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This paper treats a variety of unexpected pathologies that arise in the 
global bifurcation analysis of axisymmetric buckled states of anisotropic 
plates. The geometrically exact plate theory used accounts for flexure, 
extension and shear. The nonlinear constitutive functions have very 
general form. As a consequence of the anisotropy the trivial solution 
may depend discontinuously on the load parameter. Accordingly, the 
equations for the bifurcation problem have the same character, so 
that bifurcating branches of solutions become disconnected as the load 
parameter crosses values at which discontinuities occur. The anisotropy 
furthermore implies that the governing equations have a singular 
behaviour much worse than that for isotropic plates. Consequently, a 
variety of novel constructions are required to demonstrate the validity 
of the essential results upon which global bifurcation theory stands. 
(These results include the compactness of certain operators and the 
uniqueness of solutions of initial value problems for singular ordinary 
differential equations.) It is shown that in regions of solution-parameter 
space in which the equations depend continuously on the load parameter 
there exist connected global branches of solution pairs that have detailed 
nodal properties inherited from eigenfunctions of the linearized problem. 
Moreover, these nodal properties are preserved across gaps occurring 
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where discontinuities occur. The methodology used to show this 
result actually supports constructive methods for finding disconnected 
branches. 

1. INTRODUCTION 

In this paper we furnish a detailed global description of the qualitative behaviour 
of axisymmetric buckled states of anisotropic nonlinearly elastic circular plates 
under edge thrust. Our theory of plates is geometrically exact in the sense that no 

geometric quantity (such as the sine of an angle) is ever approximated (by a linear 
or cubic expression). Moreover, we use a very general class of nonlinear constitutive 

equations describing the response of the plate in flexure, compression and shear. 
The anisotropy of the plate, which is compatible with the axisymmetry, is of a 

sort that is observed in cast metals (see the photographs in Walker (1958)) or 
that can be produced by disposing reinforcing fibres either circumferentially or 

radially. An extreme case of a plate with radial reinforcement is what we call the 

Taylor plate, which offers no resistance to circumferential tensio- or to flexure 
about its rays. (This model is a plate-theoretic analogue of Taylor's (I919) 
membrane theory for parachutes. We shall use it for illustration.) 

The presence of anisotropy radically alters the nature of the governing quasi- 
linear system of ordinary differential equations from that for isotropic plates. 
First, the trivial solution may depend discontinuously on the load parameter A. In 
fact, for a certain class of materials there is a threshold such that if A is below this 
threshold, then normal components of stress at the centre of the plate are zero, 
whereas if A exceeds this threshold, then these components jump to - oo (Antman 
& Negron-Marrero 1987); a synopsis and extension of this work is given in ?3. The 

buckling problem inherits the discontinuous dependence on A from the trivial 
solution. Secondly, the anisotropy changes the way the independent radial 
variable s appears in the equations and thus changes the nature of the singularity. 
Now the corresponding equations for an isotropic plate have the usual polar 
singularity at s = 0 (which happens to present very serious challenges to analysis, 
cf. Antman (I978)). But the differences between the equations for isotropic and 

anisotropic plates are so marked that to handle the latter we must develop a 

battery of new techniques to formulate and analyse an appropriate set of integral 
equations that support global bifurcation theory. The effects of the singularity at 
the origin are most pronounced in our studies of the linearized eigenvalue 
problems, the compactness of nonlinear integral operators, and the preservation 
of nodal properties. 

When the trivial solutions depend discontinuously on the load parameter A, the 

bifurcating solution branches for the buckling problem are typically disconnected 
at the values of A at which the trivial solutions jump. (The plate would suffer a 

snap-buckling at such loads, wholly unexpected in plate theory. The mathematical 
disposition of the branches, however, is quite different from that found for shells 
that snap.) In ?8 we prove that connected solution branches are characterized by 
a specific nodal structure (designed to accommodate the singularities of the 

problem), which is inherited from the eigenfunctions of the linearization about the 
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trivial solution. In ?9 we show that these nodal properties are actually preserved 
across gaps in the branches. To this end we embed our constitutive equations into 
a one-parameter family containing those of an isotropic material. We then apply 
two-parameter global continuation theory to the resulting family of problems. 

There is an extensive literature on anisotropic plates and shells (see, for 
example, Ambartsumian 1967, I974; Carrier 1944; Hoff 1981; Lekhnitskii 
1957; Reissner 1958; Steele & Hartung 1965, and works cited therein). These 
works are all devoted to the study of linear problems. Thus some of our results for 
linear problems (needed for the subsequent nonlinear analysis) are prefigured by 
theirs, but none of our nonlinear results are. Even in the realm of linear theory, 
our equations are far richer than theirs because our trivial state is one with finite 

compression. Consequently, our linearized equations depend nonlinearly and 

possibly discontinuously on the parameter A. Moreover, shear deformation, 
accounted for here, but often ignored in engineering plate theories, can greatly 
alter the spectrum of the linearized problem. 

There have been several studies of bifurcation problems involving non-smooth 

operators (see, for example, Stuart 1976; Stuart & Toland 1980). Stuart's (1976) 
paper is the only one known to us that accounts for discontinuous dependence on 
the parameter A; the structure of his problem differs considerably from ours. 
Because our nonlinear integral equations involve compact operators (and because 
the spectrum of the linearized problem consequently consists entirely of 

eigenvalues) we do not have to appeal to some of the more arcane developments 
in bifurcation theory to carry out our analysis; the pathologies that remain are 

sufficiently challenging. 

2. FORMULATION OF THE GOVERNING NONLINEAR 

BOUNDARY-VALUE PROBLEM 

Geometry of deformation 
Let {i,j, k) be a fixed right-handed orthonormal basis for the euclidean 3-space 

E3. Let (s, q5) be polar coordinates for the (i,j)-plane. We set 

el(0) = cos i+ sin qj, e2(0) = -sin Xi+cos qi, e3 = k. (2.1) 

An axisymmetric configuration of a circular plate that can suffer flexure, extension 
and shear is determined by a pair of vector functions: 

[0, 1] x Ra ) ( rs,) )- r(s, ), b(s, 0), (2.2) 

with r(s, ') and b(s, ') having period 27 and with 

r(8, ) e2(0) = 0, b(s, 0) e2(q) = 0, Ib(s, )\ = 1. (2.3) 

In characterizing the configuration of a plate by functions defined on the disc 

{sel(q):s e [0, 1], 0 E [0, 27]}, (2.4) 

Vol. 427. A 
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we are giving the notion of plate an intrinsically two-dimensional sense. To 

interpret the significance of the variables r and b, we may regard the plate as a 
three-dimensional body with reference configuration 

{sel(0)+ zk: 0O s< 1, 0 < 0 < 27C, Izl < Z}, (2.5) 

where 2Z is the thickness of the plate. For simplicity we take Z to be constant. The 

midplane of the plate is just the plane in (2.5) defined by z = 0. Let p(s, 0, z) be the 
deformed position of the material point sel(0)+zk of (2.5). Then one of many 
conceivable interpretations of r and b is obtained by regarding p as constrained to 
have the form 

p(s, 0, z) = r(s, ) + o (s, , z) b(s, 2), (2.6) 

where o is a prescribed function and (o(s, 0, ') is an odd, strictly increasing, 
continuously differentiable function. Thus r(s, 5) may be interpreted as giving 
the deformed position of the material point with reference position se1(S) (on the 

midplane), and b(s, 0) as giving the deformed configuration 

z -*r(s, 0) + (, 0, z)b(8, 0) 

of the fibre z se1(0) + zk (through se1(0) that is perpendicular to the midplane). 
For the axisymmetric deformations we treat, we assume that (, = 0. In 
consonance with our assumption that the plate be uniform we also assume that 
(s = O. We set: 

a(s, p) - cos O(s) el(q) + sin O(s) k, 

b(s, q) -sin 0(s) el(?) + cos 0(s) k, (7) 

p(s)=-r(s, q)'el(), ~(s)-=r(8s, )k, (2.8a, b) 

rs(s, ) - r(s) a(s, 0) + (s) b(s, ), (2.9) 

T(s) - s-lp(s), (2.10) 

o(s) s-1 sin 0(s), (2.11) 

,a(s) _ 0'(s). (2.12) 

The strains for our problem are 

W-(W1, W2, W3, W4, W )- (, v, , o,), (2.13) 

where T is the stretch of a circular fibre, v accounts for the stretch of a radial fibre, 
y accounts for the shear between a vertical and a radial fibre, or measures flexure 
about a radial fibre, and /a measures flexure about a circular fibre. Note that 

(2.8)-(2.12) imply that all the geometrical variables for our problem may be found 
from (v, , 0). 

