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Abstract 

 
This paper studies binomials that give permutations of . In particular, studies the necessary and sufficient 
conditions to obtain permutations that decompose in cycles of length two. These types of permutations are 
useful for applications to coding theory and cryptography. The paper presents some binomials that are 
never permutations and permutation binomials that never decompose in cycles of length two. Furthermore , 
it gives the necessary conditions for certain permutation binomials to decompose in cycles of length two. 
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1. Introduction 
 
Let  be the finite field with elements, where is a prime. We study permutations of  given by 
binomials. We started by studying binomials with terms that are permutations monomials of . We proved 
that certain type of binomials never give permutations of Fq. We also study binomials in  of the 

form

Fq q = pr p Fq

Fq

Fq[ x]

π (x) = x
q+1
2 + ax . We found necessary conditions on these binomials so that the permutations given by 

them decompose in cycles of length two. Also we found the necessary conditions on the binomials so that 
the permutation given by them does not decompose in cycles of length two. Furthermore, we present a 
conjecture that states the sufficient conditions for a permutation binomial to decompose in cycles of length 
two.  We start by presenting some background material that is needed for the rest of the paper.  
     
 
1.1 finite fields 
 
We are interested on permutations of finite fields. A field is an algebraic structure in which the operations 
of addition, subtraction, multiplication and division (except division by cero) may be performed, and the 
same rules which are familiar from the arithmetic of real numbers hold. A finite field is a field with finitely 
many elements. It can be proved that any finite filed has elements, where is a prime number and there is 
a finite field with for any prime,

pr p
pr p rpositive integer. 

 
   It is easier to study finite fields if we write its elements as powers of one element: a primitive root. A 
primitive root in is an element that generates all

Fq

Fq Fq* := Fq − {0} . This is, α is a primitive root 

  



in ifFq Fq* := {α o ,α1,α 2,...,α q−2}. It can be proved that every finite field has primitive elementsα  and q −1 
is the smallest positive integer such thatα q−1 = 1. 
 
Example 1. The element 2 is a primitive root in  because it generates all elements in  Z11 Z11*:
20 = 1,21 = 1,22 = 4,23 = 8,24 = 5,25 = 10,26 = 9,27 = 7,28 = 3,29 = 6,210 = 1. 
 
Lemma 1. Let , then . a ∈ Fq * a q−1 = 1
 
Proof: Let anda ∈ Fq * α be a primitive root of . ThenFq a = α l , for some l ∈ {0,..., q - 2} . This implies that 
aq−1 = (α l )q−1 = (α q−1) l = (1) l = 1. 

Lemma 2. Let be an odd prime and let aq ∈ Fq * . Then a
q−1
2 ∈ {−1,1}. 

 

Proof: Since is odd, is even and q q −1 q −1
2

is an integer. Let a ∈ Fq *. Then, by Lemma 1,  a q−1 = 1. 

Therefore, (a
q−1
2 )2 −1 = 0. Factoring, we obtain (a

q−1
2 −1)(a

q−1
2 +1) = 0 and therefore a

q−1
2 = 1or a

q−1
2 = −1. 

 

Lemma 3. Let α  be a primitive root in and  be an odd prime. ThenFq * q α
q−1
2 = −1. 

Proof: By Lemma 2, α
q−1
2 ε{−1,1} . But since q −1is the smallest positive integer such thatα q−1 = 1, we must 

haveα
q−1
2 = −1. 

 
  

1.2 permutations 
 
 
We want to find binomials that produce permutations of . A permutation of a set is a reordering of the 
elements of the set. In other words, a permutation of a set

Fq

X  is a function π : X → X that is one to one and 
onto. A binomial that produces a permutation is called a permutation binomial. We want to study 
binomials that produce permutations of  that decompose in cycles of length two. The following 
proposition states that to get permutations of a finite set it is enough to check that the function is one to one. 

Fq

 
Proposition 1. Let A  be a finite set and consider f : A → A . Then f  is one to one if and only if f is onto. 

 
Proof: We know that A  is a finite field. Suppose that f  is one to one, this implies that each element of A is 
“pair up” with only one element of A . Therefore all elements of A are covered. Hence f is onto. Suppose 
that f is unto, this implies that each element of A  is covered. Therefore all the elements are “pair up” with 
only one element of A  because that way all the elements will be covered. Hence f is one to one.  
 
   As we will see in the following proposition it is enough to study binomials of the form x i +αx j , to find 
those that produce permutations that decompose in cycles of length two.  
  
