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Abstract. This paper treats the radially symmetric equilibrium states of aeolotropic nonlineariy 
elastic solid cylinders and balls under constant normal forces on their boundaries. It is shown 
that the aeolotropy gives rise to solutions describing both intact and cavitating states, which 
exhibit an array of remarkable new phenomena, not suggested by the solutions for isotropic 
bodies. E.g., it is shown that there are materials having a critical pressure such that for applied 
pressures on the boundary below the critical value, the normal pressures at the center of the 
body are zero and for applied pressures above the critical value, the normal pressures at the 
center are infinite. There are also materials for which there is no equilibrium state with center 
intact when the boundary is subjected to uniform tension. It is also shown that the equilibrium 
states treated here are the only radially symmetric equilibrium states. Thus the strange 
phenomena discovered here must be present in such stable equilibrium states. 
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1. Introduction 

By 1960 a c o m p r e h e n s i v e  t h e o r y  o f  a e o l o t r o p i c  n o n l i n e a r l y  e las t ic  b o d i e s  

h a d  been  e s t a b l i s h e d  a n d  a va r i e t y  o f  specif ic  p r o b l e m s  fo r  t h e m  h a d  been  
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treated (cf. Green and Adkins [10]). But for the most  part, these studies of 
the statics of compressible bodies left open important  questions on the 
existence, multiplicity, and qualitative behavior of solutions. 

In this paper we examine what are conceptually the simplest of such 
problems: the deformation under constant normal pressure or tension on the 
boundary of transversely isotropic solid cylinders and balls. Using the most  
elementary of  mathematical techniques we are able to show that the sol- 
utions exhibit the most striking departures from the behavior of solutions 
for the equations for isotropic bodies. Not  only do we obtain new nonexist- 
ence and multiplicity results, but we show that certain materials admit a 
family of remarkable bifurcations of  so catastrophic a nature that the snap 
bucklings associated with the applications of catastrophe theory to struc- 
tures seem innocuous by comparison. E.g., in Theorem 7.15 we show that 
there are materials having a critical pressure such that for applied pressures 
on the boundary below the critical value, the normal pressures at the center 
are zero, and for applied pressures above the critical value, the normal 
pressures at the center are infinite. In Theorem 7.24, we show that there are 
materials for which there is no equilibrium state with center intact when the 
boundary is subjected to a uniform tension. We also show that a jumping 
phenomenon can occur in certain cavitation problems. 

The most difficult part of our elementary analysis is to establish a precise 
count of the number of possible equilibrium states. Since the solutions we 
study can exhibit pathological behavior, such results are necessary to show 
that these solutions are unavoidable. We also show how the cavitating 
solutions for aeolotropic bodies differ markedly from those for isotropic 
bodies, the theory of which was magisterially established by Ball [4]. An 
underlying theme of  our work is that the properties of solutions to our 
problems do not depend stably upon the divergence of  material symmetry 
from that for isotropic bodies. 

As part of our analysis we show that the stress at the center of  a com- 
pressed azimuthally reinforced body is zero and that that for a radially 
reinforced body is infinite. Results like these have been observed for various 
problems of  linear aeolotropic elasticity [I, 15, 19]. It is reasonable to 
extrapolate the case of zero stress to nonlinear problems, but unreasonable 
to do so for the case of infinite stress. Here the very physical validity of  the 
linear model is in question. In particular, an infinite compressive stress, if 
taken seriously, corresponds through linear stress-strain laws to an infinite 
deformation in which the orientation has been changed. There are numerous 
singularities for problems of linear elasticity that are absent in the corre- 
sponding problems of  nonlinear elasticity [3]. Indeed, one of the main 
responsibilities of nonlinear elasticity is to clarify the nature of such 
singularities. Our results for the most general models of nonlineady elastic 
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response that respect the requirement that all deformations preserve orienta- 
tion confirm that our infinite stresses are intrinsic for radially reinforced 
bodies, and not an artifact of  a linearization of dubious validity. 

We remark that aeolotropic bodies with the symmetries we study arise 
naturally. In the casting of metals, the temperature gradient in the freezing 
process causes molecules to line up in a way that creates a radially symmetric 
kind of transverse isotropy. (See the figures of [11] and [22].) The cross- 
section of  a tree trunk clearly enjoys similar properties. Bodies with this kind 
of aeolotropy can also be manufactured by the suitable disposition of fibers 
in a matrix with different material properties. Such composites can be of 
great technological importance (cf. [16]). 

2. Formulation of the governing equations 

Let the unstressed reference configuration of  a nonlinearly elastic body be 
either a solid cylinder of radius 1 or a ball of radius 1. We consider only 
axisymmetric deformations of the cylinder and spherically symmetric 
deformations of the ball in which material points with reference radius s 
are constrained to move along their rays a distance depending only on s. 
Let the radial distance of  such a material point in a deformed configur- 
ation be denoted Q(s). Then Q'(s) is the radial stretch and O(s)/s is the 
azimuthal stretch. The shear strains with respect to polar coordinates are all 
zero. 

We assume that the materials of these bodies have enough symmetry that 
the stresses enjoy the same symmetries as the deformations. E.g., for the ball 
undergoing the deformation just described there should be zero shear on any 
spherical surface centered at the center of the ball and on any plane passing 
through the center. Moreover, all normal stresses in any azimuthal direction 
for a given radius s should be equal in magnitude. Let/q(s) and ~(s) be the 
normal Piola-Kirchhoff stresses of the first kind at the radius s in the radial 
and azimuthal directions, respectively. If  the boundary of the body is 
subjected to a uniform normal force of intensity 2g(o(1)) per unit reference 
area, then the equilibrium equations expressing the balance of forces on an 
arbitrary sector of the body (lying between cylinders or spheres of radii s and 
1 and bounded by rays) are 

s~iQ(s) = 2g(o(1)) - y~ ~ t t ' -~ (0d t ,  (2.1) 

where ~ = 1 for cylinders and • = 2 for spheres. We assume that 

g(o) > O, g'(e) >~ 0 for e > O. (2.2) 
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We shall be particularly concerned with dead loads, for which g(~) = 1, 
with hydrostatic loads for cylinders, for which g(Q) = ~, and with hydro- 
static loads for spheres, for which g(#) = ~2. 2 is a constant accounting for 
the magnitude of the loads. 2 < 0 for compression. 

We assume that the material of these bodies is homogeneous and non- 
linearly elastic, with the symmetry properties mentioned above. E.g., the ball 
could be transversely isotropic with respect to polar coordinates. We accord- 
ingly assume that there are functions 

(0, o~) x (0, o~) ~ (z, v) ~ T(z, v), N(z, v) ~ ( -  oo, oo) (2.3) 

such that 

~(s) = T(Q(s)/s, #'(s)), )~(s) = N(#(s)/s, ~'(s)). (2.4) 

We assume that T and N are twice continuously differentiable. 
We require that (T, N) satisfy the (specialization to our class of deforma- 

tions of the) strong ellipticity condition: 

T~ > 0, Nv > 0 (2.5a, b) 

and a corresponding set of growth conditions: 

{ ~ }  {o~} { has a positive lower bound l 

T(~, v) -~ _ as ~ ~ if v is bounded from above J '  

(2.6a) 

N(z, v) -~ as v ~ if z . 
- oo 0 /. is bounded from above 

(2.6b) 

We describe refinements of these restrictions in the next section. 
Our governing equations are obtained by substituting (2.4) into (2.1). We 

supplement these by requiring that either the axis of the cylinder or the 
center of the ball remain intact, in which case 

Q(O) = O, (2.7) 
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or else cavitation occurs, in which case 

~(0) > 0, lim N(~(s)/s, Q'(s)) = 0. (2.8) 
s ~ 0  

Note that N is a Piola-Kirchhoff stress, measuring force per unit reference 
area. The corresponding Cauchy stress, measuring force per actual area is 
(s/~)'N. Cavitation is characterized by the vanishing of N at s = 0. (A 
bounded Piola-Kirchhoff stress can produce a zero Cauchy stress at s = 0). 