That the deformation of (2.5) defined by (2.3), (2.6), and (, = 0 be continuously 
differentiable requires that 

p(O) = 0, 0(0) = 0, y(O) = 0. 
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We fix the displacement to within a rigid motion by setting 

C(0) =0. (2.14d) 

That this deformation preserve orientation (i.e. have a positive jacobian) requires 
that 

r(S) > (Z) IT(S), V(S) > o(Z) I/U(s). (2.15) 

We denote the set of ws satisfying (2.15) by IT; F is convex. 
The requirement that the edge s = 1 of (2.5) be constrained to be parallel to k 

yields the boundary condition 

0(1) = 0. (2.16) 

We adopt (2.14)-(2.16) in general (even when (2.6) is not operative). 

Mechanics 

Let n1(s0, ,0) and m1(s0, 0) denote the resultant contact force and contact 

couple per unit reference length of the circle 0 s so e1(0) exerted across this circular 
section at the material point with coordinates (so, 00). Let n2(s0, fo) and m2(s0, 0o) 
denote the resultant contact force and contact couple per unit length of the ray 
s se1(q00) exerted across this section at (s0, 50). (Hence we are giving the notion 
of plate its intrinsic two-dimensional interpretation.) That these resultants be 

axisymmetric means that they have representations of the form 

nl(s, q) = N(s) a(s, q) + H(s) b(s, q), n2(s, ?) = T(s) e2(0), (2.17a, b) 

m1(s, e) =-M(s) e2(0), m2(s,) = 2(s)a(s, 0). (2.17c, d) 

Conditions (2.17) require that several components of the resultants be zero. The 

only such requirement perhaps lacking an immediate physical interpretation is 
that m2 h = 0. Were this component not zero, then it would tend to bend radial 
fibres about b and therefore out of their natural (el, k)-plane. Conditions (2.17) are 

really restrictions on the material response saying that the constitutive equations, 
to be described below, must be such that (2.17) follows from (2.3). A three- 
dimensional interpetation of this question, based upon (2.6), is given by Antman 

(1978, ? 10). 
We assume that a normal pressure of intensity Ag(p(1)) units of force per 

reference length is applied to the edge s = 1: 

n1(1, 0) =-Ag(p(1)) el(0), (2.18a) 

which is equivalent to 

N(1) = -Ag(p(1)), H(1) = 0, (2.18b, c) 

by virtue of (2.7), (2.16), (2.17a). 
If the pressure has intensity A units of force per deformed length, then g(p) = p, 

whereas if it has intensity A units of force per reference length, then g(p) = 1. We 
thus assume that 

g(p) > 0, g'(p)>O for p>0. (2.19) 

We assume that g is three times continuously differentiable. 
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We assume that there are no other externally applied forces acting on the plate. 
Then by summing forces and moments on a typical annular sector lying between 
radii s and 1, we obtain the equilibrium equations 

sN(s) = [-Ag(p())+ T(t) dt cos0(s), (2.20a) 

sH(s) = Ag(p(1))+ T(t)dt sin0(s), (2.20b) 

s8M(s) = M(1) - {t[(t)(t)(t) v(t) H(t)] + 2(t) cos 0(t)} dt. (2.20 c) 
s 

Equations (2.20 a, b) imply that 

Hcos0 =-Nsin 0. (2.21) 

Differentiating (2.20) with respect to s, we recover the classical form of the 
equilibrium equations 

LsN(s)]' = sH(s) 0'(s) + T(s) cos 0(s), (2.22 a) 

[sH(s)]' = -sN(s) 0'(s)- T(s) sin 0(s), (2.22 b) 

[sM(s)]' - (s) cos 0(s) = s[Y(s) N(s)- v(s) H(s)]. (2.23) 

We can replace (2.22) with (2.21) and 

(sN/cos 0)'= T, (2.24) 

which comes from (2.20a). 

Constitutive equations 
We assume that the material of the plate is homogeneously elastic by requiring 

that there be three times continuously differentiable functions 

w 3 w T(w),N(w),H(w), 2(w),M(w) (2.25) 

such that T(s) T(w(s)) = T(T(s), (s), r(s), -(s), I(s)), etc. (2.26) 

We require that the constitutive functions T,...,M satisfy the monotonicity 
conditions: 

3(N,H,M) ~(T, X) (N, H, M) a T,) are positive-definite. (2.27a, b) 
O(v, q,a) ' 6(r, o) 

These conditions are a plate-theoretic analogue of the strong ellipticity condition of 
the three-dimensional theory (cf. Antman 1978, ? 10). Among the consequences of 
(2.27) is that an increase in v is accompanied by an increase in N. 

We regard (2.27a) as the fundamental constitutive inequality. From time to 
time we use other less fundamental inequalities. In certain auxiliary equations 
these inequalities typically prohibit instances of non-uniqueness, which lack 
compelling physical importance; their treatment would require rather obvious 
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but aggravatingly tedious adjustments in the exposition. Among these other 
constitutive inequalities is the requirement that: 

a(T,N) 
(T, N)is positive-definite when q = or = , = 0, (2.28) a(r, v) 

which is used in ?3. Condition (2.28) ensures that (T( , v, 0, 0,)) is invertible. It 

roughly says that a change in T has more effect on T than it has on N. 
To appreciate further conditions of this sort, we consider the deformation of a 

rectangular block with edges parallel to the (x, y, z)-axes. If we fix the length in the 
x-direction, increase the length in the y-direction, and apply zero force to the faces 

perpendicular to the z-axis, we might expect that the tensions in both the x- 
and y-directions increase. If we identify v and T with the stretches in the x- and 
y-directions respectively, this argument would imply that 

N, > 0, (2.29) 

which implies that NT+N, > 0. (2.30) 

In the sequel, when we impose further such constitutive restrictions, we do not 
bother supplying motivations like these. 

