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Abstract

Self-avoiding walks defined over regular grids have been popular because they are used to study and model properties of polymers. The grids used are often restricted to rectangular strips, circles and cylinders among other shapes. Diagrams called column states are used to describe changes in the paths between columns of points. A path can be described also by a sequence of those column states. Only some column states can be successors of another column states in those sequences. Then, a digraph may be associated to a given grid by taking the set of column states as its vertex set and directed edges defined according to allowable column states successors. This work restricts its attention to closed paths over rectangular strips and cylinders and pays a closer look at properties of the column states digraph than what is found in literature. The construction based on the identification of sub-graphs corresponding to smaller grids within the larger graph leads to recurrence equations for counting vertexes and edges, which we present in the case of regular grids.  With the algorithm and the recurrence equation the possibility is opened for obtaining better estimates of the size and sparsity of the of the adjacency matrix of the digraph, which in turn is closely related to a transfer matrix that is important for the applications mentioned above.
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1. Introduction

Self-avoiding walks (SAW) and cycles (SAC), also called self avoiding polygons, defined over regular grids have been used to study and model polymers since early last century.  G. Pólya1 published a seminal work in this area with applications to the study of hydrocarbons.  But this is still an active area of research.  In 1980 K. Douglas2 used (SAW) and (SAC) constrained to 2 dimensional surfaces such as strips, cylinders and cubes to compute polymer distributions.  Kloczkowski and Jernigan3 extended this work for 3 dimensional structures in 2002.  A.J. Guttmann and A.R. Conway5 give an extended review of the progress on the solution of specific problems in this area.

The present work restricts its attention to the modeling of linear polymer conformations with SAC as used by Douglas.  In the following sections a notation for the column states that represent transitions on the rectangular grids is introduced. The column states are used as the vertex set of a digraph whose adjacency matrix is related to the transfer matrix used by Douglas.  The aim is to find a set of rules that can be used to construct the digraphs algorithmically.  A recurrence equation based on the algorithm that gives the number of vertices is posed and an explicit solution is presented.  For the number of adjacencies, some facts are proved that allow estimating the minimum and maximum values, thus giving estimates of the density of the transfer matrix.

2. Preliminaries


Modeling and studying properties of polymers with the study of (SAW) and (SAC) is not a new tool, a basic idea of the construction of the vertices can be found in K. Douglas2. The approach and notation used thought this paper to study (SWA) and (SAC) is explain in the next section.

2.1 self avoiding walks and cycles

[image: image1.wmf][image: image51.png]



A self-avoiding walk (SAW) is a sequence of moves on a lattice, which does not visit the same point more than once. A self-avoiding cycle (SAC) is a closed self-avoiding walk on a lattice. Self-avoiding walks defined over lattices of width n and arbitrary length (Figure 1) are studied here.

2.2 column states

Given a rectangular grid one obtains diagrams called column states by placing vertical lines between the vertices or pair of points in the lattice (Figure 1).  They are used to describe changes in the paths between columns of points. A cycle can be described also by a sequence of those column states. Figure 2 shows all the possible column states for n=5.

[image: image52..pict][image: image53..pict]
Notation. Column states can be seen to be permutations of the vertices which are transpositions of points such as 
[image: image58..pict] where 
[image: image2.wmf] for 
[image: image3.wmf]and
[image: image4.wmf]. Figure 2 shows the corresponding product for all the column states for n=5.  

Note that only some column states can be successors a given column state. This is because, for some pair of states, any attempt to go from one column state to another will produce collisions in the path.  Figure 3 shows that there is an allowable path corresponding to the left pair of states while any attempt to construct such a path with the right pair shows collisions. 
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Figure 3. Pairs of column states cannot always be in succession. 

2.3 transfer digraph

As stated above, only some column states can be successors of another column state in those sequences. Therefore, there is a natural way of defining a digraph that describes these relations.  

Definition.  A directed graph or digraph called the transfer graph is associated to a given grid by taking the set of all possible column states as its vertex set and directed edges defined according to allowable column states successors that determine adjacencies. The transfer graph of n is denoted by 
[image: image6.wmf], where 
[image: image7.wmf] is the column state set and 
[image: image8.wmf] is the edge set. 

