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In this article we study permutations of finite fields 
[image: image436.wmf]  

.

2

1

2

)

1

(

=

+

-

i

q

 given by monomials
[image: image2.wmf]i

ax

. In particular, we give the necessary and sufficient conditions on the coefficient a and the exponent  i to obtain permutations of 
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 that decompose into cycles of length 2. We also present two special cases: we prove that i = q-2  is the only exponent such that 
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 is a permutation that decomposes in cycles of length 2 for all 
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; we also prove that             is the only exponent such that 
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 is a permutation that decomposes in cycles of length 2 for half of the coefficients.
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1. Introduction
A permutation is a reordering of the elements in a set. Permutations can be used for the construction of interleavers for error control codes. Error control codes are used in communication systems to protect the information from errors that can occur during transmission. Permutations that decompose in cycles of length 2 are particularly useful because they are their own inverse and hence the same technology can be used for encoding and decoding.
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Our principal interest is to construct permutations of finite fields that decompose in cycles of length 2. In [4] we presented the necessary and sufficient conditions on the coefficient a such that the permutation of 
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 decomposes in cycles of length 2 for all 
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 decomposes in cycles of length 2 for half of the coefficients. In this paper we characterize the coefficients a and the exponents i such that 
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 gives a permutation of 
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 that decomposes in cycles of length 2. Now, the results presented in [4] follow as corollaries of this general situation.
For completeness, we include some results that were presented in [4] and are needed in the proofs of our new results.
2. Preliminaries

We begin by presenting the necessary background for the rest of the paper.

2.1. finite fields

We are interested in permutations of finite fields 
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, so ,we begin by defining a field. Let F be a non-empty set with two operations (+, •). We say that F is a field if F satisfies the following properties. For all a, b, c
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 F, one must have,
1) If a 
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2) a+(b+c)=(a+b)+c.
3) a+b=b+a.
4) There is an element 
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 in F such that  a+
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= a =
[image: image24.wmf]F

0

+a.
5) For each a
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6) If a
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F  and b
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F, then a • b 
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7) a • (b • c) = (a • b) • c.
8) a • b = b • a for all  a
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9) There exists an element 
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 such that  a  • 
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 = a = 
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10) For each a
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, the equation a • x=
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 has solution in F.
11) a • (b + c) = a • b + a • c, and (a + b) • c = a • c + b • c. 
A finite field is a field with a finite number of elements. It is well known that every finite field has 
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 elements, where p is a prime number. From now on 
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 will denote the finite field with q elements. It is also known that  non-zero elements of a finite field, 
[image: image39.wmf]}

0

{

\

:

*

q

q

F

F

=

 can be generated by a single element called a primitive root. More formally,
Definition 1. Let 
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Example 1. In 
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 the field of integers modulo13, 2 is a primitive root. Note that,
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It is known that every finite fields 
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 has a primitive root 
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 and it is easy to see that  
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Proposition 1.  Let 
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Definition 2.  Let 
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( mod n). Similarly, we say that j is the order of 
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   Note that, in Example 1, the smallest positive integer  j such that 
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 (mod 13) is 12. This is not a coincidence; in fact, the order of a primitive root in 
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 is always q-1.

2.2. Permutations

A permutation 
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 of a set A  is a bijection  
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  if and only if  gcd(i, q-1)=1. We call this type of monomials permutation monomials.

Example 2.  Let 
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 is a permutation monomial of 
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. This permutation can be represented in the following way, where all the elements of the domain are in the first row and in the second row is their image:
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   Another way to represent permutations is with its decomposition in cycles. To represent the permutations in this way one takes an initial value b and place it in the beginning of a cycle (b). Then take the value that is obtained when evaluating b in 
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(b) and evaluate it again in the same function. If when doing this one obtains the initial value b, then the cycle finishes and the cycle is (b  
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   Note that the elements in the cycle are the result of composing the function with itself and evaluating it in b. The cycle finishes when one obtains the initial value 
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   Continuing with the previous example, the cyclic decomposition of the permutation of 
[image: image87.wmf]13

Z

 given by 
[image: image88.wmf]7

3

)

(

x

x

=

p

 is:  ( 1 3 9 ) (2 7 5 11 6 8 )  ( 4 12 10 ).

   We are interested in permutations of  
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   The cyclic decomposition of this permutation is: ( 1  2)  ( 3  5 )  ( 4  7 )  ( 6  9 )  (10  8)  (11  12 ).

3. Permutation Monomials 
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 that Decompose in Cycles of Length 2
A permutation monomial in 
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 is a monomial that when it is evaluated in the elements of 
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 produces a permutation of
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Theorem 2 in [2] gives the necessary and sufficient conditions to obtain permutation monomials
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 that decompose in cycles of the same length. The following proposition is a corollary to Theorem 2 and gives the necessary and sufficient conditions on the exponent i to obtain permutations that decompose in cycles of length 2 and are given by monomials 
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Example 3. Consider 
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Table 1. Cyclic decomposition of permutations of  
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	5
	( 2  13  14  10  3  15 ) ( 4  17  6  5  9  16 ) ( 7  11 ) (8  12)
	6
	2

	7
	( 2  14  3 ) ( 4  6  9 ) ( 5  16  17 ) ( 10  15  13 )
	3
	2

	11
	( 2  15  3  10  14  13 ) ( 4  16  9  5  6  17 ) ( 7  11 ) ( 8  12 )
	6
	2

	13
	( 2  3  14 ) ( 4  9  6 ) ( 5  17  16 ) ( 10  13  15 )
	3
	2

	17
	( 2  10 ) ( 3  13 ) ( 4  5 ) ( 6  16 ) ( 7  11 )
	2
	2


     The next lemmas are results that will be useful to find the necessary and sufficient conditions in the coefficient a and the exponent i such that the permutation given by 
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So far we presented the conditions so that permutations of 
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