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An Analysis of the Linearized Equations for Axisymmetric
Deformations of Hyperelastic Cylinders

PABLO V. NEGRON-MARRERO
Department of Mathematics, University of Puerto Rico, Humacao, Puerto Rico 00791

(Received 15 July 1997; Final version 20 May 1998)

Abstract: The equations describing the axisymmetric deformations of a cylindrical body composed of a hy-
perelastic isotropic material define a system in two variables (radius and height due to axisymmetry) of quasi-
linear partial differential equations subject to nonlinear mixed boundary conditions. The author considers the
boundary value problem of specifying the displacement of the lateral surface of the cylinder subject to zero
normal stresses on the top and bottom. It is shown that this problem admits a trivial solution consisting of
a uniform expansion or compression in the radial and height directions. The author studies the linearization
of the full nonlinear equations about the trivial solution and constructs solutions for the resulting system of
linear partial differential equations. As a consequence of these explicit representations, one gets the charac-
teristic equation defining the eigenvalues of the linearized problem, which represent bifurcation points of the
nonlinear system. The corresponding eigenfunctions can be classified into those that are symmetric about the
z = 0 axis (midplane of the cylinder) representing either necked or barreled states of the cylinder and those
that break this symmetry. For a class of Hadamard-Green type materials and all cylinder heights, the existence
of eigenvalues for the symmetry-preserving and symmetry-breaking characteristic equations is shown.

1. INTRODUCTION

The study of the deformations of basic structures like plates, cylinders, bars, and so on is an
important area in engineering; for example, in the design of bridges, planes, and cars. The
ability to compute numerically or to predict the character of the solutions of the equations
describing such deformations is thus an important practical problem. In this paper, we study
the axisymmetric deformations of a cylindrical body composed of an isotropic hyperelastic
material subject to a specified lateral surface displacement and to zero normal stresses on
the top and bottom. The axisymmetry of the deformation reduces the full three-dimensional
equations of nonlinear elasticity to a 2x2 system of quasi-linear partial differential equations
for the radial and vertical displacements subject to some mixed boundary conditions, and
parameterized by the applied loads and constitutive equations. The isotropy condition
and some physically reasonable growth conditions (basically, that infinite expansions or
compressions within the body be accompanied by the corresponding infinite stresses) allow
us to construct a family of trivial solutions consisting of a uniform expansion or compression
of the cylinder in the radial and vertical directions. The linearization about the trivial solution
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of the full nonlinear equations describing the deformation yields a 2x2 linear system of partial
differential equations. We look for separable solutions of this system of partial differential
equations and find that the solutions are given in terms of hyperbolic functions and Bessel
functions of orders zero and one. With these explicit solutions, we are able to characterize
the eigenvalues of the linearized problem which represent possible bifurcation points for
nontrivial solutions of the nonlinear problem.

The problem we treat in this paper follows a hierarchy of problems in nonlinear elasticity
beginning with the models of nonlinearly elastic bars analyzed, among others, by Antman
[1], Antman and Carbone [S], and Owen [16]; nonlinearly elastic thin plates analyzed by
Antman [2, 4], Negron-Marrero [12], and Negrén-Marrero and Antman [13]; and cylinders
by Sensenig [17]. Our results extend those in [13] for plates and generalize some of the results
by [17], which are for linear stress-strain relations, to more general constitutive relations
satisfying the strong ellipticity condition of nonlinear elasticity. The nonlinear elasticity
model we use to describe the deformations of our cylindrical structure is based on those
in Green and Zerna [10], Green and Adkins [9], Ogden [15], and Truesdell and Noll [21].

A related and extensively studied problem is that of the deformations of hyperelastic
isotropic cylinders under uniaxial compression. We mention in particular the experimental
work of Beatty and Dadras [6] and Beatty and Hook [7], and the analytical results in Davies
[8] for a general class of materials satisfying the Baker-Ericksen inequalities, Simpson and
Spector [19] for Hadamard-Green materials, Simpson and Spector [20] for a Blatz-Ko type
material, and Wilkes [22], in which the cylinder is assumed to be infinite and composed of
an incompressible material.

In Section 2, we introduce the equations and constitutive hypotheses describing the
nonlinearly elastic axisymmetric deformations of cylinders. A full derivation of the equations
is given in the appendix. In Section 3, we construct the family of trivial solutions and the
linearization about it of the nonlinear equations of Section 2. We then construct explicit
solutions by separation of variables. In Section 4, we consider a family of Hadamard-Green
type materials. In this case, we can get an explicit representation for the trivial solution, which
we then use to perform an asymptotic analysis of the eigenvalue equation for the linearized
problem showing the existence of eigenvalues for all cylinder heights.