If ¢ is restricted to a suitable function space for which ~' is defined almost 
everywhere and for which s ~-~ s'-IT(Q(s)/s, ~'(s)) is integrable on any closed 
subset of (0, 1], then a standard bootstrap procedure (like that used in the 
direct methods of the calculus of variations) based upon (2.5b) and (2.6b) 
shows that any solution ~ of (2.1), (2.4) in the function space is in fact in 
C2((0, 1]) and satisfies the classical form of the equilibrium equations: 

d 
d'-~ [s'N(p(s)/s' 0'(s))] = ~s'-lT(Q(s)/s, p'(s)) (2.9) 

on (0, 1], and the boundary condition 

N(0(1), ~'(1)) = 2g(0(1)). (2.10) 

Near s = 0 the effects of aeolotropy become focused. We accordingly 
refrain from imposing a priori restrictions on the regularity of Q here. 

Note that the problem for the cylinder is one of plane strain. It is 
mathematically equivalent to the plane-stress problem for a disk. 

3. Constitutive restrictions 

We assume that the reference state is stress-free so that 

T(1, 1) = 0 = N(1, 1). (3.1) 

Let T~ ° =- T,(1, 1), etc. We assume that 

( T~ T~ ) is positive-definite. (3.2) 
m 
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For the restricted class of deformations we consider, the material is 
isotropic if and only if 

T(z, v) = N(v, ~). (3.3) 

The material is said to be azimuthally reinforced at z if 

T~(z, z) + T~(~, z) > N~(~, z) + Nv(z, ~) (3.4) 

and radially reinforced at z if the contrary inequality holds: 

N,(z, z) + N,(~, ~) > T~(z, ~) + N~(z, ~). (3.5) 

The material is azimuthally reinforced or radially reinforced if (3.4) or (3.5) 
hold for all z e (0, o~). 

In much of our analysis we employ the assumption that (T, N) is mono- 
tone: 

( T~ Tv ) is positive-definite. (3.6, 

(This condition, obviously more stringent than (2.5), is a degenerate version 
of the Coleman-Noll inequality, cf. Truesdell and Noll [21].) 

The following result is standard: 

3.7. TrlI~ORI~M. If(3.6) holds and i f2  <~ O, then there is at most one solution 
Q in C2((0, 1]) to the boundary value problem (2.9), (2.10), (2.7)for which 
s ~-~ s~N(o(s)/s, ~'(s)) is bounded. 

A further set of restrictions corresponding to the usual effects associated 
with the Poisson ratio of linear elasticity is 

T~ > 0, N~ > 0. (3.8a, b) 

Further growth conditions compatible with (3.6) and (3.8) are 

{ ~ }  { ~ }  {hasap°s i t ive l°werb°und l 
T(~, v) ~ as v ~ if ~ , 

-- oo 0 is bounded from above ) 

(3.9a) 
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I has a positive lower bound 

{ ~ } if v (is bounded from abov e }" 

(3.9b) 

The material is hyperelastic if there is a real valued stored-energy density 
function (z, v) ~ ~(~, v) such that 

T = ~ ,  N = ~v. (3.10) 

Since the eminently reasonable assumption of hyperelasticity is of scant 
mathematical advantage in our analysis, we shall not adopt it in general. 
Note that (3.10) reduces (3.4) to 

L > Nv. (3.11) 

reduces (3.6) to the requirement that • be convex, and reduces (3.8) to a 
single inequality. 

Both to show that the various conditions we have imposed are not 
inconsistent and to have a class of materials for which we can make specific 
computations, we consider 

AIz'-"~ A2v~-"2 B~z'+b~ B2v ~+~ 
• (~,v) = ~ + - - + ~ + - -  + CT-C'v -c~ 

a l -  1 a 2 -  1 1 d-bl  1 + b: 

+ Dzdtva2 + ElZ-el• fl .3[- E2zf2v -e2. (3.12) 

Here A~, A2, BI, B2, al, a:, b~, b:, Cl, c~, d~, d2, e~, e2, fl, f2 > 0 and C, D, 
E~, E 2 >~ 0. The corresponding functions T, N of (3.10) clearly satisfy the 
strong ellipticity condition (2.5) and the growth conditions (2.6), (3.9). The 
first five terms on the fight-hand side of (3.12) define convex functions; the 
last three do not. Thus we can adjust parameters so that (3.10), (3.11) violate 
(3.6). Conversely, by studying (3.12) separately on each of the four rectangles 
of (~, v)-space bounded by the lines z = 1, v = 1, by grouping terms of the 
fight-hand side of (3.12) appropriately on each of these quadrants (e.g., by 
grouping the third, fourth, and sixth term on the first, second, and fourth 
quadrants), and by applying the inequality 2xy <~ x 2 + y2 (or, more gener- 
ally, Young's inequality), we can prove for suitable ranges of parameters 
that these groupings and consequently • are convex. Condition (3.8) is 
satisfied if 

E~ = 0  = E~. 
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A reasonable further requirement to impose on solutions of our boundary 
value problems is that [0, l] ~ s ~-~ O(O(s)/s, 0'(s)) is integrable, or equiv- 
alently, that the total stored energy of the body is finite. 

4. A conjugate formulation 

Conditions (2.5b), (2.6b) ensure that N(z, .) has an inverse, which we denote 
by v ~ (z, .). We set 

T~(z, n) -- T(z, v~(z, n)). (4.1) 

Then we can write the quasilinear equation (2.9) as the equivalent semilinear 
system 

0' = v~' (O/s, ::), (4.2a) 

d:--~ [s~.~] = (O/s, (4.2b) ~s~-IT • 

The strong ellipticity condition (2.5) becomes 

T:v~ - T:v~ > 0, v: > 0, (4.3a, b) 

and the monotonicity condition (3.6) becomes 

( T ,  v, - T: v, T : ) i s  positive-definite. (4.4a) 
- v ~  1 

Condition (4.4a) says that the symmetric part of the matrix of (4.4a) is 
positive-definite. A simple argument then shows that the determinant of the 
matrix of (4.4a) is positive, i.e., that 

Tfl > 0. (4.4b) 

Condition (3.8) becomes 

T~ > 0, v~ < 0. (4.5a, b) 
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The analogs of the growth conditions (2.6) and (3.9) are 

v ~ ( ~ ' n ) ~ {  c~}0 

r* ( , ,  n) + 

139 

f:l as • ~ if n is bounded from (above ' 

(4.6a) 

{ ~ }  { i s b ° u n d e d f r ° m a b ° v e  1 
if , 

- ~ has a positive lower bound ) 

(4.6b) 

I has a positive lower bound l 

as n -~ + ~ if ~ ~is bounded from above ) 

(4.6c) 

t if n is bounded from . 
0 ( above 

(4.6d) 

a s  t /  --~ 

as z -~  

Condition ( 3 . 1 )  is equivalent to 

T re(l,0) = 0, v ~(1,0) = 1. (4.7) 

If the material is hyperelastic, then we can introduce a conjugate energy 
W as the Legendre transform of • given by 

~(~ ,  n) = nv ¢~ (z, n) -- ~ ( z ,  v ¢~ (~, n)). (4.8) 

Then 

T*(z, n) = - ~ , ( z ,  n), v*(z, n) = ~n(~, n). (4.9) 

Since it is generally difficult to get an explicit representation for the inverse 
. of N(z, • ) (cf. (3.12)), it is no easy task to construct an explicit form for • 
that satisfies the analogs of the various subsidiary conditions we have 
imposed on ~. 
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5. Autonomous equations 

Let 

s = e ~, O(s) = sT(Ins), N(s) = n(lns).  (5.1) 

Let a superposed dot denote the derivative with respect to ~. Then (2.9) and 
(4.2) are respectively converted into the autonomous equations 

d 
5-~N(*({), T({) + i({)) = ~{T(T({), z({) + i({)) -- N(T({), z({) + i(0}, 
ug 

' # h ,  n) - T, 

otIT'~ (T, n) -- n] h -- 

for - oo 

n(0) 

lim 

lim 
~-~-- o0 

(5.2) 

(5.3a) 

(5.3b) 

< ~ < 0. The boundary conditions (2.10), (2.7), (2.8) become 

= ~ g h ( 0 ) ) ,  

eCr(~) = 0, 

eCT(~) > 0, 

(5.4) 

(5.5) 

lim n(~) = 0. (5.6a, b) 

(Since Q' is required to be positive, it follows that l im,.  0 O(s) exists, so that 
the limits in (5.5) and (5.6a) exist.) 