Proposition 2. The binomial π1 (x) = ax i +  bx j  is a permutation of Fq if and only if π 2 (x) = x i +  α x j  is a 

permutation of , whereFq α =
b
a

. 

 
Proof: Suppose that π1 (x) = ax i +  bx j  gives a permutation of . ThenFq π1 (x) = ax i +  bx j  is one to one. 
This implies that for every l,s ∈ Fqwhere l ≠ s, we have that π1 (l) ≠ π1 (s) . This is, 

. Now dividing both sides by , we have a(l)i  +  b(l)j ≠ a(s)i  +  b(s)j a

  



π 2 (l) = (l)i  +  b
a

(l)j ≠ (s)i  +  b
a

(s)j = π 2 (s). Hence, l ≠ s implies that π 2 (l) ≠ π 2 (s)and π 2 (x)is one to 

one. The other implication can be proved similarly.  
 

Example 2. The permutation given by the binomial axxx
q

+=
+
2

1

)(π in  is 11Z
0 1 2 3 4 5 6 7 8 9 10
0 5 6 4 9 3 7 10 2 1 8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,  

and the cyclic decomposition of this permutation is: 
1 5 3 4 9( ) 2 6 7 10 8( ). 

 
   Observe that we represented the permutation using the following notation, the first row are the elements 
of the field finite  and the second row are their images under 11Z π . Note that the length of the cycles is 5. 
We are interested in cycles of length two. We first study how these cycles are constructed. On this example 
the cycle  starts with 1 (we can choose any element for this) and continues with 5 .  This is 
because

1 5 3 4 9( )
51 =)(π . The third element is because3 35 =)(π . In general, we construct the cycles by taking 

and evaluating it iniα )(xπ which gives us another element or the same that we evaluated. If  

then is a fixed point and we do not write these cycles of length 1. On the other hand, if the binomial 

ii ααπ ( =)
iα

)(xπ  produces another element the cyclic decomposition of this iski ααπ =)( α i α k ...( ). Since we 
have a different element we evaluate it in the function and repeat until we get first element. A cycle will 
look like α i π (α i ) π 2 (α i ) π n−1 (α i ) = α i( ), where π l (α i ) , l ∈ Ζ , this means that π  is compose with 
itself times. Note that if the permutation given by a binomial in decomposes in cycles of length two, 
then 

l Fq

π 2 (α i ) = α i for all . 0 ≤ i ≤ q − 2
 
1.3 quadratic residues 
 

One of the binomials in which we focus is π (x) = x
q+1
2 + ax . It is know that π (x)  is a permutation binomial 

in if and only if is a quadratic residue modulo . We have that an integer is a quadratic residue 
modulo  if there exist another integer  such that 

qF a 2 −1 q a
h b a = b2(mod ). We denote that  is a quadratic residue 

by
h a

1=)(aη . 
 
Example 3. Note that is a quadratic residue modulo , because 2 23 52 = 2(mod 23). 
 
Example 4. Note that is not a quadratic residue modulo , because there is not another integer b, such 
that b (mod ). 

2 5
2 = 2 5

 

2. Binomials with permutation monomials as terms 
 
The first binomials that we study are given by permutation monomials that decompose in cycles of length 
two. Louis Cruz found the necessary and sufficient conditions on the coefficient  such that the 

monomials

2 a

π (x) = ax
q−3

2 and π (x) = axq−2 are permutations of  that decompose in cycles of length 2. We 
constructed binomials with these monomials as terms to see if they also produce permutations of that 
decompose in cycles of length two. By Proposition 2 there are essentially three binomials that are given by 

these monomials and

Fq

qF

x1 : π (x) = x
q−3

2 + ax q−2 , π (x) = xq−2 − ax  and x
q−3

2 − ax . The binomial 

π (x) = x
q−3

2 + ax q−2  was studied by Cáceres and Colón . They presented the necessary and sufficient 3

  



conditions for 22
3

−
−

+= q
q

axxx)(π  over a finite field  of odd characteristic to be a permutation polynomial. 
They determined when 

Fq

π  is self invertible and hence decompose in cycles of length two. If π  is not self 
invertible they found the inverse. Here we prove that the binomial π (x) = xq−2 − ax  is not a permutation for 

. For the third case, in all of our examples, the binomial0≠a x
q−3

2 − ax  is never a permutation for 0≠a . 
We present this as a conjecture that remains to be proved. 
 