2. THE GOVERNING EQUATIONS

In this section, we present the equations describing the nonlinear deformations of a cylinder.
A full derivation of the equations is given in the appendix. We consider a body occupying
the cylindrical region in i3 given by

Q={se;(¢)+zk|s€[0,1), ¢ €[0,2n), z € (—h,h)}, 2.1)
where {i,j, k} is the standard basis for R3 and e, (¢) = cos¢i + singj, e; (¢) =

—sin@i+ cos¢j, and e3 (¢ ) = k. We consider an axisymmetric deformation of the body
of the form

p(S,¢,Z) =r(s,z)e1 (¢)+CO(S,Z)k. (2-2)
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The strains for our problem are given by the vector
w(s,z) = (rs (5,2),r: (5,2),7r(s,2) /s, 05 (5,2) , 0. (5,2)). (2.3)

The orientation-preserving condition of nonlinear elasticity implies that (r, @) must satisfy
the inequalities

r/s >0, riw —r.o;>0. 2.4

For simplicity, let us write
v,y ,7,p,&) = (Fs, 1=y 1/s,005,0;) . 2.5)

Let N(w(s,z)), T(W(s,z)), and U(¥(s,z)) be the normal components of the first Piola-
Kirchhoff stress tensor in the radial, tangential, and vertical directions, respectively. Let
G(W(s,z)), P(W(s, z)) be the shear components of stress in the e; (¢ ) k, ke, (¢) directions,
respectively. If we assume that the material of the cylinder is hyperelastic and isotropic, we
get, among others, the following symmetry and even-odd conditions:

N(v,0,7,0,e) =T(r,0,v,0,6) N(v,—y,7,-p,&)=N(v,y ,T,D,€) (2.6a,b)

G(V,—}’,T,—P,g) = _G(Va)’a'r,p,a)
T(V y Y vT’—p)e) = T(V 2P T ,P,s) (2.7a,b)
P(V,—y,T,—p,&‘) = —P(v,y,T,p,e)
U(V y 7 ,T,—p,S) = U(v ¥4 ,T,P,S) . (2.8a,b)

The strong ellipticity condition from three-dimensional elasticity implies that

N, N, N, N, P, P G, G; 2.9)
G, G, P, P, U U U, U ’
are positive definite and that

T. > 0. (2.10)

The physical requirements that an infinite expansive (compressive) stress be
accompanied by a corresponding infinite elongation (compression) strain leads to the
following growth conditions on the constitutive functions (N, G, T, F U):
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T — +o00as { : :gi @2.11a)
N— Fooas { : i?s:::hthatvs —yp —0F (2.11b)
G — *ooas { )): i?sf;:)h that ve — yp — 07 2.11e)
P — +ooas { ii:sscc:)h thatve —yp — 0F (2.11d)
U— +ooas { 2;s§<?hthatve —yp — 0F (2.11e)

(In each of the limits above, the remaining four variables are fixed.)
The principle of virtual work and the fundamental lemma of the calculus of variations
can be used to get the following boundary value problem for (r(s, z), w(s, z)) :

{ — (sN(W(s,2)), + T(W(s,2)) = sG (W(s,2)),
(2.12a,b)
—(sP(W(s,2))), —sUW(s,2)), =0, (s,z) € (0,1) x (—h,h)
r(0,z2) =0 r(l,z)=1 Vz (2.13a,b)
(sP(W(s,2))) [s=0=0 PW(1,2))=0 Vz (2.14a,b)
G(W(s,2z))=0=UWW(s,z)) Vse(0,1) z=—h,h. (2.15a,b)

The solution pair (7, w) is required to satisfy the inequalities (2.4), and the constitutive
functions (N, G, T, P, U) are required to satisfy the conditions (2.6)-(2.11).

3. THE LINEARIZED EQUATIONS

We consider a trivial deformation that is given by a uniform expansion or compression in the
radial and vertical directions; that is, we seek solutions of the form
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r(s,z) =1s w(s,z) =¢z (3.1
for some constant €. In this case, the strains (2.3) reduce to (1 ,0,4 , 0, ). It is easy to check
that the symmetries (2.6)-(2.8) imply that (2.12), (2.13), (2.14), and (2.15a) are satisfied. We
get from equation (2.15b) that (1 , &) must satisfy

U(A,0,4,0,¢) =0. (3.2)

It follows from (2.9c), (2.11e), and the (global) implicit function theorem that there exists a
smooth function & : (0, 00) — R such that

UA,0,4,0,8(4)) =0. (3.3a)
Moreover,

d‘;":(’l)/d;l =—(UV+UT)/U£’ (33b)

where the arguments of U, and so on are (1 ,0,4,0,& (1 )). Hence, we takee = £ (4 ) in
(3.1) and introduce the notation

N@)=N(4,0,4,0,£(2)), G4
and so on. We now compute the linearization of the boundary value problem (2.12), (2.13),

(2.14), and (2.15) about the trivial solution (3.1). For this purpose, the symmetry and even-
odd conditions (2.6)-(2.8) are essential. For instance, from (2.6a) it follows that

N(A)=T (),

and from (2.6b), we get that

N,(A)=0=N,(1).

If we let (v, w) represent the variations in (7, ), then the linearization of our boundary value
problem about (3.1) is given by

{ N, (A) [ (sw:), +V/s] =5G, A ) ve: = (N: (A) + G, (1)) sws: (3.5a,b)

—P, (A) (sws), —U; (A)swz, = (P, (1) + U, (1)) (sv),.
v(0,z)=0=v(l,z) Vz (3.6a,b)
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lhg}rs[Py A)v. +P, (A)w]=0 Vz
P,(A)v.:(L,z2)+P, (A)ws (1,2) =0 Vz

G, (A)v. (s,£h) + G, (A )w, (s,£h) =0 Vs

U, (A )v, (s, £h) + U, (1) (f) (s,£h) + U, (1) w. (s, 2£h) =0 Vs.