Note that the system obtained by substituting (4.9) into (5.3) is not 
Hamiltonian and accordingly cannot be expected to yield an integral or to 
have the typical kinds of critical points of  such systems. Nevertheless the 
level curves of W and of related functions can be of help in determining the 
phase portrait of (5.3). 

6. Phase portraits 

We now determine the phase portraits of  (5.3). Let 

- { h , n ) :  0 < T, - o o  < n < oo}. (6.1) 
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The phase space 42 for (5.3) is the union of  the closure of  q / a n d  the point 
at infinity: 

42 = {(z, n): 0 ~< ~ ~< oo, --oo ~< n ~< ~ } .  (6.2) 

(42 corresponds to the closure o f  the stereographie image of  q / o n  a sphere 
tangent to the (z, n)-plane.) We introduce the open quadrants  

"~1 ~ {(Z, n): | < "1~, 0 < n},-~2 = {(z, n): 0 < • < 1, 0 < n}, (6.3) 

-~3 = { (z ,n ) :0  < • < 1, n < 0} , .~4=  {(z,n): 1 < z , n  < 0}. 

The vertical isocline v is the curve formed of  the set o f  points (z, n) for 
which 

v~(z, n) = z, or equivalently, n = N(z, ~). (6.4) 

Note  that  (2.6b) ensures that 

N(z, ~) ~ as z --, . (6.5) 
--oo 0 

We assume that 

d 
d-~ N(z, ~) -- N~('~, ~) + N,(x, z) > 0 for all ~. (6.6) 

This restriction is ensured by (2.5b) and (3.8b). It is also ensured by (3.6) for 
isotropic materials. The horizontal isocline ,~ is the set o f  points for which 

T ~ (z, n) = n, or equivalently, T(~, v ~ (~, n)) = N(x, v ~ (z, n)). 

(6.7a, b) 

We shall assume that  ~ is a single curve. We shall shortly provide conditions 
ensuring that this is so. 

Singular points of  (5.3) in q /a re  points at which v and ~ intersect and thus 
are points (z, n) with 

T(z ,  ~) = N ( z ,  ~) = n. (6.8a, b) 
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(Other candidates for singular points in ~ are points on the boundary z = 0 
and points at infinity, at which the direction fields are not immediately 
apparent from (5.3), These points require separate study.) If the material of  
the body is isotropic, then (6.8a) is an identity, by (3.3). Thus z, -- A is an 
entire curve of singular points. Condition (3.1), or its equivalent (4.7), 
ensures that (1, 0) is always a singular point. If the material is either 
azimuthally reinforced or radially reinforced, then (3.4), (3.5) show that this 
is the only singular point in q/. Let J be the open region lying between A and 
v. Let .~ be the open region lying to the left of  both ~ and ~ and let ~ be 
the open region lying to the right of both ~ and v. We illustrate these regions 
in Fig. 6.9. We define L7 ~, etc., just as we defined q2 in (6.2): &7 ~ is the union 
of  Za, the extended n-axis, namely {(0, n): - ~  ~ n ~< oo}, the parts o f ~  
and v forming the boundary of& a, and the point(s) at oo of the form (~, c~). 
The collection of all trajectories lying entirely within J is denoted 6. The 
collection of all trajectories terminating at (1, 0) that do not touch J is 
denoted e. (We shall show that e consists of a pair of trajectories approach- 
ing (1, 0).) 

n z=l 
I t .  j 

£ 
tt 

R 
7 

.a 

Fig. 6.9. 
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We now linearize (5.3) about the singular point (1, 0) obtaining 
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N~6i = -(N~ + N~,)6z + 6n, (6.10a) 

= - + -  )an. (6.lOb) 

The eigenvalues 2±N~ of the coefficient matrix of the fight-hand side of 
(6.10) are given by 

2,t+N~ = - b  -+ [b ~ + 4~t/V~(T~ + T~ - ~ - N~)] 1/2 (6.11a) 

= - b  _+ [c: + 4ot(T~)V~ - T~N~)] '/2, (6.1 lb) 

b = (~t+ 1)/V~ + N ~ - o t T ~ ,  c = N ~  +~tT~ + ( 1 - ~ t ) / V ~ .  

(6.1 lc) 

If the material is azimuthally reinforced at z = 1, then either (6.11a) or 
(6.1 lb) supported by (3.2) shows that (1, 0) is a saddle point of (6.10) with 
separatrices along the lines 

2n = {c _+ [c 2 + 40t(T~,/V~, -- T~N~,)]'/2}(~ - 1), (6.12_+) 

the plus sign corresponding to the unstable manifold. Since (3.2) holds, 
(6.12+) has positive slope and (6 .12-)  has negative slope. If the material 
is radially reinforced at z = 1, then (1, 0) is an attractive improper node for 
(6.10) with all trajectories except two approaching it along the line (6.12 +),  
the exceptional two approaching along (6.12-) .  

Since our constitutive functions have been assumed to be twice con- 
tinuously differentiable, most of these properties are conserved by the phase 
portrait of (5.3): If the material is azimuthally reinforced at ~ = 1, then a 
pair of separatrices, forming the intersection of ~ with the connected com- 
ponents of .g closest to (1, 0), issue from (1, 0) into .~ and -~3 along (6.12+) 
and another pair forming e enter (1, 0) from -~2 and -~4 along (6 .12-  ). No 
other trajectories touch (1, 0). If the material is radially reinforced at ~ = 1, 
then a pair of trajectories, forming e, enter (1, 0) from .~2 and -~4 along the 
exceptional direction (6.12-) .  These are the only trajectories approaching 
(1, 0) along (6.12-) .  All other trajectories passing near (1, 0) enter it via .~ 
and ~3 along (6.12+). Among these are the trajectories belonging to ~, 
which lies entirely in J .  Since it will soon be evident that each connected 
component of ~¢ is positively invariant (so that no trajectory ever entering 
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such a component  ever leaves it), the intersection of o with each such 
component  is nonempty. But in contrast to our results about o for bodies 
azimuthally reinforced at z = 1 and our results for , ,  we do not know 
whether the intersections of ~ with the two connected components of oa 
closest to (1, 0) consist of single trajectories. These same remarks apply to 
the saddles and nodes resulting from transversal crossings of v and d. (For 
a discussion of  results used in this paragraph cf. Friedrichs [8, Section III.4], 
e.g.) 

Let v be the inverse of z ~,  N(z, ,), which exists by virtue of (6.5) and 
(6.6). Then v is set of  points (~, n) for which 

~ = v(n). (6.13) 

Now assume that (4.4b) holds. Then (4.6a) ensures that T ~ (-, n) is invertible 
so that (6.7) is equivalent to an equation of  the form 

z = h(n), - o o  < n < oo. (6.14) 

,~ azimuthally ~ 
(Hence ~ is a curve.) If  the material is ~ radially j reinforced (every 
where), then 

[h(n) - v(n)]n 0 for n # 0. 
> 

(6.15) 

In this case the global arrangement of the isoclines is dictated by their 
behavior near (1, 0). 