Representing the column states as permutations, which are transposition of the vertices, we construct the transfer graph (Figure 4). A single line represents an adjacency between columns states in both directions. An arrow represents an adjacency in one direction. This is from the column state the arrows points to the one in the end. Note that all vertices are adjacent to themselves but for simplicity we do not show those adjacencies in the figures.
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This work restricts its attention to closed paths over rectangular strips and cylinders.  It also pays a closer look at properties of the column states of the digraph than what is found in literature. The construction based on the identification of sub-graphs corresponding to smaller grids within the larger graph leads to recurrence equations for counting vertices and edges, which we present in the following section for the case of regular grids.  As an example, the transfer graph for 
[image: image9.wmf]is composed of the transfer graphs of 
[image: image10.wmf] and 
[image: image11.wmf]as sub-graphs where we can find copies of them where we only add one. 

Notation.  Copies of the 
[image: image12.wmf] in which we add a to each element is represented as 
[image: image13.wmf]. Where 
[image: image14.wmf] and 
[image: image15.wmf].  This can be seen in (Figure 5). 

Definition. A concatenation of a transposition 
[image: image16.wmf] and a digraph 
[image: image17.wmf] is defined and denoted by 


[image: image18.wmf],


[image: image19.wmf],
[image: image20.wmf].
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Figure 5. Sub-graphs of transfer graph D5.

2.4 count of size of vertex set

An algorithm that construct the vertex set 
[image: image22.wmf] is based on the identification of subsets that are copies of the sets 
[image: image23.wmf] , i<n found within 
[image: image24.wmf]. This algorithm leads to the recurrence equation6



[image: image25.wmf].
The formula for counting column states presented by K. Douglas2 is a solution of this equation. presents a non-recurrence equation. Note that the number of column states in 
[image: image26.wmf] is given by the number of vertices of the previous digraphs and other vertices, which are obtained from concatenations. The recurrence equation gives us the number of column states that will be present in the transfer graph 
[image: image27.wmf]. 

3. Rules for Determining Adjacencies

We know that we can construct the vertex set of a transfer graph based in the previous vertex set of transfer sub-graphs. Notice that there are certain column state that are before other in the lattice, which tells us that there are certain finite combination of the column states in the lattice, which gives us adjacency. We want to determine the density of the transfer matrix, which is the number of nonzero values, where the columns are the column states of 
[image: image28.wmf]. The possibility is opened for obtaining better estimates of the size and sparsity of the of the adjacency matrix of the digraph. We present some results that eventually will allow us to find a lower and upper limit for the density of the transfer matrix. 

Theorem: Let 
[image: image29.wmf], v = {(a1 b1)...(an bn)}, ai < bi for i=1,..,n, and
[image: image30.wmf].  Then 
[image: image31.wmf] if and only if for every  
[image: image32.wmf] there is no 
[image: image33.wmf]with  ai < aj < bj < bi.

Proof. (() Let w and v as in the hypothesis. By induction in n, since 
[image: image34.wmf] has only one element, (1 2), the statement is trivially true. Suppose true for k < n. Take
[image: image35.wmf] .


Case 1: No transposition in v has 1 or n. Then is true for inductive hipotesis because 
[image: image36.wmf].

Case 2:  Suppose v={(1 n)}, the theorem holds because  w=v and there is a trivial path compatible with the state represented by 
[image: image37.wmf].

Case 3:  v ε{(1 n)}Dn-2+1. Note that w has to have (1 n). To see this suppose that w does not have (1 n) that is 
[image: image38.wmf]. Since v-{(1 n)} ≠ ø,  take  
[image: image39.wmf]. Note that 1<a<b<n which is a contradiction, therefore 
[image: image40.wmf]. 

Now substract (1n) form v and w  we can apply case 1 to obtain (w-(1 n)) ( (v-(1 n)). Then it is easy to extend the path compatible with the pair of states (w-(1 n)) ( (v-(1 n)) to one compatible with w ( v . That is w ( v, see Figure 6.
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Case 4: 
[image: image41.wmf], i < j.  Here v is the concanetation of

v1 = {
[image: image42.wmf] | 1 < a < b < i},and v2 = v – v1. 

w can be divided as well into w1 = { 
[image: image43.wmf]| 1 ≤ a < b ≤ i}, and w2 = w – w1.

By inductive hipothesis v1 ( w2 and v2 ( w2 and the Figure 7 shows that there is a posible path from v to w.