We look for solutions of equations (3.5a,b) of the form
v(s,z) =a(z)als), w(sz)=b(z)p(s).
If we substitute (3.9) into (3.5), then we get

N, (1) [— (sal (s))l +a(s) /s] a(z) —sG, (A)a (z)a (s)
=(N: (2)+ G, (4))sb' (2) B(s)

£, 0) () BE) - U (1)K @) B(6)

\ = (P, @)+ U, (1)) (sa(s)) a(2)

To separate the variables, we take a , § to be solutions of the equations

- (sa /(s))l +a(s) /s =sk2a(s) a(0)=0=a(l)
— (') =sk2B (s)  lim sB'(5)=0=5"(1).

(3.72)

(3.7b)

(3.82)

(3.8b)

(3.9)

(3.10)

(3.11a)

(3.11b)

In fact, a(s) = Ji(k,s) and B(s) = Jo(k,s), where Jp and J; are Bessel’s functions of order
zero and one, respectively, and &, , n > 0, are the positive zeros of J;. It now follows that the
boundary conditions (3.6) and (3.7) are satisfied. Furthermore, the functionsa , B satisfy the

following identities:

B'(s) = ~koa(s) (sa(s) =sk.B(s).

(3.12)

If we combine (3.11) and (3.12), we can eliminate a, # from (3.10) to get the following

boundary value problem for a, b:
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N, (A)ka(z) =G, (A)a" (2) == (N (W) + G, (1)) kub (2)
(3.13)
P,(A)k3b(2) = U (A)b" ()= (P, A)+ U, (A)) kudd (2)

G, (A)d(£h) =G, (A ) kb (£h) =0 kU, (A)a(xh)+U, (1 )b (£h) = 0. (3.14)

With the substitution (y1(z),y2(z),y3(z),y4(z)) = (a(z),b(z),a (z),b'(z)), the system
(3.13) can be transformed to a homogeneous first-order system of ordinary differential
equations with constant coefficients. The eigenvalues of the resulting coefficient matrix are
the roots of the equation

u*—(A+B+CD)u?+ 4B =0, (3.15)
where
N, (1) P, (1)
A=K B=kl-2
G, (1) U: (4)

p@A)+U (4)

N.(A)+G,(A)
U () '

C=—k,
G, (4)

D =k,

(3.16)

The roots of (3.15) are of the form 44 ;, £ o, where ;42 # 0. The corresponding
eigenvectors are given by

(u® =B, uG p (u* - B),12C)" . (3.17)
The case of repeated eigenvalues occurs when (4 + B + CD)? — 44B = 0. In this case, the

eigenvalues are of the form +x of multiplicity two each with generalized eigenvectors given
by

([(A=B)> +B(A+1)] /u, 123G (2-B) > +4B, uC (1> +1))'.  (3.18)

CASEI
When there are no repeated eigenvalues, the general solution of the system (3.13) is given by

{ a(2) = (4 — B) (4res* + Bye™:%) + (4 — B) (4ze*s* + Boe™s")
. (3.19)

b(z) = uC (A1 — Bie™#17) + pyC (Aze#?* — Bye™#27)

where A1, Ay, By, By are constants to be determined. If we require that (3.19) satisfy the
boundary conditions (3.14), we get a 4 x 4 system of linear equations for the constants
A1,A2,B1,By. The values of A for which this system has nontrivial solutions define the
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eigenvalues of the linearization (3.5)-(3.8). A short computation shows that this system has
nontrivial solutions if and only if A satisfies one of the following equations:

xotanh (uyh) — dptanh (ush) =0 (3.20a)
or
x0 tanh (ush) — ¥¢tanh (uyh) = 0, (3.20b)

where

X = h (.U% _B) G, () — k1 CG, (1)
¥ = (5 —B)G, (A) ~kpsCG, (1)
6 = —k (BU, (1) +4iR))

§ = —k, (BU, (A)+43P,). (3.21)

Equation (3.20a) corresponds to solutions of (3.19) with4; = B;, Ay = B,, whereas (3.20b)
corresponds to the case in which4; = —B;, 42 = —B,. Note that (3.15) and (3.16) define
U 1, p 2 as functions of A , which in turn, on substitution into (3.20) and (3.21), define the
characteristic equations for the eigenvalues of the linearized problem (3.5)-(3.8). For each
root of k, of J1, we have a different pair of equations, the solutions of which, if any, we denote
by {441,4n2, ...}. The corresponding eigenfunctions of (3.5)-(3.8) are given by

v(s,z) =Ji (k,s) [B (42 — B) sink (uzh) cosh (u,z)
— x (42 — B) sink (u;h) cosh (uyz))

