Conformation of ss-DNA around sw-CNTs

Myrna I. Merced Serrano, José O. Sotero Esteva
Department of Mathematics, University of Puerto Rico at Humacao

URMAA

Objectives

To develop tools with

- easy to use interface,
- integration of complex scripts for classical MD simulations,
- physical simulation parameters for these type of simulation,
distribution functions suited for this study.

Importance

Application to

- functionalized
nanotubes in sensors'
fabrication,
- study of the ffects of the interactions between CNT and biological polymers for biomedial research.

- The MoSDAS script greatly simplified the setup of the simulation.
- Molecule separation distance graphs provide good time-dependent information about how well the ss-DNA is conforming around the CNT
- The axial distribution
function was best suited as an indicator of how the DNA atoms conform around the CNT.
- Radial distribution w/r to the CNT could be use as a validation.

Case studies for determining which metrics are best suited for this type of simulation (3 of 8 shown)
based on the maximum minimum and average distance of the Poly-C atoms and the CNT

Distribution Functions

- (2) Radial distribution
$\rightarrow \mathrm{w} / \mathrm{r}$ to CNT and w / r to the center of mass
\rightarrow both are from GROMACS (g_rdf)
- Axial distribution
\rightarrow based on an expanding cylinder centered in the symmetry axis of the CNT

Other Function

- Molecule separation distances正