 
Lemma 4. Let be an odd prime, q α a primitive root in andqF k ∈ Ζ . If is such that 

and

s

)(|)( ksq 241 +/− ksql −−
−

=
2

1 . Then  in .  ls αα ≠ qF

 

Proof: Suppose that in . Thenls αα = qF ls ≡  (mod 1−q ). This is ksqs −−
−

≡
2

1 (mod ), and this 

implies that  (mod ). This is

1−q

kqs 214 −−≡ )( 1−q ))((|)( 1241 −−+− qksq . Hence )(|)( ksq 241 +− and this 
contradicts the hypothesis, thereforeα s ≠ α l  in .  Fq

 
Proposition 3. The binomial  never gives a permutation in , foraxxx q −= −2)(π qF .0≠a  

  
Proof:  Let ,Ζ∈k α  a primitive root and . Also let  be such that beka α= s )(|)( ksq 241 +/−  and l  such 

that skql −−
−

=
2

1 .  By Lemma 4, in . We will show that and this will imply that ls αα ≠ qF )()( ls απαπ =

π is not one to one and hence is not a permutation. Now skql −−
−

=
2

1 implies that 12
1

−==
−

++
q

slK αα and 

therefore . This implies that: 01 =+++ klsα ( ) =+−= ]][)[( lsksl ααααα 10  
( ) =+−− ))(())(()( 22 slkslskl αααααααα ( ) =+−− −− ))(()())(()()( 2121 slkqlslsklqs αααααααααα , now 

multiplying by we have: 

. This implies 
that  and . Hence we found such that and  and 
therefore 

11 )()( −− sl αα

( ) =+−− −− 020002 ))(()())(()()( slkqlslsklqs αααααααααα )()( ls απαπ −

)()( ls απαπ −=0 )()( ls απαπ = slαα ls αα ≠ )()( ls απαπ =

π is not one on one in .  qF

 

Conjecture 1. Let be odd and . The binomialq 5>q axxx
q

−=
−
2

3

)(π is never a permutation binomial of , 
for .  

qF

0≠a

4. Permutations given by axxx
q

+=
+
2

1

)(π that decompose in cycles of length 2. 
 
The binomials that we tried in Section II where not permutation binomials or have been studied before. In 
this section we will work with binomials that are know to be binomial permutations and study the necessary 
and sufficient conditions for them to decompose in cycles of length two. These permutation binomials are 

given by axxx
q

+=
+
2

1

)(π . The following theorem 1 states when the binomials )(xπ  are permutation 
binomials. 
 

Theorem 1. Given an odd number , the binomialrpq = axxx
q

+=
+
2

1

)(π , is a permutation binomial of if 
and only if . 

qF

112 =− )(aη
 

  



   We present different results related to these permutation binomials, that were derived from the study of 
the necessary and sufficient conditions on  such that the permutation decompose in cycles of length two. 
Also we establish necessary and sufficient conditions for the binomial 

a
)(xπ to have fixed points. 

 

Proposition 4. Let axxx
q

+=
+
2

1

)(π be a permutation of and letqF α be a primitive root in . Then is a 
fixed point if and only if 

qF iα

i is even and 0=a or i is odd and 2=a . 
 
Proof: Letα be a primitive root in . Suppose that is a fixed point of . Then . This 

is

qF iα qF ii ααπ =)(

ii
q

i a ααα =+
+
2

1

)( . Now we have that iiiii
q

aa αααααα =+−=+
−

)())(( 2
1

. This implies that, if i is even, 
we have , which means thatiii a ααα =+ 0=a . Now if i is odd, factorizing we have which 
means that . Let

02 =− )(aiα
2=a 2=a and i  be odd. Then 

iiiiiii
q

i
q

ii ααααααααααπ =+=+−=+=+=
−+

2222 2
1

2
1

)())(()()( α− . Hence  and  is a fixed 

point. Let and i  be even. Then 

ii ααπ =)( iα

0=a iii
q

i
q

ii αααααααπ =−==+=
−+

)())(()()( 2
1

2
1

0 . Hence  
and is a fixed point.  

ii ααπ =)(
iα

 

Proposition 5. Suppose that xxx
q

22
1

+=
+

)(π is a permutation of that decompose in cycles of length two. 
Then . 

qF

)(| 14 −/ q
 
Proof: We will prove by the counterpositive. Let α be a primitive root in . Since the coefficient 
of

qF

x in )(xπ  is , then from Proposition 4 we have that for all2=a 20 −≤≤ qi  , where i is odd . 

Since there are possible values for i , this means that there are 

ii ααπ =)(

1−q
2

1−q  values of  that are odd and 

therefore 

i

1
2

1
+

−q , fixed points counting the fixed point 0. Suppose that )(xπ decomposes in cycles of 

length two, this means that the
2

1−q elements that are not fixed points are contain in cycles of length two. 