(3.22a)
w(s,z) = CJy (k) [Ouy sink (uph) sink (u;2)
— X He sink (a1 h) sink (poz)]
corresponding to (3.20a), and by
v (s,2) = Ji (kas) [0 (u? — B) cosh (ugh) sink (u;z)
— x (42 — B) cosh (u1h) sinh (uyz))
(3.22b)

w(s,z) = CJy (k,s) [Bu; cosh (ugh) cosh (u,2)
— X M2 cosh (uyh) cosh (uyz))

for the corresponding solutions of (3.20b).
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CASE II
The case of repeated eigenvalues occurs when

(44 B+ CD)* —44B = 0. (3.23)

In this case, the roots of (3.15) are - of multiplicity two each where 1= (A+B+ CD)/2.
The general solution of the system (3.13) is now given by

a(z) = (1 - B) (4165 + Ape7) + [(1 —B)i +BA+ 1)]
X (BueF* — Bae) [ji +2(ii” = B) (Bref + Bye )

(3.24)
b(z) = i C (Aref* — Aye™*) + i "C (Byeh* + Bye#?)
+11 Cz (Bref* — Bae#?)

where A;,A;, By, By are constants to be determined. Applying the boundary conditions
(3.14), we find that the eigenvalues of the linearized problem (3.5)-(3.8) are given by the
solutions of one of the following equations:

(" +1)c(6, W)U @)i"+6,0)0 ) &)

+G, (1)U, (l)(/)z—B)zk,, +G, (1)U, (A)ﬁ2C2k,,]

x sinh (uh) cosh (uh) = £y dh. (3.25a,b)
Equation (3.25a) corresponds to solutions of (3.24) with 4, = —A4,, B; = B,, whereas
(3.25b) corresponds to the case in which 4, = A3, By = —B,. The corresponding

eigenfunctions are given by

(v (s,2) = J; (Kns) [{—- (/22 —B) (flcosh (1 h) + by sinh (u h))
o (l—B);sz—B(A—i-l) cos

h (;2 h) } sinh (,12 z)

! +z (/2 P B) x cosh (y h) cosh (i z)] (3.26a)

w(s,z) = Jo (k) [{-—,ﬁ C (;4 cosh (p h) + hy sinh (u h))
+u 2Cx cosh (u h) } cosh (ji z) + uCzy cosh (u k) sink (i z)]
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for (3.25a) (with the + sign) and by

( Vv(s,z) = Ji (kns) [{ (,d ?_ B) (C'cosh (n h) + hé sinh (u h))

2
.y 1-B)u :}_B(A +1) cosh (ﬁh)}cosh (/Zz)
U
) (/; 2_ B) & cosh (i h) sink (4 z)] (3.26b)

w(s,z) = Jo (k) [{ﬁ C (C‘cosh (k) + ko sinh (i h))

—u ’Cs cosh (/2 h) } sinh (,12 z) + 41 Cz8 cosh (/2 h) cosh (/2 z)]
for (3.25b), where

1=, (,1)((1—3);22+B(A+1)+/22—B) —G,(2)4 ck,
(3.27)

—B)u +B(A+1)
U

E=ku, (1) FU)AC (i +1).

Upon examining (3.16), we find that (3.23) is independent of k, and 4, the height of the
cylinder, and thus acts as a constitutive restriction. The solutions A of this equation, which
are the possible eigenvalues of (3.5)-(3.8), are thus independent ofk, and 4. Thus, equation
(3.25), with these values of A substituted, can be thought as defining the possible cylinder
heights that would lead to some spectra. This situation is different for Case I, in which (3.20)
in general has solutions A for any given .

4. EXISTENCE OF EIGENVALUES FOR HADAMARD-GREEN TYPE
MATERIALS

Let C be the Cauchy-Green deformation tensor (cf. (6.13)) corresponding to the deformation
(2.2). Let (I, Il , I ) be the principal invariants of C (cf. (6.16)). Then, the stored energy
function describing the material behavior of the cylinder is given by (cf. (6.17))

Il

7+
I a3/2
IIIC) Al

g(IC)IIC,III(j) = All‘él/2 +A2(

24

Ic \? e
+ Ay (IU;_C) + AT 4 AgIII 72, (4.1)
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where 4; are nonnegative and a ; are positive. If (A2, 12,A2) are the eigenvalues of C, then
it follows that

le =23 +A3+43 I =233 +232 42202 Hle = 2222

Il 1 1 1 Ic 1 1 1

me 2 BTR me mg T EEtEm

(4.2)

Thus, from (4.1) and (4.2), it follows that an infinite energy is required to produce an infinite
expansion or compression of a fiber, surface, or volume element within the cylinder. Since

Ic = tr(C)=tr (F'F)=F:F

((F . F)? - F'F: FF) ,

N =

I = % (tr(C)? —tr(C?) =

we have that with 4 = 44, = 0 and a; = a3 = 2, (4.1) represents a Hadamard-Green
type material. A variant of (4.1) was used by Antman [3] as a model of a stored energy
function satisfying certain growth conditions that lead to the regularity of solutions for certain
equilibrium problems for cylinder-like bodies. The use of the stored energy function (4.1) in
terms of the principal invariants of C is better for numerical calculations than using a stored
energy function in terms of the principal stretches (4 1,4 2,4 3) as is frequently used. This
is due to the square root extraction process involved in getting the principal stretches that
introduces a singularity in the Euler-Lagrange equations when some or all of the principal
stretches coincide.

