
Proceedings of the National Conference
On Undergraduate Research (NCUR) 2007

Dominican University of California
San Rafael, California

April 12-14, 2007

Permutations of as Interleavers for Turbo Codes rpZ

Joyce M. Fernandez
Mathematics Department

University of Puerto Rico at Humacao
Humacao, Puerto Rico

Faculty Advisor: Dr Ivelisse Rubio

Abstract

Interleavers for error correcting codes are permutations of . Permutations of constructed from permutations

of finite fields using monomials and the performance of Turbo Codes using them as interleavers have been

studied by C. Corrada and I. Rubio

nZ rp
Z

rp
F ix

1. We construct permutations of from permutations of finite fields that

decompose in cycles of length 2 using monomials . We study the dispersion and the spreading of these
permutations and the performance of Turbo Codes using them as interleavers.

rp
Z rpF

icx

Keywords: permutation, interleaver, turbo code.

1. Introduction

Error control codes are used in digital communication systems to correct errors that might occur during the
transmission of messages. Some examples of systems that use error correcting codes are satellite communication,
cellular phones, storage of information in compact discs (CD), computer memory and others. Figure 1 shows a
message passing thru a channel that could have noise. The received message could have errors. On Figure 2, the
message passes thru an encoder, the encoder adds redundancy to the message and we obtain a codeword. At the
receiver, the decoder detects and corrects the errors.

 On the compact disc example the channel is the disc and the noise can be dirt. The information on the CD is
encoded, so that when the CD is played, the player decodes to detect and correct the errors. On the cellular phone
example the digital signal is transmitted over the air and an antenna receives it. But while the signal is traveling,
interruptions could occur, for example, if we are near to a mountainous area. These are some examples of why error
correcting codes are necessary in digital communication systems.

()

444 3444 21
message

kmmm ,...,, 21 channel ()
44444 344444 21

message received
kk ememem +++ ,...,, 2211

Figure 1. Message transmission without codifying.

()
444 3444 21

message
kmmm ,...,, 21 encoder ()

4434421
codeword

nccc ,...,, 21 channel ()
444 3444 21

message received
nn ecec ++ ,...,11 decoder ()

44 344 21
?

21 ˆ,...,ˆ,ˆ
message

kmmm

Figure 2. Digital communication.

 Turbo Codes are appropriated for wireless communication systems because they have an effective performance in
the correction of errors and provide a reduction to the transmitter power levels. The interleaver is an important
component of Turbo Codes and its function is to permute the information symbols. One of its advantages is that
consecutive information symbols might not be affected if consecutive errors occur during the message transmission.
We study some properties like the dispersion and the spreading of the permutations and the performance of Turbo
Codes using them as interleavers. We also have interest in permutations that decompose in cycles of length 2
because these permutations are their own inverse and this has an implementation advantage because the same
technology that is constructed to encode the information, could be used to decode it.

 The interleavers that we study are permutations of constructed with monomials over and the

performance of Turbo Codes using them as interleavers. This would generalize our study

rpZ icx rp
F

4 of permutations of

obtained with monomials .
pZ

icx

2. Permutations and Interleavers

A permutation is a reordering of the elements of a set. This is, a permutation of a set A is a bijective function

AA →:π . An interleaver is an important component of some codes that permutes the information symbols. This
means that an interleaver is a permutation. The following figure shows the encoding process of a Turbo Code. The
codeword c is the concatenation of the original message m with the encoded message and with the message
permuted by the interleaver I and then encoded with encoder

1x
)x,xm,(c:e 212 = .

Figure 3. Turbo Code.

I

1e

2e

m
1x

2x

 Choosing interleavers randomly is one way to construct them. Turbo Codes with interleavers constructed in this
way have good performance, but the performance has to be analyzed by simulations and the permutations have to be
stored in memory. Another method to construct interleavers is algebraically. Interleavers constructed in this way
have the advantage that they could be analyzed in advance and can be generated in the moment. In this way memory
space is saved and good constructions could be characterized. We want interleavers that result in codes with good
performance. Some properties that have been associated to the performance of the codes are the dispersion and the
spreading.

2.1. permutation monomials

Now we introduce the function that we use to construct permutations of and hence permutations of . qF qZ

Definition 1. A monomial is a permutation monomial if and only if the polynomial function

; is a permutation of the finite field .

