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Abstract

This paper studies binomials that give permutations of F,. In particular, studies the necessary and sufficient

conditions to obtain permutations that decompose in cycles of length two. These types of permutations are
useful for applications to coding theory and cryptography. The paper presents some binomials that are
never permutations and permutation binomials that never decompose in cycles of length two. Furthermore ,
it gives the necessary conditions for certain permutation binomials to decompose in cycles of length two.
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1. Introduction

LetF, be the finite field with q= p"elements, where pis a prime. We study permutations of F, given by
binomials. We started by studying binomials with terms that are permutations monomials of F,. We proved
that certain type of binomials never give permutations of F,. We also study binomials in F[x] of the
qH

form z(X)=x 2 +ax. We found necessary conditions on these binomials so that the permutations given by
them decompose in cycles of length two. Also we found the necessary conditions on the binomials so that
the permutation given by them does not decompose in cycles of length two. Furthermore, we present a
conjecture that states the sufficient conditions for a permutation binomial to decompose in cycles of length
two. We start by presenting some background material that is needed for the rest of the paper.

1.1 finite fields

We are interested on permutations of finite fields. A field is an algebraic structure in which the operations
of addition, subtraction, multiplication and division (except division by cero) may be performed, and the
same rules which are familiar from the arithmetic of real numbers hold. A finite field is a field with finitely
many elements. It can be proved that any finite filed has p'elements, where pis a prime number and there is

a finite field with p'for any pprime, rpositive integer.

It is easier to study finite fields Fif we write its elements as powers of one element: a primitive root. A
primitive root inFis an element that generates allF *:=F,—{0}. This is, ais a primitive root



in Fif F* = {a°,a' ,a’,...,a"?} . It can be proved that every finite field has primitive elements & and q—1
is the smallest positive integer such thata®' =1.

Example 1. The element 2 is a primitive root in Z,; because it generates all elements in Z“* :
2°=1,2'=1,2=4,2"=8,2" =52°=10,2°=9,2"=7,2° =32 = 6,2 = 1.

Lemma 1. Leta e F *, thena®' =1.

Proof: Leta € F, *and & be a primitive root of F,. Thena = a', for some | € {0,...,q- 2} . This implies that

a™ =@ =@™)' =)' =1.0
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Lemma 2. Letq be an odd prime and leta € F, * . Thena * e {-1,1}.

is an integer. Leta € F, *. Then, by Lemma 1, a*'=1.

Proof: Sinceqis odd, q—1lis even and g :

@ @l @ o @
Therefore, (a 2 )> —1=0. Factoring, we obtain (a > —1)(@ 2 +1)=0 and therefore a 2 =lora 2 =-1.[]

¢l
Lemma 3. Let & be a primitive root in F, *and g be an odd prime. Thena > =-1.
L]
Proof: By Lemma 2, a 2 £{—1,1} . But since q— lis the smallest positive integer such thata®' =1, we must
Ll
havea 2 =-1.0J

1.2 permutations

We want to find binomials that produce permutations of ;. A permutation of a set is a reordering of the

elements of the set. In other words, a permutation of a set X is a function 7 : X — X that is one to one and
onto. A binomial that produces a permutation is called a permutation binomial. We want to study
binomials that produce permutations of F, that decompose in cycles of length two. The following

proposition states that to get permutations of a finite set it is enough to check that the function is one to one.
Proposition 1. Let A be a finite set and consider f : A— A. Then f is one to one if and only if f is onto.

Proof: We know that A is a finite field. Suppose that f is one to one, this implies that each element of Ais
“pair up” with only one element of A. Therefore all elements of Aare covered. Hence f is onto. Suppose
that fis unto, this implies that each element of A is covered. Therefore all the elements are “pair up” with
only one element of A because that way all the elements will be covered. Hence f is one to one. [

As we will see in the following proposition it is enough to study binomials of the form x' + ax’, to find
those that produce permutations that decompose in cycles of length two.