We now consider in more detail the case of a Hadamard-Green type material; that is,
A; = A4 =0and a; = a3 = 2. In this case, (4.1) reduces to

glc, e, lIc) = Aye + Asllc + AsIITS + Al 4.3)

where we have set g = a5/2,d = ag/2. We now show that in this case, each of the
equations (3.20a,b) has at least one solution for each k,. We now can get an explicit form
for equation (3.2). The principal invariants (I¢,IIc, Il ) at the trivial state (1 ,0,1 ,0,¢)
reduce to

Ic =222+ IIc =2 4+22%%  IlIc = 1% 4.4)

(For simplicity, we let € stand for (4 ).) It follows now from (4.3), (6.22¢), and (4.4) that
(3.2) is given by

4182 + 24307 + g (3€2)F — dds (1%€?) " = 0. 4.5)

If we multiply by (¢2)¢, we get the following equation:
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d+1

gAsh® (62)° + (4 + 24307 (2)™" — ddeh™* = 0. (4.6)

Lemma 4.1. Assume that g = d + 2 for the stored energy function (4.3). Then, the solution
€ of equation (3.2) is given by

— (A1 + 2450 2) + /(4 + 2431%)" + dgddsAei ®

(82)‘“'1 — 4.7

Proof. This follows from the observation that (4.6) is a quadratic in (£2)?+! provided that
g = d + 2. Equation (4.7) is just the positive root of this quadratic.
From now on, we shall employ the notationf(s) ~ g(s) as s — s, to denote

o S)
sl_lg)l E-(S_) =1 (48)

From Lemma 4.1, we now get

T g,
(’-fff) AT 3 ot
1
£~ . (4.9)
( Asd) W
—_— A — 00
Asg

We shall need the following asymptotic formulas for Il in (4.4):

L

1462 ~ ) 1d , (4.10)
2(d+1
(.-/is—g) (1- clﬂ.‘z)ﬁ_1 A >0
5

where ¢; = A3/ +/gdAsAs.

From equation (4.5), it follows that

—d-1 = (A1 + 243A%)

Ws (A) = gds (2%62)* " — dds (A%6?) T

(4.11)

Working with this equation and (4.3), (4.4), and (6.22), we get

G, () =2(A41+434%) =P, (1) P, (1) =(¢/A)P,(A) (4.12a,b,c)
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U.(A) = —2(/2)P, (2)
+ 417 (g (g—1)45 (A*e®)* " +d(d+1)4s (/1452)“"2) (4.12d)

N = (1-E) P W

+ 4% (g(g—1)ds (1%67) 7 +d(d+ 1) s (1162) ") @.120)

U, (1) = 4232 (g (g—1)ds (A%%)°7° + d(d+1) 45 (%) ""2) . @120

Using (4.9) and (4.10), we get the following asymptotic expressions for the constitutive
functions in (4.12):

G, (A 2 A0 P, (1) 2 A0 (4.13a,b)
~ ~ . a,
r @) 24302 1 — o0 d 24302 A — o0
241 22 ~() 4 ot
P, (A) ~ (4.13¢)
2437 5/*) 7 A — 00
dda V() ) ot
U, (A) ~ (4.13d)
AW S *A PR
24, (2d + 1) mA~2(FE) 1 S ot
N, (A) ~ 1(2d+1)m - (4.13¢)
24512 A — 00
4(d+1)4, A —0F
U (4) ~ s 4.139)
4W 377 2 ). 4 ). — OO

where
- (%) - (B
ni1= A, na= oAs
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Wy =g(g—1)4sny” +d(d+1) den ;272 (4.14)

Lemma 4.2. Assume that g = d + 2 for the stored energy function (4.3). Then, the roots ,,
Uo of equation (3.15) have the following asymptotic representations:

by 220 () 5 o

Ui ~ 2(d+1)
k, A — 00
k, A —0t
lu 2 ~ 143 > 1/2 _1/4 (4.15)
k, Ny A7 A — oo
<2W§§ 2

Proof. From equation (3.15), it follows that

1
ﬂf,,u§=§<A+B+CD-_|:\/(A+B+CD)2—4AB). (4.16)

If we combine (3.16) and (4.13), we get

k2 (2d+1)ma 205F) 4 ot
A~ B @dDm - (4.17a)
k2 A — o0
k2
—_—n +
2(d+1) A =0
B~y T / (4.17b)
-1/2
—_ AsAi™? 1 — o0
2W§§ 2 3
—k, M,’ 172 -(8%) 1 ot
C~ 2(d+1) (4.17¢)
—kyn 302 A — o0
k, (2d+1) 522 -(5%) 1 Lot
D~ (4.17d)

2WR
k, ———A:3n 3/4,1‘1

A — 00

Combining (4.16) and (4.17), we get (4.15).
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Theorem 4.3. For the stored energy function (4.3), let g = d+ 2. Then, equations (3.20a,b)
have at least a solution for each root k, of J; and cylinder height h.

