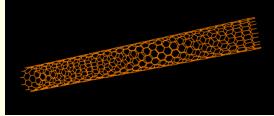
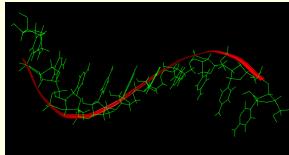
MD simulations of ss-DNA conformation about CNTs: Activities Report

Myrna I. Merced Serrano Department of Mathematics University of Puerto Rico at Humacao


Outline

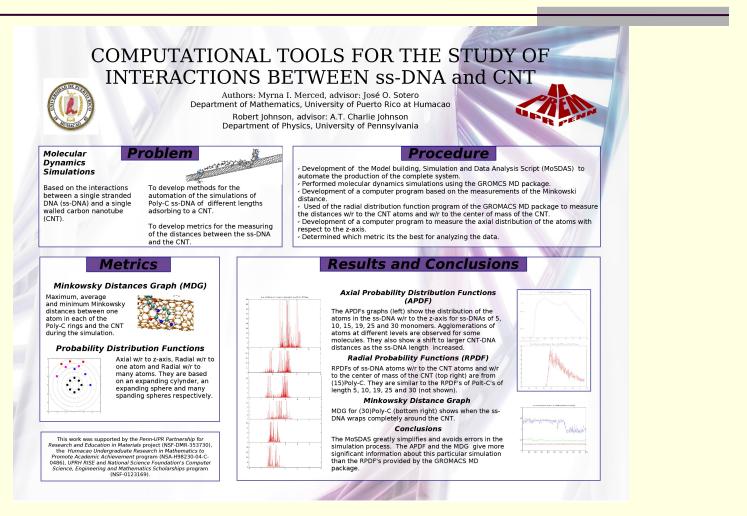
Background


- Results presented at:
 - 3rd Annual PREM Meeting, UPRH
 - XXII SIDIM Congress, Ponce, PR
 - 27th PRISM, Carolina, PR
 - UPRH Research Day
 - 7th SSCC, Mississippi
 - NCUR-2007, California
- Current work

Background

- Molecular dynamics
 - the study of the atoms by computer simulations
- Carbon nanotubes
 - cylindrical sheets of carbon
 - ss-DNA

- DNA molecule consisting of only one chain of alternating sugars and phosphates
- Poly-C



3rd Annual PREM Meeting

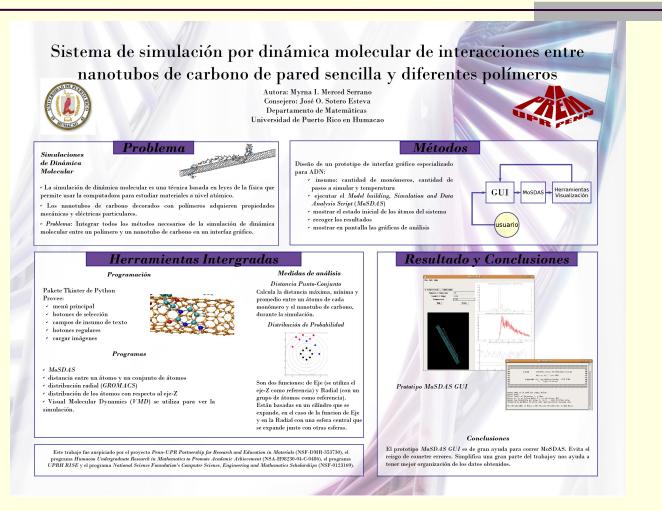
Results:

- Development of metrics to study how the Poly-C ss-DNA wraps into the CNT.
- Metrics:
 - Axial Probability Distribution Function (APDF)
 - Radial Probability Function (RPF)
 - Minkowski Distance Graph (MDG)
- Conclusion:
 - The APDF and MDG gave more information for this particular simulation than the RPF.

3rd Annual PREM Meeting

November 2006

XXII SIDIM Congress


Results:

First prototype of MoSDAS GUI.