Proposition 2. The binomial 7, (x)=ax' + bx’ is a permutation of F, if and only if 7,(x) = x'+ ax'isa
permutation of F,, where o = E

a
Proof: Suppose that 7z,(x)=ax' + bx' gives a permutation of F,. Then 7, (x)=ax' + bx’ is one to one.

This implies that for every |I,se Fwherel#s, we have thatz(I)#7(s). This is,
a(l)' + b(l)' #a(s)’ + b(s)'. Now dividing both sides bya, we have



(=D + E(I)j #(s) + E(S)j =7,(S). Hence, |#s implies that z,(I)# 7,(S)and 7,(X)is one to
a a
one. The other implication can be proved similarly. [

a+l
Example 2. The permutation given by the binomial 7(x) = X 2 +axin Z;; is

01 2345¢6 7289 10
056 493710 21 8)

and the cyclic decomposition of this permutation is:
1 534 92 6 7 10 8).

Observe that we represented the permutation using the following notation, the first row are the elements
of the field finite Z,; and the second row are their images under 7 . Note that the length of the cycles is 5.

We are interested in cycles of length two. We first study how these cycles are constructed. On this example
the cycle (1 5 3 4 9) starts with 1 (we can choose any element for this) and continues with5. This is

because 7(1) = 5. The third element is 3 because 7(5) =3 . In general, we construct the cycles by taking
a' and evaluating it in 7(x) which gives us another element or the same that we evaluated. If 7(a') = '
then «'is a fixed point and we do not write these cycles of length 1. On the other hand, if the binomial
7(x) produces another element z(a') = a* the cyclic decomposition of this is (ai a ) Since we
have a different element we evaluate it in the function and repeat until we get first element. A cycle will
look like (ai z@) @) 7" (a)= ai), where 7' (@'), | € Z, this means that 7 is compose with
itself | times. Note that if the permutation given by a binomial in F,decomposes in cycles of length two,

then z°(a')=a'forall0<i<q-2.

1.3 quadratic residues

t]
One of the binomials in which we focus is 7z(X)=X ? +ax. It is know that 7(X) is a permutation binomial
inF, if and only ifa’ — 1is a quadratic residue modulo g. We have that an integer @ is a quadratic residue

modulo h if there exist another integerb such that a =b’(modh). We denote thata is a quadratic residue
byn(@)=1.

Example 3. Note that 2is a quadratic residue modulo 23, because 5 = 2(mod 23).

Example 4. Note that 2is not a quadratic residue modulo 5, because there is not another integerb, such
thatb® = 2(mod 5).

2. Binomials with permutation monomials as terms

The first binomials that we study are given by permutation monomials that decompose in cycles of length

two. Louis Cruz’found the necessary and sufficient conditions on the coefficienta such that the
43

monomials 7(X) = ax 2 and z(X)=ax"*’ are permutations of F, that decompose in cycles of length 2. We

constructed binomials with these monomials as terms to see if they also produce permutations of F; that

decompose in cycles of length two. By Proposition 2 there are essentially three binomials that are given by
&3 a3
these monomials andx': 7z(X)=x 2 +ax*?, 7z(X)=x%’-ax andx 2 —ax. The binomial
T3
7(X)=x 2 +ax¥? was studied by Céceres and Colén®. They presented the necessary and sufficient



q-3
conditions for z(x)=x * +ax"” over a finite field F, of odd characteristic to be a permutation polynomial.

They determined when 7 is self invertible and hence decompose in cycles of length two. If 7 is not self

invertible they found the inverse. Here we prove that the binomial 7(X) = X*> —ax is not a permutation for
43

a # 0. For the third case, in all of our examples, the binomial X > —ax is never a permutation for a # 0.

We present this as a conjecture that remains to be proved.

Lemma 4. Letq be an odd prime, « a primitive root inF andk € Z. If's is such that

(g-1) | (4s +2k)and| =qT_l—s—k .Thena® =o' inF,.