][xFx rp
i ∈

qq FFf →: ixxf =)(qF

Example 2. The function 77:)(FFx →π , is a permutation monomial of and it can be represented as 5)(xx =π 7F

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

6
6

3
5

2
4

5
3

4
2

1
1

0
0

π

The cyclic decomposition is (2,4) (3,5).

 On this representation, the elements of the first row are the elements of and the elements of the second row are
their images under

7F
π . The following is a well known characterization of permutation monomial.

Theorem 1. The monomial is a permutation monomial of if and only if gcd][xFx q

i ∈ qF .1)1,(=−qi

 The next theorem tells us that we can use any permutation of to obtain a permutation of it was proved in
our previous work

qF qZ
2.

Theorem 2. Let , p a prime, rpq = { } qq F=−110 ,..., ξξξ and any function. The function qq FFf →: qq ZZ →:π

defined as ,)(mn =π where mnf ξξ =)(, is a permutation of if and only if is a permutation of . qZ f qF

 When we write 110 ,...,, −qξξξ we are assuming that we ordered the elements of the field. This associates the

elements of the field with integers of 0 to q-1. After applying the permutation to the elements of , the qF π function

“follows” these elements and we obtain a permutation of . qZ

 L. Cruz3 characterized the monomials such that the permutations of given by them decomposed in cycles

of length 2. These results together with Theorem 2 guaranty that we can obtain permutations

iax qF

qq ZZ →:π that

decompose in cycles of length 2 from permutations that decompose in cycles of length 2 using certain

.

qq FFf →:
iaxxf =)(

2.2. interleaver properties

The dispersion and the spreading are properties of a permutation that have been associated to the performance of
Turbo Codes. We want to study these properties for permutations of given by monomials . qF icx

 Let π be a permutation of . The dispersion is a factor that measures the interleaver randomness. The
dispersion is given by the number of elements in the set

nZ
{ }njiijijD <<≤−−= 0|))()(,)(πππ . To be able to

compare permutations of different lengths, we calculate the normalized dispersion
)1(
)(|2

−
=

nn
D π

γ . The closer the

normalized dispersion is to 1 the best it is.

 The spreading measures how separate are the elements that originally were near. An interleaver has spreading
factor s, if s is the largest integer such that sjisji ≥−⇒≤− |)()(| || ππ . The closer the

spreading is to
2
n , the best it is.

3. Permutations of obtained from permutations of rpZ rpF

We need to construct permutations of . Our constructions use monomials that give permutations of

. Theorem 2 guaranties that we can do this. We construct permutations of in the following manner: first we

associate the elements of , to r-tuples of integers between 0 and p-1. Then we order the r-tuples using vector

orderings. In this way we create a correspondence between the elements of and the integers between 0 and

, the elements of . Finally we apply the monomial to the elements of and taking the indices n

from the

nZ][xFcx rp
i ∈

rpF rp
Z

rp
F

rp
F

1−rp rp
Z icx rp

F

nξ we obtain a permutation of . We will illustrate this process with an example. rpZ

3.1. representations of finite fields

There are several ways in which one can represent the elements of a finite field. One of them is to write the non-zero
elements as powers of a primitive root.

Definition 2. Let qF∈α , α is a primitive root of if and only if qF α generates all the elements of .

This is,

}0{*
qq FF =

{ }210 ,...,, −= q
prF ααα .

Definition 3. A polynomial of degree is called a primitive polynomial over if it is the minimal

polynomial over of a primitive element of .

][xFf q∈ 1≥m qF

qF mq
F

 It is known that a finite field is isomorphic to a quotient rp
F

)(
][

xp
xZ p where p(x), is an irreducible primitive

polynomial over that has degree r. The elements in this quotient can be identified with polynomials with
coefficients in and degree less than r. These polynomials can be associated to vectors of length r and entries in

. This gives a representation of as a vector space over . If the polynomial p(x) is primitive, this will

give us a correspondence between the primitive root representation and the polynomial and the r-tuple
representation. The following example illustrates how to get the different representations.

