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Abstract 

 
The phenomenon of void formation in bodies under tension has been observed in laboratory experiments. Ball 
(1982) showed, in the context of nonlinear elasticity, that void formation or “cavitation” can decrease the (potential) 
energy of a body in tension when the tension is sufficiently large. An important related problem is that of 
characterizing or computing the critical boundary displacement at which cavitation occurs. As cavitation can point 
to the initiation of fracture or rupture in a body, the computation of such critical boundary displacement is important 
from the point of view of design. In Negrón-Marrero and Sivaloganathan  a numerical scheme for computing the 
critical boundary displacement for cavitation is proposed that applies to a very general class of compressible 
homogeneous materials. In this paper we study the generalization or extension of this method to composite (non-
homogeneous) materials. 
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1     Introduction 

 
Void formation, also known as “cavitation” can point to the initial fracture of a body in tension (Figure 1). Over the 
years, this phenomenon has been studied and it was shown by Ball (1982) that void formation decreases the 
potential energy of the body. This happens when the boundary displacement is sufficiently large.  The particular 
boundary displacement at which cavitation appears is called the critical boundary displacement for cavitation and is 
denoted by λcrit. The computation of such critical boundary displacement is important from the point of view of 
design. Most of the  attempts of computing λcrit have been based on finding exact solutions of the equations 
describing such deformations. For a nice review on these and other related results on cavitation we refer to Horgan 
and Polignone . In Negrón-Marrero and Sivaloganathan  a numerical scheme for computing the critical boundary 
displacement for cavitation is proposed that applies to a very general class of compressible homogeneous materials. 
This method is based on the solution of a sequence of problems with punctured domains. That is, a small hole is put 
in the center of the body, and the problem is solved for such a domain. Then we proceed to make the hole smaller 
and repeat the process. It is known, Sivaloganathan 5 , that this process converges to a solution of the corresponding 
problem for the solid body. In the method of Negrón-Marrero and Sivaloganathan , which is called the inverse 
method, in addition to the punctured domain, the inner cavity size of the deformed body is specified as well, and a 
sequence of problems with both the hole in the reference configuration and that of the deformed configuration 
approaching zero, is solved. In Negrón-Marrero and Sivaloganathan  it is shown that this process converges to λ
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crit. 

With the specification of the inner cavity, one then is confronted with solving a sequence of initial value problems 
(c.f. (10), (11)) instead of a sequence of nonlinear boundary value problems (c.f. (6), (7), (8), (9)). 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Void formation or cavitation on a spherically symmetric body. 
 
   The inverse method proposed by Negrón-Marrero and Sivaloganathan  and its convergence properties are for 
homogeneous materials. In this paper we consider the generalization of this method to bodies composed of two 
different homogeneous materials.  We consider a sphere or ball with a center core and an outer core of different 
materials each (Figure 2). We study how the critical boundary displacement depends on the properties of the two 
material and the relative sizes of the cores. For the purpose of this work we consider cores composed of materials 
that can be described by the stored energy function (1): 
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   Each core will be described by a function of this type. For this particular example we study how λcrit varies as the 
material parameter c changes for each core, and how it depends on the relative sizes of the cores. 
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Figure 2. Non-homogeneous material (left). Non-homogeneous material with cavitation (right). 
 
 
 
 
 



2 Formulation of the Problem 
 
We considered a unit sphere B  as the reference configuration of the body. A deformation of B is a function 

. The derivative  is called the deformation gradient. The requirement that the deformation u 
preserves orientation is equivalent to: 
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   If , where , represents the stored energy function for the 
material of the body, then the total stored energy associated with the deformation u is given by: 
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   We look for deformations u that minimize this total stored energy functional among an appropriate class of 
functions and satisfying the boundary condition: 
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   In this paper we look for solutions of this problem that are radially symmetric,  that is, solutions u of the form: 
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where xR = , and . It follows that the condition (2) is satisfied provided: ℜ→]1,0[:r
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   The stored energy functions W that we consider will be of the following form: 
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where  are the proper values of (,,, 321 vvv ) 2
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'FF , called the principal stretches, and  is the radial size of 
the inner core. The total stored energy in the body due to deformation 
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   In the following we use the notation  for the partial derivative of ji ,Φ iΦ  with respect to the j-th variable, and 
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   By considering smooth variations  such that v 0)1( =v , one can show that the Euler-Lagrange equations for the 
functional (4) are given by: 
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with boundary conditions: 
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   Note that in general  will be a continuous function, differentiable everywhere except at . However 
the radial stress is in general continuous for all 