Conclusions:

- This GUI is going to be helpfully to run MoSDAS.
- Also, it helps to avoid the errors in the process of generate the simulations.

XXII SIDIM Congress

February 2007

27th Puerto Rico Interdisciplinary Scientific Meeting

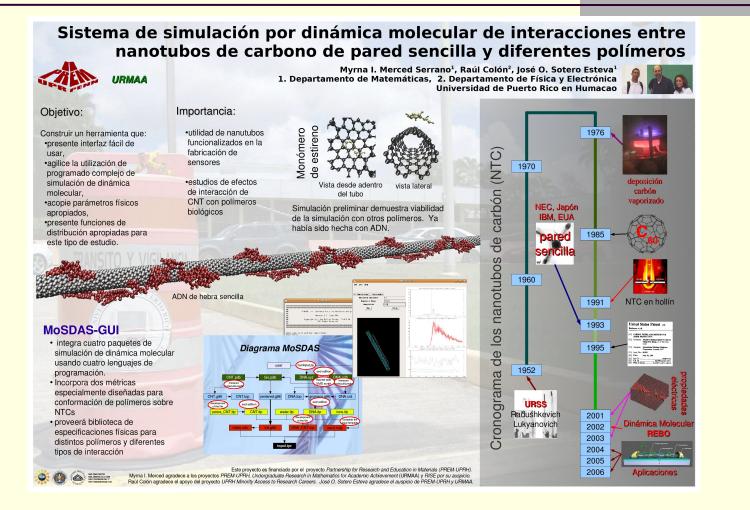
Results:

- Analysis script MoSDAS
- Conclusions:
 - MoSDAS resulted in a great improvement in productivity by reducing the preparation time of the simulation from hours to seconds.
 - The development of MoSDAS simplifies and avoids the most of the errors in the simulation process.

27th Puerto Rico Interdisciplinary Scientific Meeting

A Model building, Simulation and Data Analysis Script for the Study of DNA-CNT Hybrids

Myrna I. Merced Serrano Department of Mathematics University of Puerto Rico at Humacao Mentor: José O. Sotero Esteva

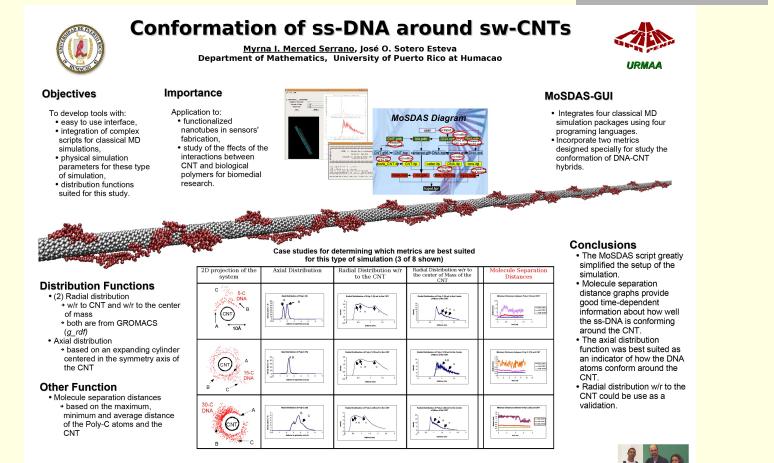

Carbon nanotubes (CNT) and single stranded DNA (ss-DNA) are both interesting and important systems in nanoscience that are completely compatible with one another. They are cylindrical sheets of carbon. CNT have diameters of approximately 1nm and lengths up to a few centimeters. Single stranded DNA (ss-DNA) is a DNA molecule consisting of only one chain of alternating sugars and phosphates. Molecular dynamics simulations are well-suited to provide insights into the fundamental properties of DNA-CNT hybrids because they enable calculation of structural properties with atomic resolution. The determination of the appropriate physical parameters for the simulations as well as the design of the process of building the simulated DNA-CNT system had been previously done. But the process was a long and labor intensive process that had to be repeated for each simulation. The Model building, Simulation and Data Analysis Script (MoSDAS) presented here was developed to automate the whole simulation process by generating the necessary parameters, calling and running all the necessary programs. All the commands of MoSDAS are in bash programming language. Some axillary programs were written in TCL and Python programming languages. The molecular dynamics simulation was done with the GROMACS MD package. MoSDAS resulted in a great improvement in productivity by reducing the preparation time of the simulation from hours to seconds. We ran eight simulations for testing purposes. The only variation in the simulations was the quantity of the ss-DNA bases. We easily produced simulations of the Poly-C ss-DNA of 5, 10, 15, 19, 20, 25, 30 and 35 bases. It was found that the development of MoSDAS simplifies and avoids the most of the errors in the simulation process.

