is (1,2) (3,8)(4,6). 
   
 
4. Performance of Turbo Codes 
 
We wrote programs in Maple to construct permutations monomials and compute their spreading and dispersion. Jose 
Lugo, from the UPR-High Performance Computing Facilities ran simulations of Turbo Codes that use these 
permutations as interleavers. Our goal was to compare the performance of the Turbo Codes with the dispersion and 
the spreading to see if there is any relation. As an illustration, the following table shows the dispersion and the 
spreading results for permutations of given by  where q=625. The columns are divided in Graded 
Lexicographic Ordering and Lexicographic Ordering; each one contains the exponent l of the primitive root 

qF 2−qcx
α , the 

dispersion and the spreading respectively. Note that in this table all the permutations computed have dispersion close 
to .8; this is true for all the permutations . 2−qcx
 
Table 3. dispersion and spreading of permutations of  625F
 

q=625  >+++< )3/ 34
5 xxxZ

Graded Lexicographic Ordering Lexicographic Ordering 
l dispersion spreading l dispersion spreading 
0 .813246 1 0   .806277 1 

574 .817277 1 303 .817538 1 
534 .817031 1 300 .817538 2 
13 .812872 1 124 .812313 1 
80 .812867 1 102 .812308 1 
528 .807062 1 409 .802462 1 
212 .814549 3 372 .814323 3 
325 .810892 3 193 .811995 3 

   
     As an illustration, the following graph shows the performance of a Turbo Code constructed with interleavers 
given by the permutations described above for the Graded Lexicographic Order and are compare with random and s-
random interleavers. The random interleavers are the ones that are used actually in the application. The s-random 
interleavers are known to be the best in terms of performance. The SNR means the signal to noise ratio and the BER 
measures the probability of errors in the message. The interleaver that more down is in the graph has the best 
performance. Note that, for example, the interleavers a_528, a_13 and a_0 have better performance than the random 
interleaver.  



 
 

Figure 4. BER for random, s-random and graded lexicographic interleavers of length 625.    
 
 
6. Conclusions and Work in Progress 
 
The results presented here are partial results. We computed all the permutations  and obtained dispersion 
close to .8. All but two of the permutations that were tried perform better than the random permutations, which is the 
one that is used in actual applications. It seems that small differences in spreading do not affect the performance of 
the code. It still has to be investigated from which value on, the spreading does makes a difference in performance. 
It seems that there is not too much difference in performance between finite fields ordered with Lexicographic Order 
and Graded Lexicographic Order. We still want to determinate other parameters for the interleavers that could be 
related to the performance of the code. We also want to study other permutations with cycles of length 2 to see if we 
could characterize permutations with good performance. 
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