)(Rr aR =
R . In fact, the last condition in (8) is just a statement that this radial 

stress is continuous across . aR =
 
3     Numerical Scheme 

 
In this section we describe the numerical scheme that was used to approximate the critical boundary displacement 
for cavitation. As mentioned in the introduction, the method is based on the solution of a sequence of problems with 
punctured domains. The punctured domains are given by: 
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where 0>ε . We denote by  the solution of (6), (7), (8), and (9) in this new domain. In this case the 
condition (9) reduces to: 
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   Under some physically reasonable assumptions on the stored energy functions 21,ΦΦ , we can get that the 
equations: 
 
 
      ,2,1,),,(1, ==Φ iPi ττν  
 
 
are equivalent to 
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where 2,1),,0(),0(: =∞→ℜ×∞ iiφ , are smooth functions.  
 
   If instead of λ in (8), we prescribe cr =)(εε , then the problem of finding  can be stated now as the 
following initial value problems: 
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   The idea now is to solve these problems for a sequence of c,ε  converging to zero. For the case of the single core 

it is shown in Negrón-Marrero and Sivaloganathan  that the sequence of boundary displacements generated 4



according to )1(ελ r= , converges to the critical boundary displacement for cavitation λcrit. This procedure can be 
described by the following pseudo-algorithm: 
 
 
3.1     Procedure 
 
Let ({ kk c, )}ε be a sequence converging to (0,0). 
 
1. For k = 0, 1, 2,…, 
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b) Compute an approximate solution ( )Rrk 1,  of the IVP given by the equation (3) on ( ak  , )ε  subject to  
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c) Compute an approximate solution of the equation:  2,kv
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d) Compute an approximate solution ( )Rrk 2,  of the IVP given by the equation (5) on (  subject to  )1, a
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e) Set ( )12,kk r=λ . 
 

2.    Repeat steps (a) to (e) until{ }kλ satisfies a certain stopping criteria. 
 
4 Numerical Results 

 
Procedure 3.1 was implemented in MATLAB. This computational environment provides for very efficient routines 
for solving initial value problems. For the numerical simulations we used the following stored energy functions for 
the cores: 
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where  denote the inner an outer cores respectively.  2,1=i
 
 



   We ran several simulations in which we used Procedure 3.1 to compute λcrit for different values of . In the 

first case  and we vary . As  increases from 1.5 to 5, the outer core becomes “harder”. We 
can see (Figure 3) that it becomes “easier” (smaller λ

21,, cca
5.1,2.0 1 == ca 2c 2c

crit) to open a hole in the center as expected due to the “harder” 
outer core. 
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Figure 3. critλ as a function of  for .  2c 5.1,2.0 1 == ca
 
   In the next simulation we have . Thus the outer core is harder than the inner one. We vary the inner 
core radius. We can  (Figure 4) that as the inner core radius increases, it becomes “harder” (larger λ

5,2 21 == cc
crit) to open a 

hole at the center. This is the effect of the increasing inner core. As a  gets close to 1, one can see that λcrit 
approaches the value of 1.3087 which is that corresponding to a single core of 21 =c . 
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Figure 4. critλ as a function of  for . a 5,2 21 == cc
 
   In the last simulation we consider variations both in  while  is fixed at 2.  varies between 1.5 and 5, 
while  changes between 0.1 up to 0.5. We show (Figure 5) the corresponding surface of λ

ac ,2 1c 2c
a crit as a function of 
. It is interesting to observe that for values of  between 1.5 and 2, the value of λac ,2 2c crit is a decreasing function 

of . For a  small, the softer material given by  occupies most of the body. One has to pull “harder“ to open a a 2c



hole in the “harder” center ( ) because the outer material  yields more easily. As a  increases, this effect 

becomes less marked. The opposite behavior holds for values of  between 2 and 5.  
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Figure 5. critλ as a function of both and a. 2c
 
5     Conclusions 
 
In the more general case of a composite material, the inverse method proved to be a useful scheme for computing 
the critical displacement for cavitation. We studied the behavior of λcrit as a function of some of the constitutive 
parameters of the materials of the cores and as the size of the cores changed. The stored energy function used for the 
simulations is good only for small deformations because the term corresponding to the determinant, which is 

, is finite under extreme compressions. In a future paper we consider more realistic stored energy functions 
(3) as well as other types of non-homogeneities. Also one needs to study the theoretical convergence properties of 
the scheme under these more general conditions. 
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