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Abstract

In this work the method of Principal Components Analysis (PCA) is used to reduce dimensions of 
datasets formed by genomic data.  A sophisticated version of this technique may be used later as 
a help for the design of DNA arrays.  DNA arrays have applications to many areas of biology and 
medicine, such as studying treatments, disease, and developmental stages. To test the program 
the first input that we used was some books downloaded from the Internet. Then we tested the 
program  with  some  sequences  of  genomes  obtained  from  NCBI's  Gene  Bank.   A  graphical 
representation  of  the  dimesion-reduced  data  is  inspected  to  assess  the  effectiveness  of  the 
method.   After  comparing the performance of  the PCA algorithm on the text  books and the 
Salmonella complete genomes, we obtain the reasonably good results. Data from similar sources 
is visually allocated in the same area.

1. Introduction

Principal Components Analysis (PCA) is a mathematical procedure that transforms a number of 
possibly correlated variables into a smaller number of uncorrelated variables called principal 
components.  The  objective  of  principal  component  analysis  is  to  reduce  the  dimensionality 
(numbers of variables) of the data set but retain the most of the original variability in the data. 
The first principal component accounts for as much the variability in the data as possible, and 
each succeeding component accounts for as much of the remaining variability as possible1.

The PCA performed on the symmetric covariance matrix or on the symmetric correlation matrix. 
These matrix be calculated from the data matrix. 

The mathematical technique used in PCA is called eigen analysis we solve for the eigenvalues 
and eigenvectors of the squares symmetric matrix with sum of squares and crossproducts. The 
eigenvector  associated  with  the  largest  eigenvalue  determines  the  direction  of  the  second 
principal component. The sum of the eigenvalues equals the trace of the square matrix and the 
maximum number of eigenvalues equals the number of rows (or columns) of this matrix2.

A DNA microarray is a collection DNA segments (probes) attached to a solid surface, such as 
silicon chip, forming an array for the purpose of monitoring of expression levels for thousands of 
genes simultaneously. DNA microarrays have applications to many areas of biology and medicine, 
such as studying treatments, disease, and developmental stages. 

2. Background

2.1 covariance3
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The covariance is an important part of this project.  It is based on the measure of the linear 
dependence of  X1 and  X2 where  X1 and  X2  are column vectors that have the frequency of the 
symbols. This quantity, defined over the bivariate population associated with X1 and X2, is called 
the covariance of X1 and X2 .

In the notation the covariance is

CovX1, X2 = E [X1−u1X2−u2] = 1
N−1 ∑

i=1

n

X1j−u1jX2j−u2j ,

where u1 = EX1 = 1
N−1 ∑

i=1

n

X1j and u2 = EX2 = 1
N−1 ∑

i=1

n

X2j .

The larger the absolute value of the covariance of X1 and X2, the greater the linear dependence 
between X1 and  X2. Positive values indicate that  X1 increases as  X2  increases; negative values 
indicate that  X1 decreases as  X2   increases. A zero value of the covariance would indicate no 
linear dependence between X1 and X2.                  

2.2 eigenvalues and eigenvectors4

The study of linear operators on infinite-dimensional spaces is an important part of mathematics 
known as functional analysis.  We concerned with finding eigenvalues and eigenvectors of linear 
operators that are defined on finite-dimensional vector spaces. The following theorem serves as a 
first step in this direction.

Theorem

Suppose A is an n  x n matrix and T: RnRn is defined by T(v) = Av. Then the real number 

ƛ  is an eigenvalue of T if and only if det ( ƛ I – A) = 0.

For a linear map T: RnRn is defined in terms of multiplication by  an n  x n  matrix A, this 

theorem says that the eigenvalue of T are precisely the real solutions of the equation det ( ƛ I – 

A) = 0. As you will soon discover, the formula  det  ( ƛ I –  A) expands to a sum of various 

constant multiples of 1, ƛ , ƛ2 , ƛ3, ,ƛn .  Therefore, the formula det ( ƛ I –  A) defines a 

polynomial of degree n in the variable ƛ . Here is some relevant terminology. 

2
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Suppose A is an n  x n matrix. The nth degree polynomial in the variable ƛ  defined by

det ( ƛ I – A)

is the characteristic of A. The real zeros of the characteristic equation det ( ƛ I – A) are called 

eigenvalues of matrix A. A nonzero vector v∈Rn such that ( ƛ I – A)v = 0 is an eigenvector 

of A associated with ƛ . The solution space 

EA ƛ=v ∈ Rn ∣ ƛ I−A v=0  

of this homogeneous system is the eigenspace of A associated with ƛ .

Be sure to notice that the eigenvalues of a linear operator are required to be real numbers even 
though the characteristics equation may have solutions that are complex numbers with nonzero 
imaginary parts.

