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Abstract 

 

The cantilever problem consists of studying the deformations of a bar or rod that is attached to a wall on one end and 

is subjected to a torque or applied force on the other end. In the classical cantilever problem, the constitutive 

functions (the functions characterizing the material that composes the bar) are linear, the material of the bar is 

homogeneous, inextensible and unshearable; there is no applied torque, and the applied force is vertical. The 

classical problem was studied by Jas. Bernoulli (1694) and L. Euler (1727). The cantilever problem still has many 

applications in engineering, and more recently in nano technology.  This project is considering a nonlinear model of 

the cantilever in which the material of the bar is non-homogeneous, extensible and shearable. The nonlinear model is 

introduced to describe a finite difference numerical scheme for computing approximate solutions of the problem. 

The resulting nonlinear system of equations is solved with Newton’s method, by taking advantage of the structure of 

the Jacobian matrix (almost tridiagonal) to solve the intermediate linear systems efficiently. Moreover it has been 

developed a graphical user interface which allowed us to experiment with the model and to control more effectively 

the different constitutive and force parameters. These tools are used to study the dependence of the bar deformations 

on thickness variations and the different constitutive parameters and applied forces. Also, this helps in the study of 

the severity or magnitude of the shear strain as the parameters and forces are changed. 
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1. Introduction 
 

We consider the problem of finding the shape that assumes a bar composed of a certain material, when it is attached 

to a wall, and we apply some force or torque on the other end. This problem is known as the cantilever. In the 

classical problem of the cantilever (Bernoulli, 1694; Euler, 1727), the functions that describe the material composing 

the bar (constitutive functions) are assumed to be linear. In this paper we consider nonlinear constitutive functions 

for the material behavior that include effects for shear, bending, and torsion.
1 
For simplicity it is assumed that the 

cross sections of the bar are circular (see Figure 1). 

The problem of the cantilever has many applications in engineering in particular for the construction of bridges. It 

has also become important in the field of nano science or technology as some deformations of nano fibers can be 

described very well with a model of a cantilever.
3, 4 

An interesting problem would be to compare the results of using 

the models in this paper based on macro mechanical behaviors, with models of deformations of these nano fibers 

based on molecular dynamics. 

The computer simulations performed nowadays in many areas of modern science use what is known as a 

graphical user interface or GUI. The GUI helps the data entry to the computational module which performs the 

required computations with the values entered by the user. The computational package MATLAB  provides 

several tools to create the graphical user interfaces. Using these tools we constructed a GUI for the non-linear 

cantilever problem that allowed us to systematically change mechanical and constitutive parameters, and then 

generate different types of deformations. 

 



 
Figure 1: Reference and deformed configurations of the bar. 

 

 

2. The Mathematical Model 
 

In the Cosserat’s special theory, 
1
 a planar configuration of a column can be described with two functions r, b: 

[0,1]→ span{i, j}. The unit vector b(s) is called the directrix at s. If we define the unit vector a = - k × b, then a, b 

belong to span{i,j}. Hence there exists a function θ (s) such that: 

 

      a(s) = cosθ (s)i + sinθ (s)j,      b(s) = - sinθ (s)i + cosθ (s)j. 

 

Since {a, b} is a base for span{i, j}, we can write: 

 

      r'(s) = v(s)a(s) + η (s)b(s),        (1) 

 

for some functions v(s), η (s). These functions together with µ (s) = θ '(s) are called the strains and they 

completely characterize the deformation of the column. To ensure that the deformation of the bar is not so severe as 

to make r and b parallel, we require that v(s) > 0, s∈[0,1]. 

 

2.1 mechanical behavior 
 

The contact force and torque exerted by the segment [s,1] of the bar on the segment [0,s] are given by n(s) and m(s), 

respectively, while the external (body) force and torque per unit length at the point s are given by f(s) and l(s), 

respectively. The equations of equilibrium for the deformed bar are now given by
1
: 

      n′(s) + f(s) = 0,     m′(s) + r′(s) ×  n(s) + l(s) = 0.             (2) 

 

Since we are assuming the deformation of the bar is planar, then there exists functions N(s), H(s), M(s) such that 

      n(s) = N(s)a(s) + H(s)b(s),       m(s) =  M(s)k.        (3) 

 

 

 

 



211 
 

 

 

2.2 boundary conditions 
 

The boundary conditions at s = 0, 1 can be specified in several ways. We discuss the conditions at the end s = 1 of 

the bar, the other case being similar. Given the vectors r , n , we can specify that 

 

      r(1) = r1 ,    or     n(1) = n1 .. (4) 

 

In addition, given ,, 11 Mθ we could have that 

 

      1)1( θθ =      or      1)1( MM = . (5) 

 

The boundary value problem for the deformations of the bar is given by (2) together with one of the boundary 

conditions in (4) and another from (5), and the same for s = 0.  