[image: image44.wmf]
Figure 7. Possible path from v to w.
(⇒)  Suppose w  ➞ v and v, w are as in the hipothesis. Suppose 
[image: image45.wmf]  and  
[image: image46.wmf] with a < c < d < b. The Figure 8 shows that one cannot construct a path without collisions.
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Figure 8. Vertex v is not adjacent to w.
Corollary: Every vertex 
[image: image48.wmf]is adjacent to itself, that is v((v .

Definition: If (ai bi) < (ci di) this is that ai ≤ c i<  di ≤  bi.

Definition: Let v be a vertex. We say that 
[image: image49.wmf] is the shortest transposition in v if  
[image: image50.wmf].     

Theorem: Let v = {(a1 b1)...(an bn)},  ai < bi and w={(c1 d1)...(cn dn)} where (ai bi) < (ci di). Then w (v and v( w.

Proof: Let v and w be as describe in the theorem. Now construct the path taking the shortest transposition in v and w such that  (ai bi) < (ci di), and we draw a possible path we continue this way and when we are done with all of them we unite the paths to construct the final path. This is described in Figure 9.


Theorem: Let v = {(a11 a21)...(a1k a2k)}, and w={(b1k b2k)...(b1k b2k )}, then w ( v and v( w if and only if a1i ,  b1i > max( a2i-1  , b2i-1)  and b1i <  a2i  or a1i <  b1i   for all 0 < i ≤ k where 0 < k ≤ [n/2].
Proof:  ( ( ) We will prove this by induction. Let k=1, this is that v = (a11 a21) and w = (a11 a21). Now since b11<  a21  or a11 <  b11  this is demonstrated in Figure 10. 


Suppose this is true for k. Now we will prove this for k+1. By the construction of the transpositions we have that they can be seen as the union of disjoint transpositions.  Therefore we have that there exist a possible path between the first k transpositions which we can connect to the last transposition therefore we have that w ( v and v( w.

 
( ( ) Suppose that a1i ,  b1i <= max( a2i-1  , b2i-1). By the construction of the vertices we have that v and w are vertices compose of the disjoint union of transpositions. Therefore without any loss of generalization let v and w be as in Figure 11.



We can see that w is not adjacent to v and v is not adjacent to w, which is a contradiction. Therefore  a1i ,  b1i > max( a2i-1  , b2i-1). 

Now suppose that  b1i >= a2i  and a1i >=  b1i. These cases are represented in Figure 12 and Figure 13.


We can see that both adjacency are impossible which is a contradiction. Therefore  b1i <  a2i  or a1i <  b1i   for all 0 < i < k where 0 < k < [n/2].


Corollary: Let v=(1 n) and w=(i j)  where 1< i,j < n, then  w ( v and v( w.

Proof: Since w=(i j) and v=(1 n) we know that for all 0< i,j, ≤ n, 
(i j) < (1 n), therefore we have that  w ( v and v ( w by the last theorem.

4. Conclusions and Work in Progress


We establish a recurrence equation based on an algorithm that we found to construct the transfer graph that eventually will help us model some polymer properties. The recurrence equation is the base for the algorithm that we constructed to study and model polymers, because of that we are working on a computer algorithm that will give us the graph which contains the column states and the relations between them that is the edges. Then we are going to study this conformation of polymers in cylinders. 
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Figure � SEQ Figure \* ARABIC �1�. Top: A Self avoiding cycle on a lattice of width n=5. Bottom: The corresponding column states






































Figure � SEQ Figure \* ARABIC �11�. Impossible adjacency from w to v and from v to w.





Figure � SEQ Figure \* ARABIC �11�. Impossible adjacency from w to v and from v to w.





Figure � SEQ Figure \* ARABIC �11�. Impossible adjacency from w to v and from v to w.





Figure � SEQ Figure \* ARABIC �10�. Adjacencies from v to w and from w to v.





Figure � SEQ Figure \* ARABIC �9�. Possible path between column states.





Figure � SEQ Figure \* ARABIC �6�. Extension of the path of that show there is a compatible path with w ( v.





Figure � SEQ Figure \* ARABIC �4�. D5, the transfer graph of n=5.





Figure � SEQ Figure \* ARABIC �2�.  All possible columns states for n=5 and their corresponding products of transpositions.
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