We require that the material meet the following minimal restrictions on its 

symmetry: 

T,N, X,M are even in , H is odd in y, (2.31) 

T,N, H are unchanged under (or, ,) > (-or, -/t), (2.32) 

Z,M change sign under (or, ,) (-( or, -,). (2.33) 

These conditions ensure that deformed states come in mirror images. 
We finally impose compatible growth conditions ensuring that extreme values 

of the strains are accompanied by extreme values of the corresponding resultants: 

{T(w) --o as {] \W(Z) 
o- 

if 
v 

is bounded above (2.34a) 
lN(w) - as \ (Z)(z) I Tl 

and if y, or, I are bounded, 

N(w )-> oo as - oo if v-w(Z) [t] has a positive lower bound 
N(w) T-O(Z)o\ 23lb 

(2.34b) 
and if r, o(, u are bounded, 

H(w) -+ oo as y_+ oo if (T, v, o, ) lies in a compact subset of 

{(r, v, r, U):r > W(Z) I(o, v> W(Z) 1}, (2.35) 

{M(w)} +oo as -} 
/ (Z) if (v, , lies in a compact subset of 

J{(V, a,): v > o(Z) It1}l (2.36) 
l{(r, , -) :T> (Z) IIl}J 
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For simplicity, we assume that the natural state is stress free, so that 

T(1, 1,0,0,0) = 0 = N(1, 1,0,0,0). (2.37) 

The material is hyperelastic if there exists a (four times continuously 
differentiable) stored-energy function W such that 

T= W, N= W,, H= W,, ZL= WU, M = WV. (2.39) 

Consequently, T = NT, LA = M, etc. (2.39) 

There are compelling thermodynamic arguments supporting hyperelasticity. We 
do not insist that the material be hyperelastic, however, primarily because our 
methods do not require it and secondly because hyperelasticity can be lost in 
certain approximation schemes, which could include those by which plate theories 
are constructed from three-dimensional theories. 

Boundary value problem 
We seek classical solutions of the strain-configuration equations (2.7)-(2.12), the 

equilibrium equations (2.21), (2.23) and (2.24), the constitutive equations (2.26), 
and the boundary conditions (2.14), (2.16) and (2.18). Such solutions must satisfy 
the strict inequalities (2.15). All these equations and side conditions constitute our 

boundary value problem. 

The Taylor plate 
An extreme case of anisotropy, useful for illustrative purposes, is furnished by 

the Taylor plate, which has no circumferential tensile or flexural strength. It is 

accordingly defined by the constitutive restrictions that 

T7= 0 = , (2.40) 

and that N, H,M be independent of r and cr. For such a plate, the boundary value 

problem is greatly simplified. The Taylor plate may be regarded as consisting of 
an infinite array of radially disposed rods. In fact, the governing equations for a 

Taylor plate correspond to those for a rod with a very singular non-uniformity that 
makes it infinitely strong at s = 0. It is thus the plate-theoretic analogue of the 
model for membranes that Taylor (I919) used to describe the behaviour of 

parachutes. 

3. TRIVIAL SOLUTIONS 

We now describe the unbuckled states of the plate. These correspond to the 
trivial solutions of our boundary value problem, the analysis of which is far from 
trivial. Our development consists in a brief distillation and a considerable 
extension of the work of Antman & Negr6n-Marrero (I987). 

An unbuckled state is one for which there is neither bending nor shearing, i.e. 
one for which 

0=y=o /I=, =0. (3.1) 

In such a statevp' T/8(32 In such a state P P', T P/,S, (3.2) 



The buckling of anisotropic plates 

by (2.8)-(2.10). Thus (2.31)-(2.33) reduce (2.21)-(2.24), (2.26) to the single 
equation 

[sN(p/s, p, O,0, 0)]' = T(p/s, p' O, 0, 0), (3.3) 

reduce (2.14a) and (2.18b) to 

p(O) = 0, N(p(1), p'(1),,0,,0) =-Ag(p(1)), (3.4a, b) 

and reduce (2.15) to 
p(s)/s > 0, p'(s) > 0. (3.5) 

Conditions (2.27a) and (2.34) imply that N(r, ,0,0,0) has a three times 
continuously differentiable inverse v#(r, '). We define 

T# (r, n)- T(T, v(T, n), O, 0, 0). (3.6) 

Then (3.2)-(3.5) is equivalent to 

(sr)' = p# (, n), (sn)' = T#(, n), (3.7 a, b) 

sT(s)- O as s-s0, n(1)=--Ag(r(1)), (3.8) 

r() > 0 for > 0. (3.9) 

In this section we study classical solutions po( ; A)eC?([0, 1]) n C2((0, 1]) of the 

boundary value problem (3.3)-(3.5), or equivalently, classical solutions rT( ;A), 
N(? ; A) e Cl((0, 1]) of (3.7)-(3.9). (Solutions po0( ;A) of the specialization of (2.20), 
(2.26) to the trivial state, subject to (3.4a) and (3.5), are weak solutions of 

(3.3)-(3.5). It can be shown that if mild growth restrictions are imposed on T and 
N, then a weak solution p0 in an appropriate Sobolev space determined by these 

growth conditions is actually a classical solution in the sense just described (cf. 
Antman I983).) 

Let 

s = e-l1, T(S) = T*(6), n(s) = n*(6). (3.10) 

Then (3.7) is equivalent to the autonomous system 

= #(rT,n)-r, = T#(r, n)-n,-oo < ~ < 1, (3.11) 

in which the superposed dot denotes the derivative with respect to 6 and in which 
we have dropped the asterisks from T and n. Thus we can study (3.11) subject to 
the transformed versions of (3.8) by phase-plane methods. 

The vertical isoclines of (3.11) consist of those points (r, n) for which 

T = v (T, n), (3.12a) 

or equivalently, n = N(r, r, 0, 0, 0), (3.12b) 

and the horizontal isoclines consist of those points (T, n) for which 

n = T*(r, n), (3.13a) 

n = N(T, v, 0, 0, 0), n = T(T, v, 0, 0, 0). 
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For n < 0, conditions (2.28), (2.30), (2.34), (2.37) imply that (3.12) is equivalent to 
an equation of the form 

= v(n), (3.14) 

with v increasing from 0 to 1 as n increases from -oo to 0, and that (3.13) is 

equivalent to an equation of the form 

= h(n), (3.15) 

with h(n)->O as n- -oo, h(0)= 1. The functions v and h are three times 

continuously differentiable because T and N are. 
Let 

,/h _ {-oo < n < 0: h(n) > v(n)}, 

X {-oo < n < 0: h(n) = v(n)}, (3.16) 
Xv _ {_ -o < n < 0: v(n) > h(n)}. 

Note that 0e X. Because v and h are continuous, J is closed while 4h and rXv 
are open. Xh and j(V, one of which could be empty, can therefore be decomposed 
as unions of a countable number of disjoint open intervals. The singular points of 

(3.11) occur at the intersections of the horizontal and vertical isoclines, i.e. they 
are points of {(r, n):ne^-, T = h(n)}. Those particular trajectories of (3.11) that 

everywhere lie between the horizontal and vertical isoclines are confined to a curve 

(unique by virtue of (2.28)) with equation 

=f(n). (3.17) 

(For an isotropic plate v and h coincide and form a curve of singular points of 
(3.11). The analysis of (3.11) in this case is elementary.) The roles of (3.14)-(3.17) 
are illustrated in figure 1. Antman & Negr6n-Marrero (1987) show that the only 
trajectories that correspond to solutions of the boundary value problem 
(3.7)-(3.10) are those that lie on r =f(n), that begin at a singular point, and 
that terminate at (7(A)), n-(A)), the solution of 

n = -g(r), = f(n), (3.18) 

which is unique by (2.19). From these considerations follows 

THEOREM 1. Let (2.28), (2.34), (2.37) hold. Then forA > 0 problem (3.3), (3.4) has 
a unique solution po0( , A)eC?([0, 1]) n C2((0, 1]) and equivalently, problem (3.7)-(3.9) 
has a unique solution T0( , A), NO( , A) e C1((0, 1]). If n(A) e 'X, then po(s, A) = sT(A). 
If n(A) e j X then n(A) belongs to a component open interval (a, b) of Xh, N0( ;A) 
strictly decreases from N?(0; A) = a to N?(1; A) = n(A), and po(s; A) = sf (N(s; A)). 
If n(A) E J v, then n((A) belongs to a component open interval (c, d) of Xv, NO( ;A) 
strictly increases from N?(0; A) = d to N?(1; A) = n(A), and po(s, ) = sf (N(s; A)) 
(see figure 1). 