 

2.3 the equations for the nonlinear cantilever 
 

Suppose that the initial figuration of the bar is like in Figure 1 and that f(s) = 0, l(s) = 0, for all s in (2). From the 

first equation in (2) we have that n(s) = constant. If at s=1 we have an applied force given by the vector 
 

( ),sincos1 jin ααλ +−=  then, we have that 

 

      ( ) ( )jin ααλ sincos +−=s , 

 

for all s. It follows now from (3) that 

 

      ( ) ( )( ) ( ) ( )( ).sin,cos αθλαθλ −=−−= ssHssN               (6) 

 

One can show now that the second equation in (2) is equivalent to 

 

      ( ) ( ) ( )( ) ( ) ( )( )[ ] 0cossin =−+−+′ αθηαθνλ sssssM .      (7) 

 

So far the functions N(s), H(s), M(s) have not been specified. We assume that  

 

      ),())(()(),()()),(()( ssEIsMsDsHsNsN µην ===
)

     (8) 

 

where 0>D , 

 

      ,0,0,,)( >≥+−−= − aBABABAN aa ννν
)

       (9) 

and 0))(( >sEI  for all s. The function ))(( sEI  contains the information of the geometrical properties of the 

cross sections of the bar. Using these expressions together with (6) and (7) we can get the functions )(),( ss ην  in 

terms of )(sθ  and a differential equation for )(sθ :  

 

      ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ),sin,cos,
2
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λ
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The boundary conditions that the bar is attached to a wall on the left side and that a torque is applied on the right 

side are equivalent to 

 

      ( ) ( ) ,1',00 γθθ ==        (12) 

 

where γ  is proportional to the applied torque. 

The equations (10), (11) and (12) constitute the boundary value problem for the cantilever. (The case 

0,1,2/ === ηνπα  corresponds to the classical cantilever problem.) After solving these equations for the 

function ( )sθ , we have from (1), (10) and 0r =)0(  that the deformed curve of centroids is given by: 

 

      ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] jir 







++
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ss
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00

cossinsincos θηθθηθ .    (13) 

 

3. The Numerical Method 
 

 

The equations (10), (11) and (12), in general, can not be solved in exact or closed form. It is therefore necessary to 

turn to numerical methods to approximate its solutions. In this section we will describe a finite difference method to 

approximate these solutions. 

First we construct a uniform partition of the interval [0, 1] into n sub-intervals. Taking h = 1/n we have that the i-

th interval in such a partition is given by [s 1−i , s i ], 1 ≤ i≤  n, where s i =ih,       0≤ i≤ n. We write s 2/1−i  to 

represent the mid point of the interval [s 1−i , s i ], that is: 2/)( 12/1 iii sss += −− ,  1 .ni ≤≤  

 

Let iθ  represent an approximation of nisi ≤≤0),(θ , and iv , iη  be given by (10) replacing )( isθ  with iθ .  

We have now by using twice the mid-point rule for approximating derivatives
2
, that equation (11) can be 

approximated by 

 

      
( )( ) ( )( ) ( )( )( ) ( )( )[ ]

( ) ( )[ ] ,0cossin2

12/12/12/112/1

=−+−+

++−≡ −−−+++
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iiiiiiii

vh

sEIsEIsEIsEIF
     (14) 

 

where 1≤  i ≤  n – 1.  Using an end-point formula for approximating derivatives, we get that the boundary 

conditions (12) can be approximated with 

 

      .0243,0 210 =−+−≡= −− γθθθθ hF nnnn         (15) 

 

The equations (14) and (15) now form a system of equations whose solutions represent the values of 

nθθθ ,...,, 21 . These equations can be solved using Newton's method.
2
 Already calculated the values of 

,,...,, 21 nθθθ  we can obtain the deformed curve of centroids from (13) after approximating the corresponding 

integrals using for instance the trapezoidal rule.
2
 

   The linear system to be solved on each iteration of Newton's method when applied to the system (14), (15), can be 

solved very efficiently if one takes into account the sparsity of the corresponding matrix. If F ( )θ = 

,),...,,( 21

t

nFFF where θ = ( )tnθθθ ,...,, 21  represents the system (14), (15), then performing the 

corresponding differentiations one gets: 
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      ( ) 







=′

βtc

bA
θF , 

 

where A  is an )1()1( −×− nn  tridiagonal matrix, 
1, −ℜ∈ n

cb , and ℜ∈β . One can show now that the 

corresponding linear system hwθF =′ )(  can be solved by solving two tridiagonal )1()1( −×− nn  systems, 

plus two additional inner products, that is in )(nO  operations. 