Proof. Using the expressions (4.12), one can show that
G* (L) U2 (L) ((A +B+CD)? - 4AB) = 1 (2-22)°P, (1)

x (4% W3 (A) — P, (A))°, (4.18)

where

—d—2

Wiz (1) =g(g—1)4s (,1452)3‘2 +d(d+1)4g (2'€?) . 4.19)

It follows from this and (4.16) that both 2 and 42 are real numbers. Furthermore, (4.12) and
(4.18) can be used again in (4.16) so thatu? and 42 are positive. Hence, 41, and ., are positive,
and the functions on the left-hand side of equations (3.20a,b) are real valued functions of 1 .

If we combine the expressions (4.13), (4.15), and (4.17), we get the following asymptotic
formulas for (3.21):

ca —3(5) 1 ot ) 2(5) ) oot
x ~ o~ (4.20a)
CyA? A — 00 —CyA—3 A — 00
—Ca~3(5F) + e 1 Sot
L TEARE A= ] G - (4.20b)
—Cel_l A — o0 —Cgll_l A — 00
where C are positive constants. Now, let
Joym (A) = xdtanh (u1h) — Fptanh (ush)
Sasym (A) = xd tanh (ueh) — dptanh (uh) . (4.21)
We then have for some positive constants D;, D, that
~CiCo (%) tanh (Diz (5% )
fom @) ~ { +C3CsA (5 tanh (k, k) A -0

—CyCgl tanh (k,h) — C4Cel ~*tanh (DA ~*h) 1 — 00
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Table 1. Coefficient and exponent values used in (4.1).

A; a
i Value i Value
1 10— 1 3
2 0 2 —
3 10—4 3 )
4 0 4 _
5 10—6 5 6
6 10—1 6 4
C3Csh ~°(55%) tanh (k,h) 1 — O
~ (4.22a)
"CQCSA tanh (kn h) l — OO0
—C1CrA -4(%7) tanh (ko h) + C3CsA -5(45%)
fosym(A) ~ X tanh (Dl,l _4(%)h) A —0F

—C2C8). tanh (DQ). —'lh) - C4C6). —4 tanh (k,, h) A — o

CsCsh ~5(5%) tanh (Dll -4(‘—1*5‘#)h) A —0*
~ (4.22b)
—CyCyDyh A — 00,

From (4.22), we get

I (i)_){oo A —0F

-0 A —- o0

00 A =0t
Jasym (2) = { negative constant 1 — oo (4.23)

from which the stated result follows.

We close this section with a numerical example. For our calculations, we used the values
shown in Table 1 for the exponents and coefficients with a cylinder of height 2 = 0.2. In
Table 2, we show typical solutions of equations (3.20a,b) for the model (4 .1) and the values
in Table 1. The computed eigenvalue 1* corresponds to the first root of (3.20a,b) in each case,
and u;, u, are the computed roots of (3.15). As can be seen from the results, both sequences

of computed eigenvalues seem to be converging to some value, possibly a common one. This
appears to be reminiscent of the wrinkling phenomena observed in plain strain slab problems.

For d > 0 small, we can write

r(s,z2) = As+ov(s,2)+0(0) w(s,z)=E@A)z+w(s,z) +0(d)

o= 1 +0(5) (4.29)
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Table 2. Eigenvalues computed for (3.5)-(3.8) corresponding to the first six models.

Symmetric Case (3.20a) Asymmetric Case (3.20b)
Root of Jy (ky) A* 4 Ho A 1 Ho

3.8317 0.8374 20.76 3.832 1.3247 5.826 3.832
7.0156 0.9581 26.55 7.016 1.0878 18.69 7.016
10.173 0.9985 34.38 10.17 1.0344 31.19 10.17
13.324 1.0108 43.53 13.32 1.0210 42.34 13.32
16.471 1.0144 53.29 16.47 1.0173 52.87 16.47
19.615 1.0154 63.28 19.61 1.0163 63.14 19.62

where 7(s, z), w(s, z) are solutions of the boundary value problem (2.12)-(2.15) and v(s, z),
w(s, z) represent the eigenfunctions which are solutions of (3.5)-(3.8). Using the values of
A* from Table 2, we can compute using equations (3.22) or (3.26) the eigenfunctions v(s, z),
w(s,z), and, after dropping the o(J ) terms in (4.24), we obtain first-order approximations
to the functions r(s,z), w(s,z). In Figures 1 and 2, we show examples of these first-
order approximations giving the approximate shape of the deformed mid-cross section of
the cylinder. (Full color pictures of the corresponding eigenfunctions in this example can be
accessed at http://cuhwww.upr.clu.edu/~pnm/deformations/index.htm.)