It is important to observe the following significant and typical results. If Jfh has 
a component open interval of the form (b, 0), then N?(0; A) = 0 for all A such that 

n(A) e (b, 0). Thus the centre of the plate is stress-free for a range of boundary 
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n 

FIGURE 1. Phase portrait of (3.11) showing only the isoclines and the trajectories on the curve 
T = f(n). Here the horizontal and vertical isoclines intersect transversally at n = 0, a, b. The 
singular points (1,0) and (b,f(b)) are attractive nodes and (a,f(a)) is a saddle point. 

pressures. In particular, if Xh = (- o, 0), then the centre of the plate is stress-free 
for all pressures A. If Xrv has a component open interval of the form (d, 0), then 
N?(O; A) = d for all A such that n(A) e (d, 0). Thus the smallest amount of pressure 
on the boundary causes the stress at the centre to jump from 0 to a non-zero value 
at which it remains while A increases up to the value at which n(A) = d. In 

particular, if jv = (- oo, 0), then the normal stresses at the centre equal - oo for 
all A > 0. Similarly, if iXv has a component open interval of the form (-oo,b), 
then for large enough A, the normal stresses at the centre equal -oo. These 
remarks exemplify that if )Xh 7 (- oo, 0), then the solutions of (3.3), (3.4) do not 

depend continuously on A e [0, oo). 
For any constitutive function, such as Nv, we set 

N?(s; A)- NV((s; A), vO(s; A), 0,0,0), etc., (3.19) 

where ZT(s; A) p(s; A)/s, vo(s;A) po(S; A). Let 

Al (8; A) -T(; A)-N? (s; - ). Bl(s; A) A) T(; ) (3.20) 
2NV(8; A) N,(s; A)_ 

21(A)- = (; Al(0;/A), P,(A) Bi(O; A). 

Note that A1 = 0 for hyperelastic plates. 
By studying the perturbation of (3.11) about singular points we readily find 

THEOREM 2. Let the hypotheses of theorem 1 hold. If -oo < N?(O; A) < 0, then the 
limits of Or(s; A) and Po(s; A) as s -O exist and are equal and positive. Moreover, 

xl(A) +i,(A) 1, (3.21 a) 

TT(0; A)+ T(0; A) N?(; A) +N?(O; A). 

105 

or equivalently, (3.21 b) 



P. V. Negr6n-Marrero and S. S. Antman 

In this case there are numbers A(A), B(A), C(A), D(A), such that 

Po(S; A) l S to(?; A)l +A(A)l sX(A)+4l(h) 

N?(s; A) N(0; A) (C(A)l 

+ {B(A))} 82[ll()+fl()] + o(s82[l(A)+fil(A)]) as s-O. (3.22) 
(D(A)g 

If ci(A) +P,(A) = 1, then all terms on the right side of (3.22), except the first, vanish. 
The expansions for po and p' are given by the obvious derivatives of (3.22). 

If the material is hyperelastic, then (3.21) reduces to T?(0; A) > N?(0; A). When 
the strict inequality of (3.21) holds, we say that the plate is circularly reinforced 
at the centre. Note that the (70(0;A),N?(0;A)) in (3.22) is a saddle point for (3.11), 
as figure 1 shows. At the nodes of (3.11), an inequality like the negation of (3.21) 
holds, but such singular points are not possible values for (r, n) at the centre of the 

plate. 
For those problems for which (ro(s;A),N?(s;A))-(O, -oo) as s->0, we also 

have 

v0(s;A)->0, T0(s;A)->-oo as s->0. (3.23a, b) 

Were (3.23 a) not true, then v0 would have a positive lower bound a. Equation (3.7 a) 
would then yield srT(s) > as, a contradiction. The limit (3.23b) follows from that 
for T0, from (3.23a), and from condition (2.34a). 

Now we seek a representation like (3.22) when (r(0; A),N?(0; A)) = (0, - oo). As 

figure 1 suggests, this point is a saddle point. There are a variety of ways to 
introduce new variables in whose corresponding phase portraits this singular point 
no longer is at infinity. One way to do this is to use (3.10) to replace (3.3) with the 
autonomous system 

T= v-, (3.24a) 

v = (N,,)-1 LT-N+ (T- v)NT], (3.24b) 

where the arguments of T,N and their derivatives are (r, v, 0, 0, 0). We know from 
(3.23) that (3.24) admits the solution (, v) = (0,0). We cannot linearize (3.24) 
about this singular point because we do not know that the indeterminate forms 

appearing in (3.24b) have limits as (, v) -+ (0, 0). We are not, however, interested 
in all solutions of (3.24) near (0, 0), but only in (T( ' ; A), vr( ;A)), which satisfies our 

boundary value problem. We know that this solution corresponds to a trajectory 
leaving (T, v) = (0, 0) on a separatrix tangent to the line v = r. On this separatix 
the right-hand side of (3.24b) consists of ratios of functions of any parameter for 
the separatrix, say 6 or T. Thus the functions appearing on the right-hand side of 
(3.24b) and some of their derivatives with respect to T and v may have well- 
defined limits along the separatrix. In this case we can linearize (3.24) about 
(r, v) = (0, 0) in the direction of the separatrix. We find that this linearization is 
the following system for (71, v1) 

i =-T+,1? VI, (3.25a) 

11 = [lim (T/N,) + U] T, + [lim (T-N7)/N.-- 1 + V] PI, 
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where ( - rv) [N, N, -N7 NJ + (N- T) N, 
U lim , (3.25c) 

(N,)2 

V = lim (r- v) [N, N,,, -NTN,,,] + (N- T) N,, (3.25d) 

where the limits are taken as (T, v) -> (0, 0) along the line v = T. 

A reasonable set of sufficient conditions ensuring that these limits exist is that 

T(r, v,0,0,0) =- T-~V-l^- Fr-'- + ..., 2 

N(r, V, , 0, 0) = --XrT-v-x-1-Av-8-1 + ..., j 

where b, X, y, 3, y , F, A are numbers satisfying , , y, > 0, ,, FA > 0, , APr > 0, 
? +A > 0. By (3.26) we mean that any term accounted for by the ellipses must be 

negligible with respect to one of the visible terms in any limit by which (T, v) - 0. 
This convention applies not only to T and N but also to their first two 
derivatives with respect to T and v. If (3.26) holds, then we find that U = 0 = V in 

(3.25) and that the remaining terms in (3.25b) have well-defined limits. We can 
then solve the resulting equations for (T1, v1) and use this solution to construct the 

leading terms of the expansion of po( ; A) about s = 0: 

po(s; A) = As8l())+?f(A) + O(8l(A)+fl(A)) as s - 0, (3.27) 

where cl(A) and /i(A) are defined as limits of (3.20) as s->0. Of course, (3.27) is 
the analogue of (3.22). We are requiring that (3.21a) hold in this limiting sense 
so that (T, v) = (0, 0) has the character of a saddle point, which is necessary to 
ensure the existence of a solution (0(' ;A),N?(? ;A)) of (3.11) with (o(0, A), 
N?(0;A)) = (0, -oo). 