3. Methods and software

In this work the method of Principal Components Analysis (PCA) is used to reduce dimensions of 
datasets. This method is based on solving some matrix equations. To store and manipulate these 
matrices we use array constructions provided by the NumPy (Numeric Python)  extension to the 
Python language. 

3.1 making arrays

NumPy consists of a set of extensions to the Python programming language which allow Python 
programmers to efficiently manipulate large sets of objects organized in grid-like fashion5. These 
sets of objects are called arrays and they can have any number of dimensions. The version 24.2 of 
NumPy it was that we use6.

To be able to use NumPy the following instructions were used: 

import Numeric 
from Numeric import *

NumPy  provides  two  fundamental  objects:  an  N  dimensional  array  object  (ndarray)  and  a 
universal function object (ufunc). To be able to use the PCA we use many of these functions since 
with them different types of operations with matrix can be done. Two examples of operations that 
we  use are  the  multiplication  of  matrices  (matrixmultiply(x,y))  and  the  calculation  of  the 
eigenvectors (eigenvectors(x)). 

3.2 PCA algorithm

The PCA algorithm consists of solving a series of matrix equations. 

3.2.1  data matrix

An initial  dataset  consisting  of   the  quantities  of  each  symbol  of  each  input  file.  There   is 
computed based on the symbols found in  those file. This information is stored in a matrix  X. 
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Figure 1 illustrates the algorithm to make the data matrix.
 
 X = zeros((M,N), Float)

 contm = 0
 for letra in letrasAInformar:

 for n in range(Archivos):  
 if (letrasEnArchivos[n]).has_key(letra):

 X[contm,n] = letrasEnArchivos[n][letra]
 contm += 1

Figure 1. Code (in NumPy) used for PCA algorithm to make the data matrix.

We declare N as the quantity of columns, one to each file, and M as the quantity of the rows of X, 
one for each symbol.  We do not want entries of any row to be all  equal. Those rows do not 
provide usefull information to distinguish between files and may produce divisions by zero as we 
will see later. Therefore we use a function that finds any such row and another that erases it. 
Figure 2 illustrates the delete_row() function that is used to erase the equal rows and Figure 3 
show the eliminaFilasIguales() function that is used to eliminate the rows that have the same 
frequency in the matrix X.

def delete_row(matrix, row):
   return Numeric.take(matrix, range(row) + range(row+1, matrix.shape[0]))

Figure 2. Code (in NumPy) it is used for erase a row of a matrix.

def eliminaFilasIguales(X):

M=X.shape[0]
for i in range(M-1,0,-1):

f = take (X, (i,))
if (max(f[0]) == min(f[0])):

X = delete_row(X, i)
M = M - 1

return X

Figure 3. Code (in NumPy) it is use to eliminate a row of a matrix.

3.2.2  normalization of data

Then we normalize the matrix X. Normalization ensures that the differences among the length of 
the files not be  considered. For example, we have a file that contains 100 letters,  divided into 50 
A, 30 B and 20 C; and another file that contains the double of each of those letters. When we 
normalize we can see that each symbol in the files are relatively equally important. Figure 4 
shows the function that is utilized to normalize.

def normalizar(X):
[M,N]=X.shape
sx = sum(X)
for i in range(N):

for j in range(M):
if (sx[i] != 0):

X[j][i] /= sx[i]
return X

Figure 4. Code (in NumPy) it is use to normalize the matrix X.
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3.2.3.  vector of means 

The next step in the PCA is to make the column vector of the means called u, one mean for each 
row of the matrix X. We use another  function that can be seen in the Figure 5.

def promediosPorFilas(X):
[M,N]=X.shape
u=[]
for i in range(M):

acum = 0.
for j in range(N):  

acum += X[i,j]
u.append (acum/N)

u = transpose(reshape(u,(1,M)))
return u

Figure 5. Code (in NumPy) it is use to compute the mean of each row.

3.2.4.  deviations from the mean

In the next step we solve the equations that are used in PCA to reduce dimensions of the dataset. 
These functions compute the deviations from the mean , the covariance,  the standard deviations, 
the projected matrix , the eigenvectors , the basis vectors and the projecting of the data onto the 
basis vectors.

In details, a matrix B is constructed to store the deviations from the mean. The equation is:

B=X−u∗1

where 1  is the row vector of M ones.

3.2.5.  covariance matrix

The covariance matrix is now computed in this way:  

C= 1
N−1

BBT

where BT is the transpose of B. The diagonal of C has the variance of each symbol trough the 
files.

3.2.6. standard deviations vector

We construct  the column vector  of  standard deviations  s  by extracting  square roots  of  this 
diagonal. In the figure 6 you can see the NumPy code to this instruction. 

s = transpose(array([sqrt(diagonal(C))]))

Figure 6. Code (in NumPy) it is use to make the vector column s.

