# Implementing MD Simulations and Principal Component Analysis to Calculate Protein Motions 

Myrna I. Merced Serrano
Computational and Systems Biology Summer Institute Iowa State University Ames, IA 50010

## MD

- Molecular Dynamics is a way to study atoms and molecules with computer simulations.
- This study of atoms and molecules is based on the laws of physics.

PCA

- Principal Component Analysis is a technique to reduce multidimensional data sets to lower dimensional data.



## Data

- Protein pdb's files:
- 1AL3 $\rightarrow$ CysB
- 1LST $\rightarrow$ LAO (closed form)
- 2LAO $\rightarrow$ LAO (open form)
- 1PDA $\rightarrow$ PBGD
- 2DRI $\rightarrow$ RBP
- 1TFA $\rightarrow$ OVOT
- 2LIV $\rightarrow$ LIVBP


## Software

- Cygwin
- Linux environment for Windows.
- NAMD
- MD code to perform simulations of large biomolecular systems.
- MatLab
- Programming language and numerical computing environment for algorithm development, data visualization, and data analysis.


## Methods

- Download the pdb files of the proteins from http:// www.pdb.org.
- Development of a bash script to generate the files to run the minimizations in NAMD.
- Minimize each protein for 2,500 steps.
- Development of a bash script to generate the configuration file to run the MD.
- Run each protein for 3ns (1,500,000 steps).
- Development of a bash script to generate the input matrix for the PCA.
- Analyze each trajectory with the PCA in MatLab.
- Plot the results of the PCA (MatLab and Excel).


## Script to generate the files

```
#Script to generate the files for the minimization in NAMD
#!/bin/bash
COMMON DIR=/home/mymese/inv summer 2007/data/common
DISTANC}E_PROT_BOX=5
#write de pdb protein file
echo -e "mol load pdb $1.pdb\\n set prot [atomselect top protein]\\n \$prot writepdb $1 p.pdb\\n quit\\n" |
    /usr/vmd/vmd -dispdev text
#create the pgn file
/bin/sed -n -e "s/MOL/$1/" -e "w $1.pgn" $COMMON_DIR/template.pgn
#run the pgn file
echo -e "source $1.pgn\\n quit\\n" | /usr/vmd/vmd -dispdev text
#put the protein in a box of water
```



```
    /usr/vmd/vmd -dispdev text
#load psf and pdb into VMD and calculate the center of the box
box center=`echo -e "mol load psf $1 wb.psf\\n mol load pdb $1 wb.pdb\\n set prot [atomselect top \"all\"]\\n
    measure center \\$prot\\n quit\\n" | /usr/vmd/vmd -dispdev text | tail -3 | head -1 | cut -d ' ' -f3-5'
#load psf and pdb into VMD and calculate the minmax of the box
box_minmax=`echo -e "mol load psf $1 wb.psf\\n mol load pdb $1 wb.pdb\\n set prot [atomselect top \"all\"]\\n
    measure minmax \\$prot\\n quit\\n" | /usr/vmd/vmd -dispde\overline{v}}\mathrm{ text | tail -3 | head -1 | cut -d ' ' -f3-8
#values of box center and measures of minmax
echo "Box center: $box_center"
echo "Box minmax: $box_minmax"
#copy the psf and pdb to common directory
cp $1_psfgen* $COMMON_DIR/.
cp $1_w* $COMMON_DIR/.
#create the configuration file
/bin/sed -n -e "s/MOL/$1/" -e "s/BOX_CENTER/$box_center/" -e "w $1_conf_wb.conf" $COMMON_DIR/template_wb.conf
```


## Script to generate the matrix

```
#Script to generate the matrix for the PCA
#!/bin/bash
#You need to change the name of the input file's names
PSF_FILE=$1_wb.psf
DCD_FILE=$1
\#load the dcd trajectory file and saved in a pdb format
```



```
#remove the residues in the trajectory
```

\#remove the residues in the trajectory
grep "CA" DCD_$DCD_FILE.pdb > DCD_CA_$DCD_FILE.coords
grep "CA" DCD_$DCD_FILE.pdb > DCD_CA_$DCD_FILE.coords
\#first residue
\#first residue
CA=`head -1 DCD_CA_$DCD_FILE.coords | cut -d ' ' -f1-14 CA=`head -1 DCD_CA_\$DCD_FILE.coords | cut -d ' ' -f1-14
\#count the number of residues
\#count the number of residues
grep -c "CA" \$1_wb.pdb > res.temp
grep -c "CA" $1_wb.pdb > res.temp
#count the number of frames
#count the number of frames
grep -c "${CA}" DCD_CA_$DCD_FILE.coords > fram.temp
grep -c "${CA}" DCD_CA_\$DCD_FILE.coords > fram.temp
\#set the number of residues
\#set the number of residues
total_residues=`cat res.temp total_residues=`cat res.temp
echo total: \$total residues
echo total: \$total residues
\#set the number of frames
\#set the number of frames
total_frames= cat fram.temp
total_frames= cat fram.temp
echo total: \$total frames
echo total: $total frames
#remove the coordinates of the CA
#remove the coordinates of the CA
cut -c32-54 DCD_CA_$DCD_FILE.coords > CA_$DCD_FILE.coods
cut -c32-54 DCD_CA_$DCD_FILE.coords > CA_\$DCD_FILE.coods
\#create the matrix with the coordinates of the CA
\#create the matrix with the coordinates of the CA
cat CA \$DCD FILE.coods | for i in seq 1 \$total frames ; do
cat CA \$DCD FILE.coods | for i in seq 1 \$total frames ; do
for i in `seq 1 $total residues`; do
for i in `seq 1 $total residues`; do
read coords
read coords
echo -n "$coords " >> matrix_$DCD_FILE.txt;
echo -n "$coords " >> matrix_$DCD_FILE.txt;
done
done
echo " " >> matrix_\$DCD_FILE.txt;

```
    echo " " >> matrix_$DCD_FILE.txt;
```

done
\#remove the not necessary files
rm CA_* DCD_CA* *.temp

## Analysis

- In this study we worked with 7 different proteins, here are the results of 1AL3.



## RMSD of the trajectory



- This figure shows the RMSD for the 3ns of 1AL3's trajectory.
- The protein has relatively small fluctuations over time.


## Fraction of Variance

- MatLab code:
- PCA
- [pc, score, latent, tsquare] = princomp(matrix_1AL3);
- Individual Fraction
- latent = the eigenvalues of the matrix_1AL3 covariance matrix
- latent(1:5)/sum(latent)
- Total Cumulative Fraction
- sum(latent(1:5))/sum(latent)


## Scatter Plots of the Data




- MatLab code:
- score = Z-scores
- scatter(score(:,1), score(:,2))
- scatter3(score(:,1), score(:,2), score(:, 3))


## PC1 Residue Fluctuations




## Visualization of the PC 1 Motion



## Preliminary Conclusions

- These results suggest that minimized protein structures are stable.
- Principal components can be used to extract the important motions of a protein; however, long simulation times are required to obtain larger motions.


## Acknowledgements

- Lei Yang
- Dr. Xuefeng Zhao
- Dr. Robert Jernigan
- CyBlue Staff
- BBSI 2007


## And now what?

Principal Components Analysis in the trajectories of DNA-CNT Hybrids.

# DNA-CNT Hybrid (5 monomers) 

Orthographic View

Initial Structure


Perspective View


Final Structure


## Some preliminary results



Poly-C of 5 monomers


Poly-C of 15 monomers

- There is a transition to the final structure.
- The process is irreversible.