But when (3.26) holds, it is simpler to substitute it into (3.3) and seek solutions 
of the form p(s) = 2Qs8 +o(s), where Q and (o = ol(A) + Pf(A) are positive constants 
to be determined. If we do this, we find that 

[X( + X + 1) (w - 1) + 0o- - X + l)(X -(Q+x)>08-(0+X) ((-1) 

+ [(8 + 1) (( - 1)- 1] o-(8+1)Q2-s-(-) -y+ - +... = 0. (3.28) 

If, for example, F = 0 = , then (3.28) implies that 

- (m h? = 
+ X + X + X+) (3.29) 

The requirement that the strict form of (3.21a) hold is thus equivalent to the 

inequality that X > q. 
These results show that the treatment of problems for which N(0; A) = - oo 

depends upon the fine structure of the constitutive functions. Rather than seeking 
a stultifying exhaustiveness, we content ourselves with illustrating the main ideas 

by restricting our attention to the Taylor plate. For it, (3.7) reduces to 

(S-') = V (n), (sn)' = 0. 
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The solution of (3.30) satisfying (3.8) is readily found to be 

r(s) = s1 v*(-ct-1)dt, n(s) =-cs-1 (3.31) 

where the constant c satisfies 

c = AYg (v(-ct-1) dt. (3.32) 

Conditions (2.19), (2.27 a), (2.34) ensure that (3.32) has a unique positive solution 
for c when A > 0. Representation (3.31) is particularly simple when g = 1. The 

phase portrait of the reduced form of (3.11) is readily found. 
We now describe some further detailed properties of the solutions, which are 

useful in determining the spectral properties of the linearization of the full 

boundary value problem about the trivial solution. Let us assume the further 
constitutive restrictions 

0 < T,(w), N,(w) < N,(w), T,(w) for w = (T, v, , 0, 0). (3.33) 

Then a direct computation shows that 

h'(n) > 0, (3.34) 

from which it follows that f'(n) > 0. (3.35) 

We now show that P -r#(7o,rN) < 1. (3.36) 

We consider the locus of points for which v #(, n) = 1; it is equivalent to 

n = N(T, 1,0,0,0). (3.37) 

Because N(T, 1,0, 0, 0) > N(T, T, 0, 0, O) for T < 1 by (2.27 a), the curve (3.37) lies 
between the vertical isocline (3.12b) and the line n = 0 for T < 1. We prove (3.36) 
merely by showing that (3.37) lies above the horizontal isocline, and hence strictly 
above the curve (3.17) for T < 1. Were (3.37) to intersect the horizontal isocline at 
T* < I, then (3.13b) would imply that N(T*, 1,0, 0, 0) must equal T(T*, 1,0, 0, 0), 
which is inconsistent with (3.33). 

We now show that 

N(s; A) < 0 for 0 < s < 1. (3.38) 

This result is obvious when A increases in an open interval for which n(A) lies in 
a corresponding open interval of Xr. We accordingly confine our attention to half 
open intervals of the A-axis for which n(A) e [a, b) or n(A) e (c, d] where (a, b) and 
(c,d) are component open intervals of Xrh and Xv respectively. We limit our 
attention to the case that N?(O; A) > - oo. From (3.7), (3.8) we find that 

STO = (V#-1)TroA+V NO SN = T#NTroA+(T#-1)No, (3.39a, b) 

where the arguments of the derivatives of v* and T* are T0(s; A), N?(s;A). The 
phase portrait (figure 1) shows that the initial point on a solution trajectory is 
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unchanged, whereas the terminal point moves down the curve (3.17) as A increases 
through the half-open intervals described above. Thus 

TOr(0;A) = 0, N(0; A) = 0, (3.40) 

ToA(l;A) < 0, N(1; A) < 0. (3.41) 

Now N(' ;A) cannot have a double zero at a positive value of s, for if so, the 
uniqueness theorem for initial value problems would imply that (3.39) has the 
unique solution TrO = 0 = No, which cannot satisfy (3.41). Were NO(' ;A) to be 
positive at some point on (0, 1), then there would be an interval [sl, 83] C (0, 1) with 
N( '; A) being positive on [s1, 83), having a local maximum at s1, vanishing at S3, 
and having a negative derivative at S3. It would then follow from (3.39), (2.28), 
(3.33) that 

TOA(81; A) > 0, 7OA(83; A) < 0, rO(S3; A) >0. (3.42) 

Then there would be an s2e(s1,s3) at which TOA would have a negative local 
minimum, whence 

0TA(2; A) < 0, 70(S2; A) = 0. (3.43) 

But then (3.39) would imply the contradiction that 0 = (V - 1) rTA + v N > 0 at 
s2. Thus (3.38) must hold. 

The direct use of phase-plane methods is not possible if T or N depend explicitly 
on s, as happens for plates of variable thickness or for plates with a non- 
homogeneous material response. Such problems can be analysed by using the 

homotopy invariance of the Leray-Schauder degree to construct solutions by 
continuation methods. The rather intricate analysis needed to support this 
approach was carried out by Negr6n-Marrero (1985). It relies on techniques that 
we exploit in ?6. An alternative procedure might be developed by using the ideas 
of the first part of ? 10. 

4. THE LINEARIZED BUCKLING PROBLEM 

We use the notation introduced in (3.19), (3.20). We also set 

Z[N (s; A) -?N(8; A) P T(A T A)/=( 
A 2M,(s ; H ) = AN2(s; ) (s A) (4.1) 3A)0'S; - 2MA)A(,s; A) + (;' 01 + (8; A[( ) (8; A) 

3()- 3(0; A), p83(A) - B(0; A). 

Note that A3 = 0 for hyperelastic materials. The linearization of the boundary 
value problem (2.8), (2.10), (2.24), (2.21), (2.23), (2.14), (2.16), (2.18) about the 
trivial solution is 

Pi = Vp, P1 = pO(8; A) 01 + 11, T1 = P1/S, (4.2) 

[sN(s; A) p +NO(s; A) pl]'- (s; A) pl-(s; A) p,/S = 0, (4.3) 

H,?1(s; A)ql = -N?(s; A) 01, (4.4) 

sM(s; A) 1]'-2M(s; A)A(s; A) 01 +M(s; A)' 01 + M,(s; A) [A(s; A)2 -B(s; A)2] 01/s 

= S[N?(8; A) -po(8; A) H0?(s; A)] lh =-sQ(s;A) 1, (4.5a) 0 1 1 5~~~~~L\ fIj 1 
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with Q(s; A) _ N(s; A) [N?(s; A)/H?(s; A) -p(s; A)], (4.5b) 

p1(0) = 0, i(0) = 0, y1(0) = 0, 01(0) = 0, (4.6) 

N?(1 ;A) p(1) +N?(1;A) pl(l) = =-Ag'(p(1;A)) p(1), (4.7) 

V(1) = 0, 01(1) = 0. 

Thus this linear boundary value problem reduces to two uncoupled second-order 

boundary value problems for p, and 01, augmented by (4.2) and (4.4), which yield 
expressions for the remaining unknowns. 

Let us multiply (4.3) by p1, integrate the resulting equation by parts over [e, 1], 
and use (4.7) to obtain 

Ag'(po(1; A)) p(1)2+lim F [sN(p1 )2 + (NO + Ts) p, p' + ds 
e->O Jf L SJ 

=-limpl(6) [cN(e,A) p(e)+N?(6;A)pl(e)]. (4.8) 
e->0 

In the cases for which N(0O; A) > -oo, the functions Tr( .; A), T^(. ; A), N?(' ;A), 
N?(? ;A) are bounded. It then follows that if p, E C1([0, 1]), then the right side of 

(4.8) vanishes. (This conclusion holds for much weaker restrictions on Pl.) 
Conditions (2.19), (2.28) then imply that p, = 0. 