3.2.7.  eigenvalues and eigenvectors

5
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To be able to obtain the final product we need to seek the eigenvectors that satisfy to that 
assembly of data and as soon as to find them we have to order them of decreasing form. As 
discussed in section 2.2 the eigenvectors will  provide a new set of reference vectors and the 
eigenvalues  will  determine  the  important  of  the  eigenvectors.  Thus,  we  want  to  select  the 
eigenvectors corresponding to the L largest eigenvalues. To be able to do these operations we 
use functions already  defined in NumPy inside  of the Lineal Algebra Module. These instructions 
are in Figure 7.

evals, evects = eigenvectors(C)

pos = argsort(abs(evals),axis=-1)  

evals = take(evals,pos)

V = take(evects,pos,axis=-1) 
V = V.real

Figure 7. Code (in NumPy) it is use to obtain the eigenvectors and sort them.

Let  W  and  be  the  matrix  consisting  of  the  first  L vectors  of  V  that  is,  the  eigenvectors 
corresponding to the  L largest eigenvalues of C. The dimensions of this matrix M x L.  We often 
use  L= 2 and  L= 3.  In this  case the columns of  W determine a plane in  in  the original  N 
dimensional space. All the points in the dataset will be projected onto this plane. 

3.2.8.  projection from N dimensions to L dimensions

The matrix that is used to make the projection is represented by Z. This matrix is computed using 
the mean and the standard deviation of each row M of the matrix X. We need the matrix B, the 
vector s and  the vector  that is of all 1's. So the equation is:

Z= B
s∗1

 

The division is meant to be entry. Sin no entry of s is zero, the divisions are well defined. 

The last matrix that is to utilized to do the different graphics  with the dataset, is call  Y and 
consists of N columns vectors, where each vector is the projection of the corresponding data 
vector from the matrix X onto the basis vectors contained in the columns of matrix W. With the 
functions that exist in NumPy we can do this in  two steps as is shown in the Figure 8.

W = take(V, range(L), 1)

Y = matrixmultiply(transpose(W),Z) 

Figure 8. Code (in NumPy) it is use to obtain the final matrix.
  
3.3 graphical representation of results

The columns of Y represents points in the L dimensional space. We use L = 2 and L = 3. Gnuplot 
and Jmol are used to draw the graphics.

3.4 to run the program
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To run the program you must have kept all the files that you go to use in a same folder. Then in 
our case that we are using linux, we open a terminal and  seek that folder.  After you can see all 
the documents that are stored in that folder you must write this instruction in the same terminal:

python ProgramName

where ProgramName is the name of the program as you kept it. Then enter the input data.

3.5 input data

To test the program the first input that we use was some books thats we download from the 
Internet. This books are from different languages.  We use 5 books of the German language, 4 
books of the Spanish language and 4 books of the English language. We make graphics with the 
results and compared.

Then  we  test  the  program  with  some  sequences  of  genomes.  In  specific  the  genomes  of 
Salmonella enterica, Escherichia coli and Shigella.  We obtain the complete sequences of this 
genomes from the GenBank of NCBI7.

4. Results and discussion

In  this  section  the  results  obtained  by  comparing  the  input  files  are  presented.  They  were 
analyzed and they describe using graphics and by the different classes of input that were the 
books and the sequences of genomes. 

4.1. analysis of books

The first results that were obtained they were based applying the PCA to the deferent books data. 
Figure 9 shows the graph for the PCA to the books.

Figure 9. Graph of all books that we tested the program.
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The most points of Spanish and German are agglomerated each one with its other book of the 
same language. The English points not are agglomerated like Spanish and Germany. It may be 
because we used one book of English that is for statistics and this book have much numbers than 
letters and this affected the frequency of the symbols for the English language.    

If  we  see some nearness with  different  language  points  we run the  program with  only  this 
languages books. So we tested also only with Germany and Spanish books and the Figure 10 
shows the graph.

Figure 10. Graph of Germany and Spanish books.

The Spanish language is represents by (x) and the Germany by (+). 

The points of this languages are switch together and we can say that Germany and Spanish have 
similar  frequencies  in  the  use  of  their  symbols.  Because  in  above  graphics  the  points  stay 
together.    

4.2. analysis of genomes

Then we entered complete genomes as input data and applied the PCA algorithm with L = 3. The 
Figure 11 show the results for all the varieties of Salmonella that we chose.  
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Figure 11. Graph of the varieties that we chose from Salmonella.

We can see that the white  balls  represents the Salmonella  genomes,  the red represents the 
Shigella, and the blue represents the Escherichia coli. The large ball that has red and blue is a 
representation that the points are very near when we see them in 3D. Also there they can be 
other points inside and therefore is that is seen so large.  

5. Conclusions

After comparing the performance of the PCA algorithm on the text books and the Salmonella 
complete genomes, we obtain the reasonably good results. Data from similar sources is visually 
allocated in the same area.

6. Future Works

The future work is to beginning the design of the DNA array and then apply this array to biology 
research project.  
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