5. CONCLUSIONS

The vertical component w(s, z) of the eigenfunction (3.22a) is an odd function in z, whereas
that of (3.22b) is even in z. Thus, the solutions 4 of (3.20a) leading to the eigenfunction
(3.22a) represent possible bifurcation points for the nonlinear system (2.12)-(2.15) of
solutions that are symmetric with respect to the z = 0 plane. On the other hand, those
solutions of (3.20b) leading to the eigenfunction (3.22b) represent possible bifurcation points
of symmetry-breaking solutions. The same analysis shows that in Case II of the previous
section, (3.26b) leads to symmetry-preserving branches of nontrivial solutions of (2.12)-
(2.15) whereas (3.26a) gives the corresponding symmetry-breaking branches.

The stability analysis for necked states of nonlinearly elastic bars in tension was carried
out in a complete manner by [16]. In particular, Owen shows that the only nontrivial
stable solutions are the ones with a half-neck or draw representing the first bifurcating
branch of solutions. The numerical work of Negron-Marrero and Santiago-Figueroa [14]
for nonlinearly elastic thin plates with thickness variations shows that there can be unstable
solutions with a half-neck and stable multiple-necked solutions. Thus, we expect the stability
analysis for our problem to be of a somewhat similar complex nature. However, a stability
analysis of either the trivial solution (3.1) or (3.2), or the nontrivial branches of solutions to
our problem, would be more physically meaningful among arbitrary deformations, not just
axisymmetric ones. We shall pursue this question elsewhere.

Another issue related to our problem that is not covered in this paper is the formal
analysis of the existence and disposition of the global branches of nontrivial solutions. This
analysis is somewhat difficult in this case for two reasons. First, the singularity ats = 0 in
equations (2.12) represents a serious obstacle in setting up our problem for the application
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Fig. 1. Nonlinear deformations corresponding to the first six symmetric eigenmodes.
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of the standard theorems of bifurcation theory. The complexity of such an analysis can be
appreciated in the somewhat simpler but still nontrivial problems treated in [2], Shih and
Antman [18], and [13]. The second difficulty with such a global analysis has to do with the
lack of global bifurcation theorems for nonlinear elasticity problems. The global continuation
results in Healey and Simpson [11] have the potential of leading to such global bifurcation
results.

6. APPENDIX

In this section, we present a full derivation of the equations given in Section 2 describing the
nonlinear deformations of a cylinder. We consider a body occupying the cylindrical region in
R3 given by (2.1). Let

n(s,¢,z) =se1(¢) +2k,V(s,¢,2) €[0,1] x [0,21] x [~h, A}, (6.1)
so that #([0, 1] x [0,27] x [—h,h]) = Q. We consider an axisymmetric deformation of the
body of the form (2.2). Let T(n (s, ¢,z)) represent the first Piola-Kirchhoff stress tensor.
We assume that the top and bottom boundaries of the cylinder are stress free, that the outer
edge at s = 1 is displaced 4 units, and that the center of the cylinder remains intact during
the deformation. Thus, we consider the following boundary conditions:

T(’? (S,¢,:i:h)) k=0 V(S’d))

r(0,z)=0 r(l,z)=4 Vz (6.2)

(T(” (1)¢’Z)) 'el) -k=0 V(¢,Z)

The principle of virtual work states that the deformation p1 must satisfy

é T(): [%ap]*dy— / (T(y) n(y) dpdo () =0 (63)

for all virtual displacements J p satisfying appropriate boundary conditions. Here, n(-)
represents the outer normal to o€, o (-) represents a surface measure, and the asterisk over
a tensor denotes its adjoint. From (2.1) and (2.2) and using the first boundary condition in
(6.2), we can write (6.3) explicitly as

1 27 h

/// [S(T(’?)-el(¢))-(5p)s+(T(;7)-ez(¢)).(5p)¢

+5(T (1) -k) - (op),] dzdg ds
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- [ [ @@ 1,6,2) e (6)) - opdsdz = 0 64)

where 6p = dre; + dwk and dr(0,z) = 0 = dr(1,z) for all z. If we define
Ty (s,¢,2) = (T (n (s,6,2) & (¢)) e (¢), ij=12,3 (6.5)

then we can write (6.4) (omitting the arguments of 7;; and using the third boundary condition
in (6.2)) as

127 h

/// [s(T110 rs + T310 @5) + To20 r + 5 (T136 1. + T30 . )| dsdpdz =0 (6.6)
00 Zh

for all smooth J,, dw satisfying or(0,z) = 0 = dr(1,z) for all z. If we use integration by
parts, then we can rewrite (6.6) as

127 h

/ / / {[= (sTwa), + Tas — 5 (T1a),] 0r + [= (sTs1), — 5 (Tss),] S0} dsdp dz

27 h 1 2n¢

+ // (ST116I‘+ST315(D) |(1) d¢d2+ // (ST1357‘+ST335(0) |h_h de(,‘b =0 (67)
0 —h 00

for all smooth dr, dw. The fundamental lemma of the calculus of variations now yields the
following boundary value problem for (#(s, z), (s, z)):

—(sTh1), + T2 —s(Ti3), =0 63)
= (sT31), —s(T33), =0 Vis,$,2) €’ ‘
subject to
r(0,z)=0 r(l,2)=1 Vz (6.9a)
(sT31) ls=0=0 V(9,2) (6.9b)
T3,=0 V(¢,2) s=1 (6.9¢)
T13=0=T33 V(S,¢), Z=—h,h. (69(1)