We get the same result when N(0; A) = - oo provided that we can prove that the 

right side of (4.8) is < 0. For this purpose let us restrict our attention to (3.26) with 
F= 0 -= . Then (3.27) implies that near s = 0, equation (4.3) has the form 

(s1-p;)'- -Rs--p1+ +... = 0, (4.9a) 

7-(1 + -fl1-1)(X +0+2)> 0, R-( [X7+ (a, +l)(0 + 1)] > 0. 
x(x + l) 

(4.9b) 

The ellipsis in (4.9a) stands for terms negligible with respect to the visible terms 
as s-> 0. The solution of (4.9a) satisfying p,(0) = 0 has the form 

p, = const. (+(2+4R)) + ... (4.10) 

Thus the right side of (4.8) is 

-const. lim e/(Y2+4R) = 0. (4.11) 
,->O 

Equation (4.5) is formally self-adjoint if and only if A3 = 0. If A3 # 0, we can 
replace (4.5) with the equivalent formally self-adjoint equation 

(sM 0 q)' + [(M A3)' + (M )'-_M B2/s] O1 + sQO = 0 (4.12) 

for 1 = 01 exp '-1A3(S; A) ds (4.13) 

(There are other ways to convert (4.5) into a formally self-adjoint form, as we shall 
see in ? 7. Equation (4.12) has the virtue that the coefficient of 0' has an especially 
simple form.) If we regard (4.5) as a perturbation of the formally self-adjoint 
problem with A3 = 0, then this result indicates that real eigenvalues of the self- 

adjoint problem are not lost in the perturbation process by becoming complex. 
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In keeping with (3.21) we assume that 

1(A)+ i/(A) > 1, c3(A)+/3(A) > 1. (4.14a, b) 

Conditions (4.14a, b) are equivalent to 

T?(0; A)+ T?(0; A) > N?(O;A)+N?(O;A), (4.14c) 

z?(0; A) + ( 0; A ) >M?(O;A)+ (O;A). (4.14d) 

If constraint (2.6) is adopted with o(s, z) having the special but reasonable form 

Y(s)z, then the methods of Antman (I978, ?10, especially equations (10.52) and 

(10.53)) show that there is a positive-valued function q such that 

(2'(s; A), Z'q(s; A),M?(s; A),M(s; A)) 
= q(Tr(S; A), vO(s; A)) (TI(s; A), Tv(s; A),N?(s; A),N?(s; A)). (4.15) 

(If C is prescribed, then q would just be a function of s. We adopt this more general 
form of q to free our analysis from too slavish an adherence to (2.6). See the 
discussion of this question in ?10.) 

When (4.15) holds, (4.14c) and (4.14d) are equivalent. It is important to note 
that (4.15) shows that it is unwarranted to make the attractive assumption that 
the terms on the left side of (4.15) are constants. 

Suppose that N (0; A) > - oo and that (4.14) holds. To determine whether (4.12) 
has a well-behaved set of eigenvalues, we note that (3.22) implies that (M?A3)' and 
(M?)' behave like s1+/i1-2 for s small. Note that a, +P -2 > -1 by (4.14). Equation 
(3.22) also implies that there are positive-valued functions M+, E, P, R of A such 
that 

M, <M+ -(M -A3)' -(M0)' +M?B/s M+2/s, (4.16) 

M> MP2 >0 if N(0;A) < 0, 
Q 

IM+R2Sa1+1' if N(0O;A) = 0. 

Then the Sturmian comparison theory asserts that the solutions of (4.12) oscillate 
more rapidly than those of 

E'O+ 0 =0 for202 < 0 
8 ) s 1+xl+#_R2 0 = 0 for NO(0;A){ } (4.17) 

The solutions of (4.17) that are regular at s = 0 are the Bessel functions 

JE(A)(P(A)S) when N(0;A) < 0, (4.18a) 

JA))(8(A)R(A)(s()R (A)) when N?(0;A) = 0, (4.18b) 

where d(A) = 2/(a,l(A)+f1(A)+ 2). These functions are oscillatory for se(0, oo). If 
E, P,R, 8 are such that these functions oscillate more rapidly as A is increased, then 
the same is true of (4.12), and the Sturmian theory can be used in a standard way 
to ensure that (4.12) has real eigenvalues in various range of the positive A-axis. 

We take the view that this fact shows that given the constitutive functions 
N?, M,, etc. one could in principle compute the eigenvalues for (4.12). It is not our 
aim here to determine detailed information about the disposition of the eigen- 
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values. We note, however, that such an effort can be complicated not only by the 

possible discontinuous dependence ofN?,M%, ... on A, but also by some more subtle 

aspects of the material response: an important factor causing (4.18) to oscillate 
more rapidly with an increase in A is the dependence of P or R, and thus of Q, on A. 
From (3.4b), (4.5b), and the remarks at the end of ?3, we note that N0(1 ;A)2 -> o 
as A - oo and we might expect the same for N?(s; A)2 for s (0, 1]. If Hf behaves 

appropriately, then we could expect Q(s; A)-> oo as A -> oo. Now P behaves like 

Q/M, and (4.15) suggests that M behaves like N. Thus P behaves like (NT)2/N 
provided H' is innocuous. For a large class of functions (T, v) HN(w), one can show 
that (N0)2/N-> Goo as A- o. In this case we could expect (4.12) to have a 
countable infinity of unbounded eigenvalues. On the other hand, if the material is 
unshearable so that Ho = oo (a formal result, which can be rigorously justified), 
then Q = -N?po. Condition (2.34a) and the results of ?3 then imply that Q/No is 
bounded as A - oo. Thus we might expect (from a comparison of (4.12) with an 

equation having coefficients satisfying inequalities opposite to those of (4.16)) that 
the eigenvalues of (4.12) are confined to a bounded interval of the A-axis. These 
issues arise in the buckling of nonlinearly elastic structures with a rich enough 
repertoire of permissible deformations. A careful presentation of the heuristic 

argument of this paragraph applied to a simpler buckling problem is given by 
Antman & Rosenfeld (I978). Some of these notions will now be illustrated. 

Rather than conducting an analogous development for the case that 

N?(O;A) = -oo, which would rely on ideas like those used in (4.12)-(4.14), we 

simply discuss the Taylor plate with g = 1 (cf. (2.18)) and with q of (4.15) depending 
only on v. Then (3.31) and (3.32) reduce (4.5) to 

[ sq 
(-As-l) )01 +A[(H)-1 As-l+v#(-8-A1)]01= , (4.19) 

LnV (-h ~ ^) V 

which is subject to 01(0) = 0 = 01(1). (4.20) 

For simplicity, we restrict our attention to Taylor plates for which 

v#(n)=(1-Kn)-k for n<0, (4.21) 

q(v) =Lv-l for < 1, (4.22) 

where K,L,k > 0;l 1 0. Then (4.19) becomes 

[8-k(l+l)(KA + s)l+k(l+l)Ol + AC[(H?)-' As1 + sk(KA + s)k] 01 = 0, (4.23) 

where C - KkL-1. 
To analyse the spectral properties of (4.23) we introduce the Priifer 

transformation 

S-k(l+l)(KA+s)l+k(+l0 = r cos , 0, = rsin o. (4.24) 

Then (4.23) and (4.20) imply that o satisfies 

8-(1+l) COS2 W 
' K - l AQC[(H0)--1 As8 + s8k(KA + 8)-k] sin2 o, (4,25) (KA +? 8)1k(1l) tl 

c(0) = 0, w(1) = (n + 1) (426 
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where n + 1 is a positive integer. Problem (4.23) and (4.20) has a non-trivial solution 
60 with exactly n zeros on (0,1), each of which is simple, if and only if there is 
a value A > 0 for which (4.25) and (4.26) has a solution. To exploit these 
observations, we observe that 