Therefore we have, 
4

1−q cycles of length two. But this is a contradiction because 4 . Hence )(| 1−/ q )(xπ  

does not decompose in cycles of length two in . qF

 

Proposition 6. Let 2
1+

=
q

xx)(π  a permutation of . Then qF )(xπ decompose in cycles of length two if and 
only if . )1(|4 −q
 
Proof: We will prove the counterpositive. This is, we will prove that if )(⇒ )(| 14 −/ q , then )(xπ  does not 
decompose in cycles of length two. Suppose that )(| 14 −/ q  and letα be a primitive root in . Since the 
coefficient of

qF

x in )(xπ  is , then from Proposition 4 we have that for all0=a 20 −≤≤ qi  , where i is 

even . Since there are possible values forii ααπ =)( 1−q i , this means that there are 
2

1−q  values of i  that 

are even and therefore 1
2

1
+

−q , fixed points counting the fixed point 0.  Suppose that )(xπ decomposes in 

cycles of length two, this means that the
2

1−q elements that are not fixed points are contained in cycles of 

length two. Therefore we have, 
4

1−q cycles of length two. But this is a contradiction because )(| 14 −/ q . 

Hence )(xπ  does not decompose in cycles of length two in . qF

  



 
)(⇐ Let  and )1(|4 −q α be a primitive root in . Suppose that qF )(xπ  decompose in cycles of length two. 

This is ααππ =))(( , and 2
1

2
1

2
1

2
1

))(())((
+−++

=
qqqq

ααα =−=
+
2

1

)(
q

α  =−−
−

)()( 2
1

αα
q

 =−−
−−

)()()1( 2
1

2
1

αα
qq

 

)()1( 2
1

α
−

−
q

. Now, since , this means that )1(|4 −q 14 −= qk , Ζ∈k  and kq 2
2

1
=

− . This means that 

1)1()1( 22
1

=−=−
−

k
q

and ααππ =))(( . Hence )(xπ  decompose in cycles of length two.  
 

Proposition 7. Let axxx
q

+=
+
2

1

)(π , 0≠a be a permutation of that decomposes in cycles of length two, 
then . 

qF

22 =a
 
Proof: Letα be a primitive root in . SinceqF )(xπ is a permutation that decomposes in cycles of length two. 
Then for all , that is not a fixed point we have that . This is 20 −≤≤ qi ii ααπ =)(2

iii
qq

ii
q

aaa ααααααα =+++
−+−

))(())(( 2
1

2
1

2
1

 such that iii
q

ii aaa ααααα =+−++−
+

))(())(( 2
1

. This has to be 
true for all i even and odd. Therefore, when i is even or odd, we have that  or 

 which implies that 

ii aa αα =−− ))(( 11
ii aa αα =+ )1+ )(( 1 0=a or 2−=a , but these coefficients generates fixed points. Also 

when i is odd or even we have that  which implies that . Hence if ii aa αα =−+ ))(( 11 22 =a )(xπ gives a 
permutation of that decomposes in cycles of length two, then . qF 22 =a

 
   Studying the necessary and sufficient conditions for )(xπ to decompose in cycles of length two we have 
reach an important conjecture, that is establish below. 
 
Conjecture 2. Letα be such that is a quadratic residue mod q and suppose that mod q . Then 

the binomial 

12 −a 22 =a

axxx
q

+=
+
2

1

)(π  decomposes in cycles of length two in orqF axxx
q

−=
+
2

1

)(π  decomposes in 
cycles of length two in . qF

 

Proposition 8. There are fields for which no binomial of the form axxx
q

+=
+
2

1

)(π  where is a 
quadratic residue, produces a permutation of  that decompose in cycles of length two. 

12 −a

qF

Example 5. is a field for which no binomial of the form11Z axxx
q

+=
+
2

1

)(π  produces a permutation that 
decomposes in cycles of length two. 
 
 

4. Conclusions and Work in Progress 
 

In this section, we present necessary conditions for the binomial permutation xxx
q

22
1

+=
+

)(π  to 
decompose in cycles of length two. Also we presented that certain types of binomials never give 
permutations of . Furthermore we presented a variety of conjectures.  The first one states that a certain 
type of binomial never gives a permutation and the other one state the sufficient condition for a permutation 
binomial to decompose in cycles of length two. We plan for our future work to find and characterize the 

fields for which no binomial of the form 

qF

axxx
q

+=
+
2

1

)(π  is a permutation binomial of , that decomposes 
in cycles of length two. Also we want to study other binomials. Last but not least we want to prove the 
conjecture or find a counterexample. 

qF
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