March 2007

Research Day at UPR-Humacao

- This is an integration of Raul's work with mine.
- Is a study of Molecular dynamics simulations between CNT and different polymers.

Research Day at UPR-Humacao



March 2007

7th Southern School on Computational Chemistry and Material Science

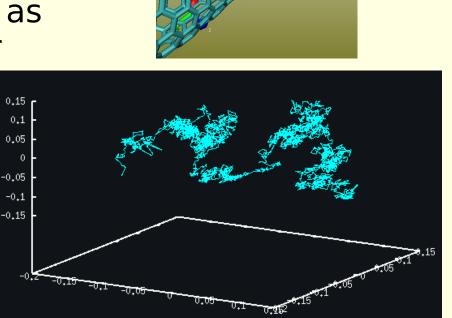
- Results
 - Molecule separation distances show how close and tight the Poly-C wraps completely around the CNT.
 - In Axial distribution agglomerations at different levels are observed.
- Conclusions
 - Molecule separation graphs provide good time-dependent information about how well the ss-DNA is conforming about the CNT.
 - The Axial distribution function was best suited as an indicator of how the DNA atoms conforms around the CNT.

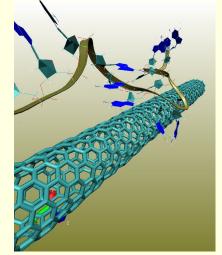
7th Southern School on Computational Chemistry and Material Science

Our in the development of this software originated from the Summer Research Experience of Mynn Merced at A.T. Johnson Laboratory under the supervision of Robert Johnson. This work is supported by the Perm-UPR Partnership for Research and Education in Materials (NSF-DMR4053730) and the Humacoo Undergraduate Research in Mathematics to Promote Academic Achievement program (NSA-H98230-04-C-0486).