 

4. The Graphical User Interface 
 

Using the tools provided by the package MATLAB™, we developed a graphical user interface to experiment with 

the cantilever problem.  The numerical scheme discussed in Section 3 essentially comprises the computational 

module which is controlled by the GUI. In Figure 2 we show a snapshot of the cantilever GUI. The interface has 

several sliders and editable text boxes for the user to enter the different mechanical parameters and applied force and 

torque. There are several menus in the interface to set the bar cross section thickness function, numerical parameters 

for Newton's method, and some examples for the user to begin familiarizing with the GUI. 

After specifying all of these parameters, by pressing the button labeled “Run” (in gray), the GUI executes the 

computational module with all the specified parameters. After execution the GUI presents a graph of the resulting 

deformation. The two boxes on the GUI called "MN Iter" and “Relative Error” show the maximum number of 

iterations performed by Newton's Method and the approximate relative error on the computed solution. These two 

numbers can be used to assess the convergence or failure of it of the Newton iteration. 

 

 

 
 

Figure 2: Snapshot of the graphical user interface for the cantilever problem. 

 

 

 

 

 

 



5. Numerical Results 
 

In this section we discuss some simulations corresponding to deformations of the nonlinear cantilever, using the 

GUI and method of Sections 3 and 4, respectively. The function ))(( sEI  in (8) was taken to correspond to a bar 

with circular cross sections and constant mass density. We used four different thickness functions: (1) constant, (2) 

linear decreasing (a bar thicker at the left end and thinner on the right end), (3) linear increasing (a bar thinner at the 

left end and thicker on the right end), and (4) quadratic (a bar thicker on both ends and thinner in the middle). The 

thickness functions were chosen in such a way that the individual total masses of the bars are equal. 

   In Figure 3 we show the corresponding line of centroids for the deformed bars corresponding to the different 

thickness functions that we described above. The values we used for the parameters in (8) and (9) are given by 

 

   .2/,01.0,0001.0,1.0,2,2,1 παγλ ======= DaBA  (16) 

 

One can see that the bar corresponding to the quadratic thickness function suffers the largest deflection: the thinner 

part in the middle makes it easier to bend this bar than the others. However, most of the deflection is concentrated on 

the right end of the bar. The linear decreasing suffers the least deflection. (This might explain why fishing rods are 

thicker on the handle and thinner on the other end.) Note that both the quadratic and linear decreasing thickness 

functions have very similar deflection close to the left end. The other two cases: constant and linear increasing are 

somewhat intermediate with the constant thickness suffering the least deflection. In Figure 4 we show the 

corresponding shear functions in each case. In all cases the largest shear is close to the left end. However, the linear 

decreasing thickness function has the least shearing close to the right side while the quadratic has the lowest shear 

close to the center of the bar where it is thinner. 

 

 

 
Figure 3: Curves of centroids for different thickness functions corresponding to the data (16). 
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In our next simulation, we fixed the thickness function to the linear decreasing and changed the shear parameter D  

in (8). The parameter values are like in (16) except for 001.0=λ , 0=γ . We see (Figure 5) that the smaller the 

value of D , the more shearable is the bar, with most of the shear towards the left end of the bar.  
 

 
Figure 4: Shear functions for different thickness functions corresponding to the data (16). 

 

 
Figure 5: The function η(s) corresponding to different values of the shear parameter D . 



 

6. Conclusions 
 

The proposed numerical scheme and model for the nonlinear cantilever can be used to study the interactions of the 

various parameters describing the different constitutive and mechanical aspects of this problem. Even for the simple 

constitutive functions (8), the interrelation among the strains )(),(),( sss µην  is nonlinear. In a future work we 

will consider more general constitutive functions depending each of them on all the strains and to correlate the 

values of the different parameters in the model to actual laboratory data. 

   Nonlinear models of cantilevers are very common in the literature. Our model differs from many of these other 

problems either by the type of constitutive equations used or by the corresponding boundary conditions. For 

example, if we set 0,1 == ην  in (1), 0slif =−= )(,)( qs  in (2) where q  is a constant, ))(( sEI  equal to a 

constant in (8), and the boundary condition 0n =)1( , then our equations reduce to the one considered in (6). The 

emphasis in this paper is on finding analytical asymptotic approximations to the solutions of the corresponding 

equations. On the other hand in (7) and (8) the deformations of the cantilever are modeled by describing the 

displacement of the free end of the bar using a forced mass-spring system with friction. The corresponding problems 

are time dependent (ours is static). The source of the nonlinearities comes from the form of the external or applied 

force, which is given by an electrostatic force with variable voltage, or by nonlinear (cubic) spring responses
8
. In (7) 

the dynamics of a single cantilever is studied, with results on the stability of solutions and Hopf bifurcations. In (8) 

the authors studied a lattice of cantilevers with up to six neighbor interactions and nonlinear spring responses.  
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