( ) a cos2 + b sin2 2(ab) (ab)arctan 

for 1(2n- 1)7 < ) < (2n +1), n > 0,1,2,.... 
Let us first study the case in which the Taylor plate is unshearable, so that 

H = oo. Thus (4.25) implies that 

o' < (KA + s)-l(cos2 o + AC sin2 o). (4.28) 

Thus (4.27) yields 

F(o(1); 1, AC) < In ((KA + 1)/lKA). (4.29) 

In particular, if o(1) = (n+ 1) (cf. (4.26)), then (4.27) reduces (4.29) to 

[(n + 1) n]2 < ACl n (1 + (1/KA)). (4.30) 

By l'Hopital's rule, the right side of (4.30) approaches 0 as A ->0 and approaches 
C/K as A - oo. It thus follows from (4.30) that if n exceeds some threshold 
n (depending on the fixed parameters C,K), then there is no positive value of A 
for which (4.30) is satisfied. If we assume that n is an integer, then there are 

consequently no eigenfunctions having more than n interior zeros. In particular, 
if C is small enough, then n could be taken = -1, in which case there are no 

eigenvalues at all for (4.23). It also follows from (4.30) that if (4.23) does have an 

eigenfunction with exactly n interior zeros, then the corresponding eigenvalues 
cannot accumulate at A = 0. (We have offered no reason to preclude their 
accumulation at any point of (0, oo]. Antman & Rosenfeld (1978) show how such 
accumulation points can be assigned in a simpler problem by a judicious choice of 
constitutive functions.) 

Now we turn our attention to shearable Taylor plates for which HO is a positive 
constant. (The treatment of problems for which H? depends on v follows the same 
lines.) From (4.25) we get 

Cos 2 
2 

of) ks^~ \(K+l +1)L c (s ) w ?l AC20 sin ](4.31) 

whence we obtain 

F((1) ; (KA+ 1)l+k(l+l), C(H^)-1 A2) > [1 +k(1 +)]-'. (4.32) 

It then follows from (4.27) that if k(1 + 1) < 1, then o(1) -+ oo as -A oo. In this case 
(4.23), (4.20) has a sequence {An} of eigenvalues going to co with corresponding 
eigenfunctions having exactly n interior zeros. (There may be other eigenvalues 
and eigenfunctions besides these.) 

113 



P. V. Negron-Marrero and S. S. Antman 

5. FORMULATION OF EQUIVALENT GOVERNING NONLINEAR INTEGRAL 

EQUATIONS WHEN N?(0;A) > - 0 

The equations of our boundary value problem are singular at s = 0. The nature 
of the singularity depends on the behaviour of MO, etc. at s = 0. Here we treat 

problems for which N?(0; A) > - oo. In particular, we restrict our attention here to 
the case in which (4.14) holds (cf. theorem 2), the corresponding equalities having 
been treated by Antman (1978). The treatment of the Taylor plate, typical of 

problems with N(0O; A) =- oo, is given in ?7. 
In view of Theorems 1 and 2, the functions MO( ;A) ... are Holder continuous on 

[0, 1] for fixed A; they may depend discontinuously on A. We obtain our integral 
equations by constructing inverses of differential operators modelled on those of 

(4.3)-(4.7). 
We substitute (2.26) into (2.22), (2.23) and then carry out the differentiations 

on the left sides of the resulting equations. Condition (2.27a) enables us to use 
Cramer's rule to solve these equations for sv', s', s, t'- sO". We then use (2.8) and 

(2.9) to force these equations into a mould suggested by (4.3)-(4.7): 

Lj(p-po) - Ls(p-po)']'- 21(A) (p-Po)' + [c1(A)2 -_f(A)2] s-l(p-po) 
= (A1 cos 0-A2 sin 0)/A + (N - TO +N,(po-S-1po))/NO 

+ [1- 2a,1(A)] (p -p)' - [1(A)2-,f1(A)21 s-(p-po)-83'01' -f1, (5.1) 

L2 - (s')' = (A sin 0 - 2 cos 0)/A + 
' 
+ sp'' - f2, (5.2) 

L30 (s8')' -2 3(A) 0' + [a3(A)2 -f(3(A)2] 8-10 

= -sQ(s; A) + J3/A + [1- 2c3(A)2] 0' + [o3(A)2 -83(A)2] s-10 + sQ(s; A) 0 

- sQ(s; A) +f3 (5.3) 

where ac, ,l, c3,,3 are defined in (3.20), (4.1), 

A det(NHM) (5.4) 
d(v, y, 1t) 

Ai is the determinant obtained from A by replacing its ith column with 

(/) 
a3 

given by 

a = -sNT '-sN, o'-N+ sHI + T cos 0, 

a2 = -sHT 7 -sHf o' -H-sN - T sin , (5.5) 
a3 = - sM] T'- sM, o'-M + ? cos 0 + s(,lN- vH), 

p(O) -p(O; A) = 0, (5.6) 

N?(1; A) [p'(1)-po(1; A)] +N?(1; A) [p(1)-p((1; A)] 

=-N(w(1))- Ay(p(1)) + No(1; A) [p'(1)--po(1; A)] 

+N?(1;A)[p(1)-po(1;A)] b, (5.7) 
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(0) = o, '(0) = O, g'(1) = o, (5.8) 

0(0) = 0, 0(1) = 0. (5.9) 

(In (5.7) po(l; A) is defined to be (a/as) p(l ; A). We adhere to this convection in the 
sequel.) Everywhere in fl, f2, fg, b where v and y appear, we replace them with 

v= p' cos + ' sin, = -p' sin + ' cos , (5.10) 

which come from (2.8), (2.9). Thus we have reduced our boundary value problem 
to (5.1)-(5.9), a sixth-order system for p-po, {, 0. 

We now convert this system into an equivalent system of integral equations. 
Green's function for L1 subject to (5.6) and to the vanishing of the left side of (5.7) 
is given by 

K (s, t; A) 1 { (yts1-alt-al-^fl) sal+- for t I (5.11a) 
2KlS ( ytfl'fi - t -a 

1-fli)8a1+/f1 for t s, 

N0-(1; A) +N(1; A) (a -- p,)' 1 
y(A) -N(1; A) N ; A) (5.11 b) 

Green's function for L3 subject to (5.9) is 

1 {(S3+~3 -s~-.) t~- for t < s, 
K3(s, t; A) - 1 (t a3--t- 3-3^s3) st3+f 3 for t > s. 

(In the important case that N?(O; A) = 0, it follows from Theorem 2 that c3, f3, and 
therefore K3, are independent of A.) 