Now conditions (4.3b) and (4.7) ensure that 

[va(1, n ) -  1In > 0 for n :# 0. (6.16) 

Thus (5.3a) implies that trajectories touching the line {(1, n): n > 0} cross 
it transversally from -~2 to "~1 and that trajectories touching the line 
{(1, n): n < 0} cross it transversally from -~4 to ~3. If  (4.4b) holds, then we 
likewise obtain 

( ~ -  1 ) T a ( , , 0 )  > 0 for z # 1. (6.17) 

Thus trajectories touching the segment {(z, 0): 0 < z < 1} cross it trans- 
versally from -~2 to -~3 and trajectories touching the line {(z, 0): z > 1} cross 
it transversally from -~4 to -~t. Hence, (6.16), (6.17) imply that -~t and -~3 are 
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Fig. 6.18. Phase portrait when T -- 1 is azimuthally reinforced and (1, 0) is the only singular 
point in ~. A sufficient condition for this to hold is that the material be azimuthally reinforced. 
The behavior of trajectories for ~ near 0 is discussed in Section 9. 

positively invariant regions. The orientation of  the vector fields in Ae and 
show that they are negatively invariant regions. Thus the phase portraits  
have the character indicated in Figs 6.18-6.21. The actual portraits shown 
are based on the further reasonable assumptions that 

[T*(1,  n ) -  n]n < 0 for n ~ 0, (6.22) 

[ v * ( ~ , 0 ) -  z ] ( z -  1) < 0 for ~ ¢ 0. (6.23) 

An alternative to (6.22), (6.23), having similar effect, is 

l-r * N v - r ,  
h'(n) = = > 0. (6.24) 

The portraits  shown satisfy (6.24). Note  that (4.6a, c) imply that h(n) ~ 0 
as n ~ - oo. Figures 6.20 and 6.21 are merely representative o f  what  can 
happen if the kind of  reinforcement changes with strain. 
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N 

Fig. 6.19. Phase portrait when z = 1 is radially reinforced and is the only singular point in 
q/. A sufficient condition for this to hold is that the material be radially reinforced. 

7. Solutions with the center intact 

We now seek solutions of  (5.3)-(5.5). Let # denote the curve whose equation 
is n = 2g(z). Since ~ ranges from - oo to 0, such a solution corresponds to 
a trajectory in q/terminating on : and originating from a singular point in 
q / o r  possibly from a point on the line z = 0 or from a point at oo. Such a 
solution must satisfy (5.5), which is automatic if ~ is bounded. 

Since (5.3) is autonomous, it is invariant under shifts of  ~. Therefore, if 
a trajectory originates at a point, such as a singular point, for which 

= - oo, then any point on the trajectory with ~ finite may be regarded as 
corresponding to ~ = 0. For this reason problems for solid cylinders and 
balls are more easily handled in the present context than those for tubes and 
shells. In these latter cases, solutions correspond to trajectories for which 
must range over an internal of  fixed finite length. (Cf. Sivaloganathan [18]). 
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I a l  

Fig. 6.20. Phase portrait when ~ = 1 is azimuthally reinforced and v and A have exactly two 
other intersections, which are transversal, with one lying in -~t and the other in -~3. 

Before attacking (5.3)--(5.5) for aeolotropic bodies, let us pause to study 
the problem for isotropic bodies so that the results for each class of  problems 
can be readily contrasted. As we noted after (6.8), for an isotropic body 
v = o = ~ = J is an entire curve of  singular points. If  2 ~< 0, then 
intersects d at a single point, which corresponds to a deformation of  the form 
Q(s) = c(2)s. Theorem 3.7 gives conditions for the uniqueness of  this sol- 
ution. If  2 > 0 and if 2 is sufficiently small, then ~ still intersects f uniquely. 
If g(z) = 1, then ~ intersects E uniquely for all 2. But if g(z) = T or 
g(,) = z2 (see the remarks following (2.2)), then for different materials there 
may be none, one, or many such intersections. For 2 > 0 there can also be 
cavitating solutions. These have been beautifully treated in [4, 12, 14, 18, 20] 
for isotropic bodies. We study cavitation for aeolotropic bodies in Section 
8. The behavior of  isotropic bodies can be readily ascertained by taking the 
limiting case of  our results. 

In this section we show that problem (5.3)--(5.5) admits a solution if a 
trajectory in ~ satisfying (5.5) terminates at E. Except in a couple of  cases in 
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I1 ~ - - 4  k 

Fig. 6.21. Phase portrait when z = 1 is radially reinforced and ~ and ,~ have exactly two other 
intersections, which are transversal, with one lying in .~ and the other in -~3. 

which the verification of (5.5) is delicate, this demonstration follows immedi- 
ately from an examination of the phase portrait for the material under study. 
The phase portrait also yields the properties of such solutions. We find that 
there are instances in which these solutions (i) are relatively innocuous, (ii) 
exhibit surprising features, or (iii) are nonexistent. To show that there are no 
other solutions of a more interesting kind (say, with strange states of stress 
locked in) when (i) holds, that there are no other solutions of a less patho- 
logical nature when (ii) holds, and that there are no other solutions at all 
when (iii) holds, it behooves us to show that there can be no other kinds of 
solutions. 

Other candidates for solutions have other trajectories terminating at ~. 
Because 3 is positively invariant, these other trajectories must come from 
A" or ~ .  We begin our ~fnalysis in this section by demonstrating that 
trajectories coming from A" or ~ cannot generate solutions to (5.3)-(5.5). 
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In ~ ,  ~ > 0, h < 0. If  (4.3b) and (4.5b) hold, then 

d 
< 0 (7.1) 

for trajectories lying in £f. Since every point in .~ lies above v, we have 

n > N(z, z), or equivalently, v#(z, n) > z for (z, n) • Zf. (7.2) 

Let - ~ < 0 < 0 and let (z(0), n(O)) • .~. Since .Lf is negatively invariant, 
the trajectory terminating at (z(0), n(O)) lies entirely in .~. Inequalities (7.1) 
and (7.2) imply that on this trajectory 

v~'(~(~), n(~)) >~ v~(z(O), n(O)) > z(0) for ~ ~< 0. (7.3a, b) 

Substituting (7.3a) into (5.3a) we obtain 

~ >~ v~(z(O), n(O)) - z, or equivalently, ,d, (eCz) ~> v*(z(O), n(O))e ~. 
clg 

Integrating (7.4b) from r / to  0, we obtain 

e"z(r/) ~< e°[z(0) - v~(z(O), n(0))] + v~(z(O), n(O))e ~ for r/ < 0 

(7.4a, b) 

on this trajectory. Since the first term on the right-hand side of (7.5) is 
negative by (7.3b), the entire right-high side becomes negative as r/ --, - ~ .  
Thus there is a finite negative value of ~/, depending on (z(O), n(O)), at which 
this trajectory touches the line z = 0. Hence we obtain 

7.6. LEMMA. Let (7.1) hold for trajectories lying in .~f . (This is a constitutive 
restriction, which can be obtained by performing the differentiations in (7.1) 
and then substituting (5.3) into the resulting inequality. Condition (4.5b) is 
sufficient for  this requirement.) Then a trajectory having a single point in .~ 
cannot correspond to a solution of(5.3)-(5.5) (because ~ cannot assume values 
in its full  range). 

(7.5) 
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Now let us examine ~ ,  in which ~ < 0, h > 0. Condition (4.5b) implies that 

d 
j--~ v~'(~(~), n(~)) > 0 on :~. (7.7) 
gta 

This condition and the reverse of  (7.2) then yield the reverse of  (7.5), which 
says that e"~(r/) has a positive lower bound, so that (5.5) cannot hold. Hence 

7.8. LEMMA. Let (7.7) hold for trajectories lying in ~ .  Then a trajectory having 
a single point in ~ cannot correspond to a solution of  (5.3)-(5.5). 

In Section 9 we shall discuss the nature of trajectories in ~ for z near 0 
and trajectories in ~ for z near ~ .  We now turn to our basic theorems giving 
the existence, multiplicity, and qualitative properties of solutions of 
(5.3)-(5.5). In the rest of  this section, it is tacitly assumed that (2.5), (2.6), 
(3.1), (3.2), (6.22), (6.23), (7.1), (7.7) hold. Note the identifications of  
Section 4. 