Proof: Suppose thata® = a'inF,. Thens =1 (modq-1). Thisis s = qT_l—s —k (mod q-1), and this

implies that 4s =(q—1)-2k (mod q-1). Thisis(q—1)|(4s +2k — (g —1)) . Hence (g —1)| (4s + 2k) and this
contradicts the hypothesis, therefore o® # o' in R U

Proposition 3. The binomial 7(x) = x** —ax never gives a permutation in F, , fora # 0.

Proof: Let k € Z,a aprimitive root and a =" . Also let s be such that be (q—1) | (4s +2k) and | such
that| = a-t_ k—s. ByLemma4, a° # @' in F, - We will show that z(a®) = z(a') and this will imply that
2

q-1
q- 1 K+l+s N

7 is not one to one and hence is not a permutation. Now | = 5 k —s implies that « =a? =-land

therefore a*"* +1= 0. This implies that: 0 =[(a') - (as)][l +atata'l=
(@)-a*@®)a)- o)+ a @ Na®) = (@) (@) - a (@) a') - [ ) + " (@ )a*) =, now
multiplying by (a')™(a®)™" we have:

$40-2 10 K¢Sy 110 s\, 1yg-2 Ko 1N/ ,,510 s I
@) (@)’ —a*(a®)a') —(a )(a Y +a(a )a®)’ = n(a®) - n(a') . This implies
that0 = 7(a®) — z(a') and z(a*) = 7(a') . Hence we found o'a®such thate® # ' and z(a®) = z(a') and
therefore 7 is not one on one inF, . [
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Conjecture 1. Letq be odd andq > 5. The binomial z(x) = x > —ax is never a permutation binomial of F,

fora # 0.

q+1

4. Permutations given by z(x) = x > +ax that decompose in cycles of length 2.

The binomials that we tried in Section II where not permutation binomials or have been studied before. In
this section we will work with binomials that are know to be binomial permutations and study the necessary

and sufficient conditions for them to decompose in cycles of length two. These permutation binomials are
g+l
given byz(x)=x ? +ax. The following theorem'states when the binomials z(x) are permutation

binomials.

g+l
Theorem 1. Given an odd numberq = p', the binomial z(x) = x > +ax, is a permutation binomial of F, if

and only ifp(a* -1)=1.



We present different results related to these permutation binomials, that were derived from the study of
the necessary and sufficient conditions on a such that the permutation decompose in cycles of length two.
Also we establish necessary and sufficient conditions for the binomial z(x) to have fixed points.

a+t .
Proposition 4. Let z(x) = x ? +ax be a permutation of F, and leta be a primitive root inF, . Thenca'is a

fixed point if and only if i is even anda=0ori is odd anda=2.

Proof: Leta be a primitive root inF,. Suppose thata'is a fixed point ofF,. Thenz(a')=a'. This

al al
is(a') ? +aa' =a'. Now we have that ((«)a ? ) +aa' =(-a)' +aa' =«'. This implies that, ifi is even,

we havea' +aa' =o', which means thata=0. Now ifi is odd, factorizing we havea'(a - 2) = 0 which
means thata=2. Leta=2andi be odd. Then

q+ at ) ) )
z@)=(a')? +2a' =(a)a ?) +2a' =(-a) +2a' =-a' +2a' =a'. Hencez(a')=a' anda' is a fixed
ast LRI _ _ .
point. Leta=0andi be even. Then z(a')=(a')? +0a' =((@)a ?) =(-a) =a'. Hencerz(a')=a'

and ¢' is a fixed point. [

g+l

Proposition 5. Suppose that z(x) = x 2 + 2x is a permutation of F, that decompose in cycles of length two.
Then4 ] (q-1).

Proof: We will prove by the counterpositive. Leta be a primitive root inF,. Since the coefficient

ofx in z(x) isa=2, then from Proposition 4 we have that for all0<i<q-2 , where iis oddz(a')=a'.
Since there are q—1possible values fori , this means that there are qT_l values of i that are odd and

therefore qT_IH, fixed points counting the fixed point 0. Suppose that z(x) decomposes in cycles of

length two, this means that theqT_1 elements that are not fixed points are contain in cycles of length two.