][xZ p

pZ

pZ rp
F pZ

Example 3. Consider 2/][2

332 ++≈ xxxZF and let α be a primitive root of . 23
F

 The following table shows the different representations of the finite field 2/][2
332 ++≈ xxxZF . In the first

column is the primitive root representation, in the second is the polynomial representation that is obtained in the
following way: The primitive root α of is a zero of the primitive polynomial . Therefore,

and from here we can obtain that because the coefficients are in . In this
way we can reduce all the powers of

23
F 22 ++ xx

022 =++αα 1222 +=−−= ααα 3Z
α that are greater or equal to 2 and write them as polynomials of degree less

than 2. Finally, in the third column is the r-tuple representation that it is obtained taking the coefficients of the
polynomials.

 Table 1. representations of the finite field 23
F

iα polynomial r-tuple
0α 1 (0,1)
1α α (1,0)
2α 12 +α (2,1)
3α 22 +α (2,2)
4α 2 (0,2)
5α α2 (2,0)
6α 2+α (1,2)
7α 1+α (1,1)
8α 1 (0,1)

3.2. vector orderings

We can order a field using their vector representation and vector orderings. For this, it is necessary to decide how to
order the vectors so that we always can decide when an element is greater than another one. Some examples of
vector orderings are the Lexicographic Order and the Graded Lexicographic Order.

3.2.1. lexicographic order

The first type of vector orderings that we will utilize is the Lexicographic Ordering. Intuitively, ordering the vectors
in this way is similar to the method used to order the words in a dictionary.

Definition 3. Let),...,,(21 rγγγγ = and),...,,(21 rδδδδ = . We have δγ lex> if and only if the left-most nonzero
entry of δγ − is positive.

Example 4. δγ =>=)1,1,0()0,0,1(lex since)1,1,1(−−=−δγ .

 3.2.2. graded lexicographic order

The second type of vector orderings that we will utilize is the Graded Lexicographic Order. This order takes in
consideration the total degree of the vectors.

Definition 4. Let),...,,(21 rγγγγ = and),...,,(21 rδδδδ = , be such that ∑∑
==

==
r

i
i

r

i
i

11
, δδγγ . We have

δγ grlex> if and only if || || δγ > or , || || δγ = and δγ lex> .

Example 5. Let)1,1,0(and)0,0,1(== δγ . Then γδ grlex> . Note that δγ lex> .

Continuing with Example 3, we will now order the elements of using the Lexicographic Order. 23F

Table 2. orderings for 23
F

Natural
number

r –tuple
Lexicographic

Order

r -tuple Graded
Lexicographic

Order
0 (0,0) (0,0)
1 (0,1) (0,1)
2 (0,2) (1,0)
3 (1,0) (0,2)
4 (1,1) (1,1)
5 (1,2) (2,0)
6 (2,0) (1,2)
7 (2,1) (2,1)
8 (2,2) (2,2)

3.3 permutations of rpZ

C. Corrada and I. Rubio1 studied permutations of given by monomials . They obtained bounds for the

dispersion and good simulation results for Turbo Codes with interleavers for constructed with . Y. Luis and

L. Pérez

pZ ix

pZ 2−px
2 studied permutations of constructed from permutations of that were given by monomials . We

studied

rpZ rpF ix
4 the dispersion and spreading of permutations of given by . Here we study permutations of

 given by monomials . We are interested in permutations that decompose in cycles of length 2.
These types of permutations were characterized by L. Cruz and I. Rubio

pZ 2−pcx
r

q pqZ = , 2−qcx
3.

 One obtains permutations of , by ordering the elements of the finite field and then associating them to

. We construct a permutation of using the permutation monomial , and order the elements of

using their vector representation and vector orderings. In this way we create a correspondence between the

elements of and the elements of . Finally we apply the monomial to the elements of , follow their

position in the ordering, and obtain a permutation of . We now conclude our example of the construction of a

permutation of from a permutation of .

rpZ rpF

rp
Z rpZ icxxf =)(

rpF

rp
F rp

Z icx rp
F

rpZ

rpZ rpF

Example 6. Let 2/][2

332 ++= xxxZF . We can construct a permutation of using the permutation of

obtained with the monomial . We order the elements of with the Lexicographic Order. Then we

evaluate each element in to obtain a permutation of and assign to the result the correspondent

natural number, from the results obtained by L. Cruz

23Z

23F 72)(xx =π 23F
iα][2 23

7 xFx ∈ 23F
3 we know that this is a permutation of that decompose in

cycles of length 2. We “follow” the position in the ordering and this gives us the permutation.
23F

374568120

0Root Primitive
2)(

0Root Primitive
| || || || || || || || || |

)2,2()1,2()0,2()2,1()1,1()0,1()2,0()1,0()0,0(Order hicLexicograp

876543210

12765304

7

32567140

r

r

r

r

p

p

p

p

Z

F
xx

F

Z

bbbbbbbbbb

bbbbbbbbb

αααααααα
π

αααααααα

↓↓↓↓↓↓↓↓↓=

The permutation is . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
8

7
7

4
6

5
5

6
4

8
3

1
2

2
1

0
0

The cyclic decomposition is (1,2) (3,8)(4,6).