(7.9) TrIEOPmM. Let z = 1 be azimuthally reinforced and let -~s be free o f  
singular points. ( A suj~cient condition for this hypothesis is that the material 
be azimuthally reinforced for  z <~ 1.) The for  each 2 < O, there is exactly one 
solution of(5.3)-(5.5). This solution describes an equilibrium state in which the 
center is stress-free and in which the radial normal stress ~(s) and the azimuthal 
stretch O(s)/s strictly decrease with the radius s. 

Proof. We refer to Fig. 6.18. (In general ~ c~ {(~, n): n < 0} need not be 
confined to -~3-) Since the separatrix a in -~3 is confined to the positively 
invariant region o¢, z strictly decreases from 1 and n strictly decreases from 
0 along a as ~ increases from - ~o. Condition (2.2) ensures that ~' intersects 
a transversally. Hence a solution of  (5.3)-(5.5) corresponds to the segment 
of a joining (1, 0) to ~. The point (1, 0) is occupied when ~ = - oo or s = 0. 
Here ~ = 1, n = 0, which imply by the transformations of Sections 4 and 
5 the remarkable result that f'(0) = 0 = ~(0). Since a is a curve (by the 
comments of  Section 6), Lemmas 7.6 and 7.8 imply that this solution is 
unique. [] 

Note that the uniqueness part of  this theorem is stronger than Theorem 
3.7 because it allows into competition solutions of  (5.3) that need not be 
admitted by Theorem 3.7. Similar remarks apply to many of the results that 
follow. 
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7.10. Trmov,~M. Let  z = 1 be radially reinforced and let .~ be free of  singular 
points. ( A sufficient condition for this hypothesis is that the material be radially 
reinforced for • <~ 1.) Let (4.4b) and (4.5a) hold. Then for each 2 < 0 there 
is at least one solution of(5.3)-(5.5).  I f  a is a curve in ~ (a sufficient condition 
for which is that (3.6) hold), then there is exactly one solution. Each such 
solution describes a configuration in which the center of the body is in complete 
compression, whence f;(O) = - o ~  = 1~(0). The radial normal stress ill(s) 
and the azimuthal stretch strictly increase with the radius s. 

Proof. We refer to Fig. 6.19. On the trajectories of  a c~ .~  (which form a 
cont inuous one-parameter  family) ~ increases from 0 to 1 and n increases 
f rom - ~ to 0 as ~ increases up to ~ .  We must  first show that ¢ = - ~ 
when (z, n) = (0, - ~ ) .  N o w  ~ > 0, ti > 0 on ~ c~ -~3 and a fo r t io r i  on 
~ c~ -~3. Thus 

d 
,--r T~ (z(~), n(~)) > 0 on ~ c~ .~.  
Ctl 

(7.11) 

Let 0 < ~ and let (z(0), n(O)) ~ ~ c~ -~3. Let (z, n) be the solution of  (5.3) 
that  terminates at (z(0), n(O)) when ~ = 0. Then (z(~), n(~)) for ~ ~< 0 
belongs to the part  of  ~ joining (0, - o~) to (~(0), n(O)), because a c~ .~  is 
invariant. Then (5.3b) and (7.11) imply that 

h(~) __< ~t[T*(t(0), n(O)) - n(~)], 

d 
or ~ (CCn) =< ~TC~(T(O), n(O))C ~ for ~ < 0, (7.12) 

a g  

whence we obtain 

[n(~) - T'~(z(O), n(0))] >~ e~t°-e)[n(O) - T~'('c(O), n(0))]. (7.13) 

No te  that  the bracketed term on the fight-hand side is negative since ~ lies 
below ~. (See (6.7).) Let n(~) -~ - oo. Then (7.13) implies that ~ ~ - o~. 
Since ~ > 0, ti > 0 on each trajectory of  6, each such trajectory intersects 
¢ transversally. A solution o f  the boundary  value problem corresponds to 
the segment of  any trajectory of  ~ joining (0, - ~o) to ¢. A rearrangement 
of(7.13)  shows that C~n(~) is bounded  below for ~ =< 0. Thus we can apply 
Theorem 3.7 when (3.6) holds to show that the trajectory of  ~ joining 
(0, - oo)  to  ~ is unique. Note  that (5.5)  is automatically satisfied because z 
is bounded.  Lemmas 7.6 and 7.8 ensure that  these solutions are the o n l y  
solutions. [ ]  
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7.14. TnEOR~ta. Let z = I be azimuthally reinforced and let ~ and ~ have 
exactly one intersection in -~3, which is transversal. (This intersection accord- 
ingly corresponds to an attractive improper node.) Let (4.4b), (4.5a), .(4.6a) 
hold. Then for each 2 < 0 there is at least one solution of(5.3)--(5.5). There 
is a critical value 2" < 0 of  the loadparameter such that for  0 > 2 > 2", the 
solution, is unique, the center is stress-free, and the normal stress and azimuthal 
stretch strictly decrease with the radius, for  2 = 2* the solution is unique and 
the stresses have constant finite values throughout the body, and for 2 < 2* 
the center is under complete compression so that ~(0) = - o~ = ~(0)  and 
the radial normal stress and the azimuthal stretch strictly increase with the 
radius. The solution is unique for  2 < 2" tf the intersection o f  ~ with the 
component o f  d ~ extending to (0, - ~ )  is a curve, which happens when (3.6) 
holds. (The intersections o f  ~ with the components o f  J next to (1, 0) are 
curves.) 

Proof. We refer to -~3 of Fig. 6.20. We do not bother to repeat the arguments 
developed in the proofs of  the preceding theorems. 2" is the unique value of  
2 for which the curve g passes through the singular point in ~3. For 
0 > ;t > 2" the solution corresponds to the trajectory originating at (1, 0) 
and terminating at the curve ¢. For 2 = 2", the solution corresponds to the 
singular point in -~3- For 2 < 2", the solution corresponds to the trajectory 
originating at (0, - o ~ )  and terminating on the curve g. (Note that for 
2 = 2", the trajectories of a beginning at (1, 0) or (0, - ~ )  and ending at 
the singular point do not generate solutions because their terminal points 
correspond to ~ = ~ . )  [] 

Note the catastrophic change in the nature of  the family of solutions 
parametrized by 2 as 2 passes through the critical value 2*. Since 
Q(1) = ~(0) Fig. 6.20 shows that there is no concomitant jump in the outer 
radius of the body. 

7.15. THEO~,~M. Let z = 1 be radially reinforced and let z, and ~ have exactly 
one intersection in -~3, which is transversal. (The intersection accordingly 
corresponds to a saddle point.) Then for each 2 < 0 there is exactly one 
solution of(5.3)-(5.5). There is a critical value 2" < 0 of  the load parameter 
such that for  0 > 2 > 2 '  the normal stress and azimuthal stretch strictly 
increase with the radius from their values n o ~ ( -  o~, O) and z o ~ (0, 1) at the 
center,for 2 = 2" the stress and stretches have constant values throughout the 
body with N(s) = n o, #(s)/s = z o, and for  2 < 2" the radial normal stress 
and the azimuthal stretch strictly decrease with the radius from their values n o 
and Zo at the center. 
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The proof is based on Fig. 6.21. Since it uses the same ideas as those of 
Theorems 7.9 and 7.14, we omit the details. 

It is clear how to generalize Theorems 7.14 and 7.15 to handle problems 
in which there are any number of singular points in -~3. 

We now turn to problems in which the boundary is subject to tension, so 
that 2 > 0. We encounter some new effects. 