The deformation p with respect to Cartesian coordinates is given by
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ay)=p(n ') vyeq (6.10)

The deformation gradient is given by

F(n (s,6,2) = 3—3(»7 (5,6,2))

= r,ee; +w.ke; + (r/s)esex +r.e;k + w.kk.  (6.11)
The strains for our problem are given by the vector
w(s,z) = (r; (s5,2), 7. (5,2), 7(s,2) /5, 05(s,2), . (5,2)) (6.12)

The Cauchy-Green deformation tensor C = F*F is now given by the expression

C=(r:+w?)ee +(r/s)” egert+(rsr. + w,@.) (erk + ke )+(r2 + w?) kk. (6.13)
An easy computation reveals that the determinant of the deformation gradient (6.11) is given
by

detF = (r/s) (ryo. —r.w;). (6.14)

Thus, the orientation-preserving condition detF > 0 implies that (r, w) must satisfy the
inequalities

r/s >0 riw, —r.o, >0. (6.15)

The principal invariants of C are given by

Ie = ri4rl+ol+o?+(r/s)’
e = (r)s) (r2+r2+0?+0?) + (no, —r.o,)’
. = (r/s)2 (rso. — wgr, )2 . (6.16)

We assume that the body is composed of an isotropic hyperelastic material; that is, there
exists a smooth function g:(0, 00)® — R such that the stored energy of the body due to the
deformation F, denoted by @ (F'), is given by

d(F) =g(c,Hc, ) =® (W(s,2)). (6.17)
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It follows from (6.16) and (6.17) that

Q(rsarzyr/saws)wz) = Q(wz;rzyr/saws’rs)
Q(rs)rzvr/sawsywz) = <b(rsaa)s,r/sarz’a)z)
®(r,,0,7/5,0,0;) = ®(r/s,0,r,,0,w,). (6.18)

The first Piola-Kirchhoff stress tensor is now given explicitly by

9
T = = <I>,1e1e1 + <I>,2e1k + @’39292 + ‘I’Akel + @,5kk. (6.19)

= F =
From this equation, it follows that

Iw=9;, Ty=03 T3=90; I3=0, Ti3=0, (6.20)

which implies that the components of T in the representation (6.19) are independent of ¢ .
To simplify the notation, we define

N= Tll T= T22 U: T33 P=T31 G=T13. (621)

Combining (6.17) and (6.20), we can get the explicit representation for the components of
stress (6.21) as follows:

N = 2g,lrs +2g,2((r/s)2rs+(rswz"'wsrz)wz)

+ 283(r/s)’ (ro, —w.r.) o, (6.22a)

G = 2g,lrz +2g,2 ((r/s)zrz - (rswz _wsrz)ws>

— 285(r/s) (rnw: —o.r.) o, (6.22b)

T = 2g1(r/s)+2g2(r/s) (r? +r? + 0? + o?)

+ 2g3(r/s) (rnw. —w,r.)’ (6.22¢)

P = 2g,1ws +2g,2 ((r/s)2 ws; — (rswz _wsrz)rz>
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— 283(r/s)’ (o, —w,r:) 1 (6.22d)

U = 2g,1wz +2g,2 ((V/S)za)z + (rswz _wsrz)rs)

+ 2g3(r/s)’ (nw. — w,r:)re. (6.22¢)

For simplicity, let us write

v,y ,7,p,€) = (rs, 1,7/, 05, @02 . (6.23)

Hence, from the representations (6.22), which in turn are a consequence of the isotropy

condition (6.17), we get the following symmetry properties:
N,y,7,p,e)=Uley,7,p,v) G(v,y,7,p,e) =Gy ,7,p,v) (624ab)
T(v,y,7,p,e)=T(&y,7,p,v) PQ,y,7,pe)=P(e,y,7,p,v) (624c4d)
G(v,y,7,p,€)=P(v,p,7,y,6) NE,y,7,p,&)=N(v,p,7,7,¢) (625ab)
Tv,y,7,p,e)=TWv,p,7,7,8) UQ,y,7,p,e)=U(v,p,7,7,6) (6254

N(v,0,7,0,¢)=T(r,0,v,0,¢) U(v,0,7,0,6)=U(7,0,v,0,¢). (6.26a,b)

We also get the even-odd conditions (2.6b), (2.7), (2.8), and

N(-v,y,7,p,—€) = —-N(v,y,7,p,¢) (6.27a)
G(_v Y THPs —8) = G(V X 7pa8) (6.27b)
T(_V’Ya73p7_8) = T(VJ’,T,P,S) (6.27¢)

P(—v,y,7,p,—€) = P(v,y,7,p€) (6.27d)
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U(—V ' 7 TPy _8) = —U(V WV T ,p,s) . (6-276)

The strong ellipticity condition from three-dimensional elasticity requires that

aT
ab: F ab >0 Vab # 00. (6.28)

From (6.19), (6.20), and (6.21), it follows that (6.28) implies (2.9) and (2.10). With the
definitions (6.21), we get the boundary value problem (6.8)-(6.9), which can be written as
(2.12)-(2.15).
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