4. Performance of Turbo Codes

We wrote programs in Maple to construct permutations monomials and compute their spreading and dispersion. Jose
Lugo, from the UPR-High Performance Computing Facilities ran simulations of Turbo Codes that use these
permutations as interleavers. Our goal was to compare the performance of the Turbo Codes with the dispersion and
the spreading to see if there is any relation. As an illustration, the following table shows the dispersion and the
spreading results for permutations of given by where q=625. The columns are divided in Graded
Lexicographic Ordering and Lexicographic Ordering; each one contains the exponent l of the primitive root

qF 2−qcx
α , the

dispersion and the spreading respectively. Note that in this table all the permutations computed have dispersion close
to .8; this is true for all the permutations . 2−qcx

Table 3. dispersion and spreading of permutations of 625F

q=625 >+++<)3/ 34
5 xxxZ

Graded Lexicographic Ordering Lexicographic Ordering
l dispersion spreading l dispersion spreading
0 .813246 1 0 .806277 1

574 .817277 1 303 .817538 1
534 .817031 1 300 .817538 2
13 .812872 1 124 .812313 1
80 .812867 1 102 .812308 1
528 .807062 1 409 .802462 1
212 .814549 3 372 .814323 3
325 .810892 3 193 .811995 3

 As an illustration, the following graph shows the performance of a Turbo Code constructed with interleavers
given by the permutations described above for the Graded Lexicographic Order and are compare with random and s-
random interleavers. The random interleavers are the ones that are used actually in the application. The s-random
interleavers are known to be the best in terms of performance. The SNR means the signal to noise ratio and the BER
measures the probability of errors in the message. The interleaver that more down is in the graph has the best
performance. Note that, for example, the interleavers a_528, a_13 and a_0 have better performance than the random
interleaver.

Figure 4. BER for random, s-random and graded lexicographic interleavers of length 625.

6. Conclusions and Work in Progress

The results presented here are partial results. We computed all the permutations and obtained dispersion
close to .8. All but two of the permutations that were tried perform better than the random permutations, which is the
one that is used in actual applications. It seems that small differences in spreading do not affect the performance of
the code. It still has to be investigated from which value on, the spreading does makes a difference in performance.
It seems that there is not too much difference in performance between finite fields ordered with Lexicographic Order
and Graded Lexicographic Order. We still want to determinate other parameters for the interleavers that could be
related to the performance of the code. We also want to study other permutations with cycles of length 2 to see if we
could characterize permutations with good performance.

2−ql xα

7. Acknowledgements

This work has been funded in part by the National Security Agency, Grant Num. H98230-04-C-0486; and by the
National Science Foundation CSEMS program at the UPRH, Grant Num. 0123169. Simulations were done at the
UPR-High Performance Computing Facilities.

8. References

Journals

 1. C. Corrada, I. Rubio, “Algebraic Construction of Interleavers Using Permutation Monomials”, IEEE
International Conference on Communications, 2004.
 2. Y. Luis, L. Pérez, “Properties of a Class of Permutations Over Finite Fields and Applications on Turbo Codes”,
Proceedings of The National Conference On Undergraduate Research (NCUR) 2005.
 3. L. Cruz, “Characterization of Monomials over Finite Fields that Give Permutations that Decompose in Cycles
of Length 2”, Proceedings of The National Conference On Undergraduate Research (NCUR) 2007.
 4. J. Fernández, “Properties of Permutations with Cycles of Length 2 and Obtained with Monomials”, Proceedings
of The National Conference On Undergraduate Research (NCUR) 2006, April 2006.

	Permutations of as Interleavers for Turbo Codes
	Abstract
	Keywords: permutation, interleaver, turbo code.
	Definition 3. A polynomial of degree is called a primitive polynomial over if it is the minimal polynomial over of a primitive element of .
	Table 3. dispersion and spreading of permutations of