7.16. THEOREM. Let  ~ = 1 be azimuthally reinforced and let there be no 

singular point in .~ .  Let  n = f ( z ) ,  ~ >~ 1, be the equation o f  the separatrix 

~ c~ .~.  ( f  is well-defined because ~ > O, h > 0 on ~ c~ ~ . )  Then for  each 
2 > 0 there are as many solutions of(5.3)-(5.5) as there are intersections o f  

~ and 6. In particular, i f2  is sufficiently small, there is exactly one such solution 
for  each 2. I f  the load is dead so that g(z) = 1, then there is exactly one 

solution for  each 2 > O. I f  the loading is a hydrostatic tension on a cylinder, 
so that g(~) = 3, then (i) there is a solution for  each 2 > 0 i f  f(~)/~ ~ c~ as 

~ --, oo and(ii)  there is a ~ > 0 such that there are no solutions for  2 > ~ i f  

f ( r ) / z  --, 0 as • -~ oo. (Since v(n) > f - ~ ( n )  > h(n) for  n > O, a sufficient 
condi t ionfor f (r) /z  ~ oo as ~ ~ oo is that N(v, ~)/~ ~ oo as • ~ o~, by the 

definition o f  v, and a sufficient condition for  f(~)/~ ~ 0 as • ~ c~ is that 
h-~(~)/v -~ 0 as • -~ oo.) I f  the loading is a hydrostatic tension on a sphere, 

so that g(~) = ~2, then (i) and (ii) hold with f(~)/~ replaced with f (~) /v  2. Each 
such solution describes a state in which the center is stress-free and the radial 
normal stress ill(s) and azimuthal stretch strictly increase with radius s. 

The proof follows immediately from Figure 6.18 by the arguments already 
developed. The essential difference between this result and Theorem 7.9 is 
that here f"  and g'  have the same sign in .~ so that f and 2g need not 
intersect. Thus the question of existence is intimately bound up with the 
material response in large tension. These issues occur all the time in the 
study of the inflation of elastic rings and shells. The physical interpretation 
of the nonexistence is simple: The material is incapable of withstanding the 
forces applied to it and either responds dynamically or else assumes an 
unsymmetric equilibrium state. 

To study solutions of (5.3)-(5.5) for 2 > 0 when the phase portrait is like 
that of  Figs 6.19 and 6.20 we require detailed information on ~ r~ -~l for 
large n to show that ¢ ---, - ~ as n ~ ~o and that (5.5) is satisfied. We begin 
with 

7.17. LEMM~. Let  all the singular points in .~ be confined to a bounded set and 
let the unbounded connected component o f  oa ~ .~ lie to the right o f  v and to 

the left o f  ,~ (as in Figs 6.19 and6.20).  Then ~ --, - o~ a sh  ~ oo on ~ c~ .~.  
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Except for some obvious sign changes, the proof is identical with the first 
part of  the proof of Theorem 7.10. 

The treatment of  (5.5) when 2 > 0 for Figs 6.19 and 6.20 is a more 
difficult matter because it depends in a delicate way on the nature of the 
constitutive functions for large z and n. Our first result depends on the 
asymptotic behavior of ~. The equation (6.7b) for ~ can be written as 

T(z, v) = N(z, v) (7.18) 

where 

v = v ~ (z, n), or equivalently, n = N(z, v). (7.19) 

7.20. THEOREM. Let z = 1 be radially reinforced and let .~ be free o f  singular 
points. Let there be a number M > 0 such that 

v ~ (z, n) >~ Mz for (z, n) ~ ~ c~ -~1 and z sufficiently large. (7.21) 

(A natural sufficient condition for (7.21) is that if(z, v) satisfies (7.18) and 
i f  z is sufficiently large, then v >~ Mz.) Then for each 2 > 0 there are exactly 
as many solutions of(5.3)-(5.5) as there are intersections of  ¢ with trajectories 
forming ~. (~ is a curve/f(3.6) holds.) The consequences o f  this statement are 
the same as those o f  Theorem 7.16. Each such solution describes a state in 
which ~(0) = oo = ~(0) and in which the radial normal stress and azimuthal 
stretch strictly decrease with the radius s. 

Proofi The only novelty is to verify that (5.5) holds. Relations (5,3a) and 
(7.21) imply that 

d 
~ ~> Mz - z or -~. (e~z) >~ M e ~ ( O  

og 
(7.22) 

on a ~ .~ for z sufficiently large. Let - oo < ~/ < 0 < 0 and let (z, n) be 
a solution to (5.3) corresponding to a trajectory of a r~ -~t that terminates 
at (z(0), n(O)) with z(0) sufficiently large. Then (7.22) implies that 

e~(r/) ~< eU~-°)e°z(O), (7.23) 

which implies (5.5). [] 

We now complement this result with a nonexistence theorem under an 
hypothesis that roughly speaking is the negation of  (7.21). 
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7.24. THEOREM. Let z = 1 be radially reinforced and let .~ be free of  singular 
points. Let there be numbers m > 0,/~ < 1 such that 

v*(~, n) ~< m'r~for (z, n) e ~ c~ .~ and z sufficiently large. (7.25) 

(.4 natural sufficient condition for (7.25) is the inequality 

v * (z, N(z, z)) ~< mz ~ for z sufficiently large, (7.26) 

which describes constitutive behavior on ~.) Then (5.3)-(5.5) has no solutions. 

Proof Relations (5.3a) and (7.25) imply that 

d (e~z) ~< m(e~z)~e~_~) (7.27) 
d~ 

on o c~ .~ for z large. Let r/, 0, z, n play the same roles as in the proof of 
Theorem 7.20. Then (7.27) yields 

[e"z(~)] l-~ ~> me ~tl-#) + e°o-u)[z(0) l-~ - m]. (7.28) 

Since z(0) -~ ~ as 0 -~ - ~ (cf. Figure 6.19), we can choose 0 so small that 
the right-hand side of (7.28) has a positive lower bound. Thus (7.28) ensures 
that (5.5) cannot hold. [] 

It is a straightforward exercise to use the techniques developed in this section 
to formulate analogous theorems for material response leading to Figs 6.20, 
6.21, and other even more complicated phase portraits. In Section 9 we 
comment on how (7.26) and the sufficient condition for (7.21) can be 
determined from specific constitutive functions, such as those determined 
from (3.12). 

8.  C a d t a f i o n  

We now briefly study solutions for which the center of  the body opens into 
a hole. (When the conditions of  Theorem 7.24 hold, such solutions generate 
the only symmetric equilibrium states!). We accordingly seek solutions of  
(5.3), (5.4), (5.6) for 2 > 0. To handle (5.6) we must study phase portraits 
for (z, n) near (or, 0). In particular, the proof of Lemma 7.8 shows that 
( 5 . 6 a )  is automatically satisfied and also that ~ --* - ~ as ~(~) -~ ~ along 
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any trajectory in ~ .  It follows that a condition necessary for the existence 
of cavitation is the existence of a special trajectory c asymptotic to the z-axis 
a s ~  ---~ o o .  

Now for (z, n) near (oo, 0) neither the effects of  aeolotropy nor those of 
isotropy are discernible. The nature of  the phase portrait in this region is in 
fact dictated by the growth rates of T '~ ( ' ,  0) and v ~ ( ' ,  0) for z large. (As 
Figs 6.18-6.21 show, the predominant effect of  aeolotropy is manifested in 
the form of#' .  For isotropic materials oa collapses to a single curve.) In view 
of these observations, we enunciate the heuristic principle that c exists for 
aeolotropic materials if they satisfy the same growth conditions as those 
ensuring the existence of cavitation for isotropic materials. These conditions 
have been exhaustively studied in [4, 12, 14, 18, 20]. We describe a more 
concrete approach to the existence of ,~ in Section 9. In this section, we 
simply assume that c exists and is unique. 

It is illuminating to see what happens when (5.4) is replaced by the 
requirement that the deformed outer radius be specified: 

~(1) = z(0) = ~o > 1. (8.1) 

(We get no cavitating solutions unless o~ > 1.) When (5.4) is prescribed, we 
limit our comments to the case that the load is dead. The treatment of other 
kinds of loads follows the lines of Theorem 7.16. 