Therefore we have, qT_lcycles of length two. But this is a contradiction because4 | (q—1). Hence #(x)

does not decompose in cycles of length two inF, .[J

g+l

Proposition 6. Let z(x)=x > a permutation of F, . Then 7z(x)decompose in cycles of length two if and
only if4|(q-1).

Proof: (=) We will prove the counterpositive. This is, we will prove that if 4 f(q-1), then z(x) does not
decompose in cycles of length two. Suppose that 4 (q-1) and leta be a primitive root inF, . Since the

coefficient ofx inz(x) isa=0, then from Proposition 4 we have that for all0<i<q-2 , where iis

evenz(a')=a'. Since there are g —1possible values fori , this means that there are qT_l values of i that
are even and therefore qT_1+ 1, fixed points counting the fixed point 0. Suppose that z(x) decomposes in

cycles of length two, this means that theqT_lelements that are not fixed points are contained in cycles of
length two. Therefore we have, qT_lcycles of length two. But this is a contradiction because4 | (q-1).

Hence 7(x) does not decompose in cycles of length two inF, .



(<) Let 4](@-1) and « be a primitive root inF, . Suppose that z(x) decompose in cycles of length two.
ol g ot an art at ot ot
This is z(z(a)=a, and (@)*)* =(@)* @)’ =(-a)* = ()’ ()= (D’ (@)’ (-a)=
at -
(-1 ? (o). Now, since 4|(q—1), this means that 4k=q-1,keZ and qle2k. This means that
g-1
> =(=1)* =land 7z(z(a))=a . Hence z(x) decompose in cycles of length two. [

D

sl
Proposition 7. Letz(x) = x > +ax ,a# 0 be a permutation of F, that decomposes in cycles of length two,

thena’ =2.

Proof: Leta be a primitive root in F, . Since z(x) is a permutation that decomposes in cycles of length two.

Then for all0<i<qg-2, that is not a fixed point we have thatz’(a')=«a'. This is
a1 g at ) ) ) il ) ) )
(a?a) +aa')? +a((a * @) +aa')=a' such that ((-~a)' +aca') > +a((-a) +aa')=ca'. This has to be

true for alli even and odd. Therefore, wheniis even or odd, we have that «'(a-1)(a-1)=¢a' or
a'(a+1)(a+1)=ca' which implies that a=0ora=-2, but these coefficients generates fixed points. Also
wheni is odd or even we have thata'(a+1)(a-1)= ' which implies thata’ = 2. Hence if 7(X) gives a
permutation of F, that decomposes in cycles of length two, thena® = 2.1

Studying the necessary and sufficient conditions for z(x) to decompose in cycles of length two we have
reach an important conjecture, that is establish below.

Conjecture 2. Leta be such thata® —1is a quadratic residue mod g and suppose thata’ =2 modq . Then
a+ g+
the binomial z(x)=x ? +ax decomposes in cycles of length two inF_ or z(x) = x > —ax decomposes in

cycles of length two inF, .

atl
Proposition 8. There are fields for which no binomial of the formz(x)=x 2 +ax wherea’ —1is a

quadratic residue, produces a permutation of F, that decompose in cycles of length two.

4+l
Example 5. Z,,is a field for which no binomial of the form z(x) = x > +ax produces a permutation that

decomposes in cycles of length two.

4. Conclusions and Work in Progress

g+l
In this section, we present necessary conditions for the binomial permutation z(x)=Xx ? +2x to

decompose in cycles of length two. Also we presented that certain types of binomials never give
permutations of F, . Furthermore we presented a variety of conjectures. The first one states that a certain

type of binomial never gives a permutation and the other one state the sufficient condition for a permutation

binomial to decompose in cycles of length two. We plan for our future work to find and characterize the
g+l
fields for which no binomial of the form z(x)=x ? +ax is a permutation binomial of F, , that decomposes

in cycles of length two. Also we want to study other binomials. Last but not least we want to prove the
conjecture or find a counterexample.
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