April 2007

2007 National Congress in **Undergraduate** Research

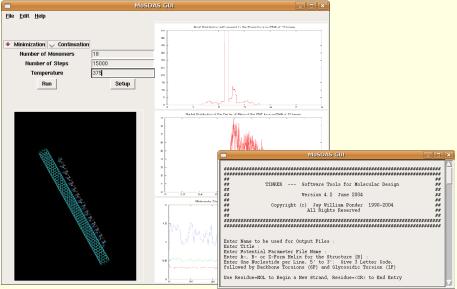

Metrics for	the Study of DN	A-CNT Hybride	
	Myrna I. Merced Serrano Adviser: Prof. José Sotero Esteva	DICE URMAA	
Department D	 Mathematics, University of Prierto Software MoSDAS The Model building, Simulation and Data Analysis Script (MoSDAS) was developed to automate the production of the complete system. Integrates four classical MD simulation packages using four programing languages. Simulations The obtained simulation data was of Poly-C ss-DNA of 5, 10, 15, 19, 20, 25, and 30 monomers. 	 Methods For the molecule separation a computer program was developed. Description. The distance between an atom in the ring of the ss-DNA and all the CNT atoms was calculated. The minimum distance of each monomer was stored. Then, the minimum and maximum distances were selected and the average was calculated. For the calculation of the radial distribution function the program ag <i>a</i> of that is part of the GROMACS MD package was used. For the calculation of the radial distribution function a computer gram was developed. Description. The distance between the coordinates (x, y) of Poly-C was measured and stored in a vector. Then the vector vas order in a sected in growthed distance was calculated. 	Proceedings of The National Conference on Undergrandwate Research (NUTUR) 2007 Doministic UNIT 2007 Search 2007 April 12:14.2007 Metrics for the Study of DNA-CNT Hybrids Research (NUTUR) 2007 Metrics for the Study of Nathematics University of Puetro Rico at Humacao 100 Tejas Avenue Humacao Puerto Rico at Humacao 100 Tejas Avenue Humacao Puerto Rico at Humacao Study Adviser: José Sotero Esteva Aberac DNA-carbon nanotube (DNA-CNT) hybrids have many useful properties important in the field of nanoscience. Molecular dynamics (MD) simulations are well-subject of the provide nainspits mice the fundamental properties of DNA-CNT hybrids because they enable calculation of structural properties with atomic resolution. Radial distribution functions. There measures were
Case studies for determinin suited for this type of sim 2D projection of the system Axial Distribution Radial Distribut to the CN	ulation (3 of 8 shown) ion w/r Radial Distribution w/r to Molecule Separ		defined as the maximum, minimum and average of the molecule separation distances intended to measure how Cose and tight the as-DNA wraps around the CNT. An axial distribution function with respect to the z-axis was also defined. It is based on an expanding cylinder centered in the symmetry axis of the CNT instead. A simple ss-DNA (FOV)-CV was used for testing purposes A complex process of model building, simulation and data analysis was completely automated as a script (MOSDAS). Simulations were performed for Poly-CS with varying number of bases. Both of the metrics defined above as well as two Poly-CS with varying number of bases. Both of the metrics defined above as well as two
		and CNT shows how close and tight the Poly-C wraps completely around the CNT. Also, they show is the system is equilibrated or not. In Axial sistribution agglomerations of atoms at different levels are observed. Radial distributions don't give important information in this specific problem.	radial distribution functions provided by the GROMACS MD package were compared. It was found that MoSDAS greatly simplifies the simulation process and avoids errors. Also, the molecule separation based metrics provides better information than the other measures on when the so DNA wraps around the CNT. The axial distribution function was best suited as an indicator of how the DNA atoms conform around the CNT. Analysis of this function shows, for example, a shift to larger CNT-DNA distances as the ss-DNA length increased. A two-peak distribution suggests that different parts of the Poly-C agglomerate at different levels. This information is not evident in the usual radial distribution functions. Keywords: Molecular Dynamics, DNA-CNT hybrids, Distribution Function
	affines of the CMT	 Conclusions The MoSDAS script greatly simplified the setup of the simulation. Molecule separation distance graphs provide good time-dependent information about how well the ss- 	1. Introduction Carbon nanotubes (CNT) and single stranded DNA (ss-DNA) are both interesting and important systems in nanoscience. For example, ss-DNA-CNT hybrids have been recently used to construct nanoscale chemical sensors. I ss-DNA has also been used to separate and sort CNTs based on methallicity? They are completely compatible with one another. Molecular dynamics (MD) simulations are well-suited to provide insights into the fundamental properties of DNA-CNT hybrids because they enable calculation of structural properties with a tomic resolution.
		DNA is conforming around the CNT. The axial distribution function was best suited as an indicator of how the DNA atoms conform around the CNT. Radial distribution w/r to the CNT could be used as a validation.	It is understood that ss-DNA attaches readily to the CNT by the $ \pi - \pi $ stacking interaction.


April 2007

Current work

Principal Components Analysis in CNT-DNA conformations

- Frames produced by MD simulation coded as N-dimensional vector
- PCA produces sequence of 3D (or 2D) points



Current work

Graphical User Interface for CNT-Polymer hybrids MD Simulations

- Preparation, execution and analysis of MoSDAS
- Phython-Tkinter, independent application, VMD plug in.

Acknowledgements

- URMAA (NSA-H98230-04-C-0486)
- PREM (NSF-DMR-353730)
- UPRH RISE
- CSEMS (NSF-0123169)
- UPRH MARC