The existence, multiplicity, and qualitative properties of solutions follow 
from an examination of the appropriate phase portraits. The stability of  
solutions does not (although one can make educated guesses about it). We 
refer to Ball [4] for a treatment of stability for isotropic bodies, using 
methods that are possibly applicable to the problems at hand. 

In Figs 8.2, 8.3, 8.4 we exhibit phase portraits for an isotropic material 
and for the materials of  Figs 6.18 and 6.19. In extracting information from 
these figures we tacitly rely on Lemmas 7.6 and 7.8 for our statements about 
multiplicity. 

From Fig. 8.2, for isotropic materials, we find that for 0 < 2 ~< n* there 
is exactly one equilibrium state with the center intact, and exactly one 
cavitating equilibrium state satisfying (5.4). The intact state has constant 
stress 2 throughout the body. The cavitating state has normal stress increas- 
ing strictly with the radius from 0 to 2 and has azimuthal stretch decreasing 
strictly with the radius from ~ to a value exceeding that for the intact state. 
If 2 exceeds n*, there is exactly one equilibrium state, which is intact. (This 
state is presumably unstable: Cavitation may well occur, but in a dynamical 
process. Note that the outer radius of this intact state is the same as that for 
a cavitating state, but the normal stress 2 on the boundary for the intact state 
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Fig. 8.2. Phase portrait for an isotropic material for which c exists. 
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Fig. 8.3. Phase portrait of Fig. 6.18. 

0 7 

Fig. 8.4. Phase portrait of Fig. 6.19. 



158 S.S. Antman and P.V. Negrrn-Marrero 

exceeds the normal stress for the cavitating state at the same radius. This 
normal stress for the cavitating state is presumably the most that can be 
borne in a stable equilibrium state.) 

From Fig. 8.2 we also find that for 1 ~< to < z* there is exactly one 
equilibrium state satisfying (8.1), which is intact. For z* ~< to there are 
exactly two equilibrium states satisfying (8.1), one intact, the other not. For 
hyperelastic materials, the cavitating state is stable and the intact state 
unstable according to the energy criterion (cf. Ball [4]). 

Now we study materials for which z = 1 is azimuthally reinforced and .~ 
is free of singular points. The phase portrait has the form of  Fig. 8.3. For 
each 2 > 0, there is exactly one intact state and one cavitating state satisfy- 
ing (5.4). For 1 ~< to < z* there is exactly one equilibrium state satisfying 
(8.1), which is intact. For ** < to, there is exactly one intact equilibrium 
state and there are exactly two cavitating equilibrium states satisfying (8.1). 
Extrapolating from Bali's results about stability for the isotropic body, we 
surmise that the only one of these three states that is stable is the cavitating 
state on the lower branch of,:. (n is apparently smallest on this branch.) As 
to is increased past z*, the (presumably stable) equilibrium state jumps 
(snaps) from one with the center intact to a cavitating state. No such 
jumping occurs for isotropic materials. For the traction problem, we conjec- 
ture that there is no stable equilibrium state for 2 ~> n*. 

We finally study materials for which z = 1 is radially reinforced and -~t 
is free of singular, points, so that the phase portrait is given by Fig. 8.4. 
(Similar techniques handle the manifold other possibilities). For 0 < 
2 < n* there are exactly two cavitating equilibrium states satisfying (5.4). If  
(7.21) holds, there is also exactly one intact state. If(7.25) holds with/~ < 1, 
then these are the only symmetric equilibrium states. For to > 1, there is 
exactly one intact state and exactly one cavitating state satisfying (8.1). We 
surmise that the cavitating state is stable. For 0 < 2 < n* there are one 
intact state and two cavitating states and for 2 > n*, the only symmetric 
equilibrium state describes an intact state. Since z seems to be smallest on 
this branch, we conjecture that it is stable. (Methods now being developed 
by J. Sivaloganathan may help resolve the question of  stability.) 

It is interesting to observe that Figs 8.3 and 8.4 are the two simplest 
unfoldings of  Fig. 8.2. 

9. The effects of material response on the asymptotic nature of the phase 
portraits 

In this section we examine the behavior of the phase portraits at the 
extremities of  q/. For the most part, this study relies on a quantitative 
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analysis of  the growth conditions on T a and v ~ . We wish to motivate our 
results by using the material of  (3.12). Since we do not have a closed-form 
representation for the inverse v ~ (~, .) of  N(,,  .) in this case, we must 
employ appropriate asymptotic methods. 

We first study (5.3) in L~. Since ~ > 0 and h < 0 in L~ we can describe 
any trajectory in L¢ by the function z ~-~ ~('0 where h(z) satisfies 

dh ~[T~'(~, h) -- h] 
- -  ( 9 . 1 )  

dz v~'(~, ~) - ~ 

We are particularly concerned with the behavior of h near the n-axis. To 
determine this, we restrict our attention to the special family of  constitutive 
functions given by (3.10), (3.12) with E~ = 0 = E~. (Our entire analysis 
actually goes through for more general O's whose behavior at extreme values 
of z and v is captured by our special family of O's.) 

We now get an asymptotic representation for the right-hand side of (9.1) 
when • is small and h is bounded. This information suffices to determine 
lim h(z) as z ~ 0. For our special family of  materials, the equation 
n = N(~, v) has the form 

n = - A 2 v  -a2 + B2v b2 - -  Cc2"c-c'v -c2-1 + Dd2xa'v a2-~. (9.2) 

We seek an asymptotic representation for the solution v ~' (. ,  n) of  this 
equation as ~ ~ 0 with n held fixed. Since the only functions of x and v that 
appear in (9.1) are powers, we are led to seek the solution of  it in the form 

v" (~, n) = ~-~tn~dp(z, n) (9.3) 

where lira,_. 0 ~b(z, n) exists for each finite n and lies in (0, ~ ) .  ~(n) is a 
positive number to be determined. We substitute (9.3) into (9.2) obtaining 
an equation that involves essentially a sum of  powers of x. For this equation 
to be satisfied y must be chosen so that the two highest powers are equal. The 
combinatorial problem of determining the right ~ is readily treated by the 
Newton polygon method when the exponents as . . . . .  d~ are given specific 
numerical values. (Cf. Dieudonn6 [7], e.g. To put (9.2) into standard form 
for this method, set v = y-~ and multiply the resulting version of  (9.2) by 
zC'y m~b~'d~-~.) Then lim¢~ 0 ~b(z, n) is determined by the requirement that the 
sum of  terms with highest powers of n vanish in the limit as • -~ 0. In 
particular, the substitution of (9.3) into (9.2) yields the following asymptotic 
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formula 

0 ~ B:~-~4 , (O,  n) ~ - Cc:~-c'+'~c:÷~)4~(O, n) -c~-~ 

+ Dd~'ca'-~a~-l)c~(O, n) a~-~ as ¢ --* O. (9.4) 

Here we have retained all terms that cannot be immediately disqualified as 
negligible. The candidates for y, obtained by pairwise equating the 
exponents on ~, are the positive numbers among 

Cl/(b ~ + c 2 + 1), dl / (d  2 - 1 - b2), (c I 3 I- d~)/(c2 + d~). (9.5) 

That giving the largest negative exponent on ~ in (9.4) is the correct one. 
Denote it by F. (Note that both ~(n) and ~(0, n), found by the prescription 
given above, are independent of n.) Then (3.10), (3.12), (4.1) yield 

T~ (z,n) ,,, - A ~ - " '  - C¢ll"-c~*: -c ' - l+¢q + DdiFa~¢ a'-~-v'~ =- ~x-IF'c-Yf(~) 

(9.6) 

for nfixed as z - ,  0. Thus for ~ in any bounded interval, (9.1), (9.3), (9.6) 
yield 

dh 
d'~ ~ f (z ) "  (9.7) 

If  we choose the exponents so that Tff > 0 (see (4.4b) and the comments 
following (3.12)), then we need not worry about the third term in (9.6). (It 
cannot dominate the other two. At worst we might have to change the 
constants A and C.) Since the exponents of the C and D-terms of (9.7) are 
each one less than the corresponding exponents of (9.6), the D cannot be 
important in (9.4). Thus the only ~, is the first from (9.5). It causes the 
exponent on the C-term in (9.7) to be negative. Hence, for the class of  
materials described by (3.12), we conclude that 

dh 
- -  -÷ - oo as • --* 0 for fixed h. (9.8) 
dz 

In view of  the remarks on the D-term we obtain from (9.7) that 

fi(~) ,,, h(co) + o~r -1 f~ [At# v-a~ + Cc~F-qa-(c'+~)+~(c~+~)]da (9.9) 
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for 0 ~< z < to with to small, provided h is bounded  on [z, to]. Thus h would 
be bounded  on [0, to], so that  ~(0) would be a finite number  (depending on 
h(to)) if, and only if 

y - -  a~ > - 1 ,  ~(c2 + 1 ) - -  (cl + 1) > --1.  (9.10) 

where ~, is the first entry from (9.5). But the second inequality is false. Thus 
we conclude that all trajectories in Ae originate at (z, n) = (0, ~ ) .  

To treat (7.21) we use the sufficient condit ion for it given in Theorem 7.20. 
We substitute (3.10), (3.12) into (7.18) and use our informal Newton  Poly- 
gon Method  to solve it for an asymptot ic  representation for v as a function 
of  z for z large. To  treat (7.26) we first solve (9.4) for v ~ (z, n) for z and n 
large and then replace n by N(z, z). 

We finally turn to the study of  cavitation, the existence of  which devolves 
on the existence of  the special trajectory c. ~ has the defining property that 

n(~) ~ 0, z(¢) --* o~ as ~ ~ - ~ .  (9.11) 

We begin by seeking the solution o f  v ~ (z, n) o f  (9.2) for n fixed and finite 
and ~ large in the form (9.3) with lirn~_.~ tk(z, n) e (0, o~) existing for each 
finite n. As the analog of  (9.4) we get 

0 '~' - -  A2"~'a2(f~(o(], n)  -a2 - -  Cc2~-c2+~(c2+1)~)(oo,  n) -c2-1 

21- Dd2"~,d2-?(d2-1)~)(O0, n) d2-1 as z --* ~ .  (9.12) 

We find ~, and ~b(~, n) as above, noting that each is independent o f  n. Then 
(3.10), (3.12), (4.1) yield 

T#(z,  n) ,~ B~z b~ - CciF-C2z -c'-~+rc2 + Dd~I~d2z d~-|-rd2 (9.13) 

as z ~ ~ .  Here F = ~b(~, n). I f  r ~ h(z) denotes the graph of  a typical 
trajectory in ~ ,  then 

0~_1 d h  - -  ,~ 
d~ 

--~B1z b~-I -]- C¢lF-c2z -c~-2+~c2 - DdlFd2z dl-2-~'d2 =_ f (  z) 

(9.14) 

as z -~ oo. I f  to is a large number  and if z > to, then (9.14) implies that 

ct-lh(z) ,,~ fi(to) + f~f( t r )dt r  as z -~ ~ .  (9.15) 
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Thus h(~) approaches a constant depending on h(~o) if f is integrable on 
(~o, oo). Since the trajectory described by h lies in ~ ,  t~ is decreasing here. It 
follows that the C-term in (9.14) cannot be dominant  and may be discarded 
(provided, in the worst case, that BL or D be changed). Thus ~: exists if 
bL < l, d~ < 2 + vd~ (and a fortiori if d~ ~< 2). 

I0. Conclusion 

If  a material is aeolotropic, but has constitutive equations in some sense 
close to those for an isotropic material, the various phenomena we have 
discovered would be qualitatively unaffected by the size of  the discrepancy. 
In short, the properties of solutions, especially those related to infinite 
stresses at the center, do not depend continuously on the material properties. 
(The notion of continuous dependence can be made mathematically precise. 
It corresponds to the continuous dependence of solutions of ordinary dif- 
ferential equations on the equations, a topic discussed in advanced texts on 
ordinary differential equations.) The source of  trouble is the singularity at 
the center at which the effects of aeolotropy are focused. 

A similar phenomenon is manifested in Theorems 7.20 and 7.24. There is 
a critical rate of growth for the constitutive equations of radially reinforced 
materials dividing the constitutive equations into two classes. In one class 
there is no symmetric equilibrium state with center intact when the bound- 
ary is subjected to any uniform tension. As frequently happens, this critical 
rate of growth is exactly that of linear elasticity (cf. Antman [3]). 

In fact, some of the phenomena we have studied occur in linear elasticity 
(cf. [3, 15, 19]). The governing equations for linearly elastic media are 
exactly those of (6.10). The phase-plane is then either that for a saddle or 
node of the linear theory. Consequently, v, ~, a are straight lines with 
positive slope. But we confront the characteristic conundrum of linear 
elasticity when we attempt to interpret the meaning of  unbounded solutions 
generated by the trajectories of a that start at (z, n) = (+  o~, + oo). This 
issue never arises in nonlinear elasticity. (Indeed, one of  the most important  
justifications for the study of nonlinear elasticity is that it gives clear resol- 
utions of the paradoxical interpretation of unbounded solutions of the 
equations of linear elasticity.) 

The presence of infinite stresses at the center due to suitable kinds of small 
aeolotropy makes it tempting to suggest that this aeolotropy may contribute 
to the mechanism of fracture. Indeed, poorly cast cylindrical rods, which 
may be regarded as radially reinforced (cf. [11, 22]), fracture along their axes. 
The same phenomenon can be more readily viewed in a piece of ice cream 
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frozen into a cylinder. Of course, fracture occurs because of mechanisms 
operating on the molecular level, but the use of continuum mechanics has 
continued to illuminate the subject. 

The jumps in stress in certain bodies (cf. Theorem 7.15) suggest appli- 
cations to switches and transducers. By implanting in a body reinforcing 
fibers or sheets that respond mechanically to magnetic fields it may be 
possible to greatly alter the sensitivity of the body and even to switch the 
aeolotropy on and off (of. Savage and Adler [17]). 

For simplicity, we assumed that our constitutive functions are twice 
continously differentiable. Virtually our entire analysis goes through, except 
that with the reduced smoothness, we are never certain if a is a curve. 
Consequently, some of our results on uniqueness and multiplicity would lose 
their sharpness. 

The qualitative properties of the phase portraits of (5.3) are unaffected by 
the dimension of the body: 2 for cylinders and 3 for balls. But as Theorems 
7.16 and 7.20 and as the results of Section 8 indicate, the nature of hydro- 
static tension greatly depends on dimension and greatly influences the 
number and type of solutions. 

Phase-plane methods have been used to treat radially symmetry problems 
of nonlinear elasticity by several authors, among whom are Ball [4], Biot [5], 
Callegari, Reiss and Keller [6], and Sivaloganathan [18]. Such problems have 
also been treated by direct methods of the calculus of variations by Ball [4] 
and Sivaloganathan [18], by methods of variational inequalities by Antman 
[2], by shooting methods by Stuart [20], and by methods based on the 
Leray-Schauder degree theory by Gauss and Antman [9] and Negr6n- 
Marrero [13]. Methods based upon the calculus of variations give useful 
insights into the stability of equilibrium states. But for the problems we have 
treated, methods other than phase-plane methods are not only technically 
far more demanding, but also fail to deliver the detailed qualitative informa- 
tion about solutions that we have observed. They enjoy, however, two 
compelling virtues: They can be applied to problems in which the material 
is not homogeneous, so that the governing equations typically fail to have 
a formulation as an autonomous system, and they can be applied to systems 
with more thart two dependent variables, for which many of the advantages 
of two-dimensional phase spaces are lost. 
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