Let e(A) be a positive number to be chosen below. We define functions 
(U1, U2, U3)-- U by 

sl _ Ll(p-po), s2 - L2', su3 L3 . (5.13a-c) 

Note that (5.8), (5.13b) imply that 

Jsu2(8s)ds = 0. (5.14) 

Assuming that u is continuous and satisfies (5.14), we can convert (5.13), 
(5.6)-(5.9) into an equivalent system that gives C and 0 explicitly in terms of u and 
that relates p-po to u: 

P--pO = G1ul E(A)-lbsl(A)+fi(A), = G U = G3u , 0 = , (5.15a-c) 

where (G u) (8;A) ) Kl(s , t; A) t(A)ul(t)dt, (5.16a) fo 

(G2u2) (s;A) - 6 t()u2(t)dtd6, (5.16b) 

(Gu3)(s';,A) - K3(s,t; )t; ()u(3(t) dt, (5.16c) 
Jo 

(5.16d) 
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We now wish to solve (5.15a) for p-po in terms of u. We evaluate (5.15a) and 
its s-derivative at s = 1 and then replace b from (5.7) to get the following system 
for p(l),p'(1): 

Po(p(1),p'(1), '(1); A)- N(1 ;A) (1 +jl) [p(1)-po(1;A)] 

-N(1 ;A) [p'(1)-p(1 ;A)] + Ay(p(1)) +N(p(1), p'(1), 0, 0, 0'(1)) 
= E(A)(G1ul)(1;A), (5.17a) 

Pl(p(1), p'(1), O'(1); A) - -N?(1; A) [p(1)-po(1; A)] 

-(1 +/1)-1N?(1 ; A) [p'( 1)- p(1 ; A)] + Ah(p(1)) +N(p(1), p'(1), 0,0, 0/(1)) 

=E(A)(G1 u)' (1;A), (5.17b) 

a(Po, P,)/ a(p()p), '()), 

(N(1; A) (a, +fl1) +N,(w(1)) + A'(p(1)) N,(w(1))-NV(1; A) 
N,(w(1))-N?(1 ; A) +A'(p(1)) (j1+fl1)-1N0(1 ;A) +N(w(1))' 

(5.18) 

Conditions (2.30) and (4.11) ensure that (5.18) is positive-definite. We assume this 
conclusion. Conditions (2.34) ensure that 

{[Po(p(1), p (1), 0' (1); A)-Po(1, 1, 0'(1); A)] [p(1)- 1] 
+ [Pi(p(1), p'(1), O'(1); A)-P(1, 1, 0'(1); A)] [p'(1)-1]} 
x {[p() )- 1]2 + [p'(l)- 1]2}-12 -oe, (5.19) 

as p(1) - 0 or oo for fixed p'(1) > o(Z) 10'(1) and as p'(1 ) - o(Z) IO'(1) or oo for fixed 

p(l) > 0. The positive-definiteness of (5.18) and the coercivity condition (5.19) 
support a global implicit function theorem (based on the Brouwer degree theory) 
that ensures that (5.17) has a unique solution for p(l) and p'(1) and thus for 

p(l)-po(; A) and p'(1)-po(; A) as three times continuously differentiable 
functions of 0'(1), E(A) (G ul) (1 ;A), E(A) (G1 u)' (1 ;A) and as a function of A. Let 
us replace this 0'(1) with (G3 3)' (1 ;A) from (5.15c). Then b can be expressed as a 
function of (G1u) (1 ;A), (G1ul)' (1 ;A), (G3u3)' (1 ;) and A. We substitute this 

representation into (5.15a) to express p-po entirely in terms of u. Let us now 

replace p, 6, 0 and their derivatives wherever they appear in f1,f2,f3 with their 

representations obtained thus from (5.15), denoting the resulting expressions by 
1[u; A], F2[u; A], F3[u; A]. Then (5.1)-(5.9) is equivalent to the system of integral 

equations 

ui(s) = s8-(AFi[u; A] (S), i = 1,2, (5.20a, b) 

u3(S) + Sl1-(A)Q(8; A) (G3 u3) (s; A) = 8-G(A)F3[U; A] (s). (5.20c) 

We seek classical solutions u of (5.20). They generate classical solutions of the 

boundary value problem via (5.15). 
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6. COMPACTNESS OF THE INTEGRAL OPERATORS WHEN N?(0;A) > -o 

In this section we prove that the operators appearing on the right-hand side of 

(5.20) are compact from C?([0, 1]) to itself when N?(0; A) > - oo (and (4.14) holds). 
We choose e(A) to satisfy 

0 < e(A) < min {x(A), 2[Cx(A) +f8(A) - 1], 2[13(A) +?3(A)- 1]}, (6.1) 

where X X3(A) + /(A) +1 if NO(O;A)<0 

L,1( (A ) + ()+(A)+ (A)+1 if N0(0; A) = 

(We can then use (3.22) to show that sHs-:(A)Ll(po(,A)- p(O, A))(s;A) is 
continuous. In view of (5.15a), this fact suggests that it is reasonable to seek 
continuous solutions u of (5.20).) 

We denote the components (rT, vo, 0, 0, 0) of w0 by (w, ..., w). The indices i,j 
range from 1 to 5. When repeated twice they are summed over their range. The 
Mean Value Theorem implies that 

N(w) = N(Wo) + N(w0, w- wO) (wi- w?) 
= N(wo) +Nw(Wo) (wi-wi) +Nj(wo, w-wO) (wi- ) (w-wj), (6. 2) 

where Ni(wo, w -W) f- Nw(wo + t(w- wo)) dt, 

Nij(Wo w-wo) -(1t)Nww(Wo + t(w-Wo))dt. 

The same kind of representations hold for other constitutive functions. Thus, 
for example, we obtain from (5.5) that 

a1 = -[N +N(wo, w- o) (wj-wj)] (p-p/s) 

-N,j(wo, w-Wo) (j-wj) (0' cos 0-sin (0/s))-N?-NO s-1(p-po) 

-NO(p' scos 0 + ' sin 0-po) -N1(wo, w- Wo) (Wi - W) (w - w?) 

+ [Hr?(-p' sin 0 + ' cos 0) + Hij(wo, w- Wo) (wi-w?) (wj-w ?)] s0' 

+[TO + T 8-(p-po) + T(p cos 0 + sin -po) + TI(w, w) (wi-w?) (w -w?)] 

x [1 +(cos 0-1)] (6.3a) 

= - [NO- T? +NO(p- 8-1p0)] + (T? -NO-N?) (P'-PO) + T ? s-1(p-Po) + ... 

(6.3b) 

where the ellipsis stands for a sum of products of continuous functions of 
w- w, 0, s0' with expressions of the form 

(Wi- W?) (Wj- W?), (wj- ) (p'-p/s), 

(wj-w?) [0'- -/s + 0'(cos 0- 1) + (sin (0)- )/s], (6.4) 

(p'-P) (cos-1)+p(cos0--1), '0, s(p'-po)00'+spO00', s6'O'. 
0 0 0 0~~~~~~~~ 
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Note that 

-W? = s-1(p- po), w2-w? = (p'-p') cos -po(1-cos )+ ' sinO, 

W3-Wo =-(p'-po) sinO-psin+ ' cos , w4-wo = s-10(sin ()/0), (6.5) 

W5-W5 = -0. 

Now al occurs in (5.1) as the coefficient of 

Le [(H,M) 8(H, ) sin ] = + (6.6 A-Cos 0ir (NO)+...,66 

where the ellipsis stands for a sum of products of continuous functions of w-wo 
and 0 with w- w and 0. Thus we find that there is a considerable cancellation 
withinf1 so that it consists merely of the terms accounted for in (6.4) together with 

(NV)-l(p' -p) [T - T?(O; A) -NO +NO(O; A) -N +N?(O; A)] 

+ (N)-1 s-l(p-po)[T?-T?(O; A)]. (6.7) 

It is not surprising that f1 and likewise f2 and f3 have this structure because the 
terms accounting for the linearization and the expansion of coeffcients about 
s = 0 have been incorporated into the operators L1,L2, L. (It is nevertheless 

necessary for our analysis to carry out the preceding exercise in order to determine 
the precise role of the variable s in fl,f2,f3.) 

THEOREM 3. The operators taking u into the functions s s- ()Fij[u;A] (s) are 

compact from Co([0, 1]) into itself. 

Sketch of the proof. Because many of the terms of Fi have the form (6.4) we can 

split up the effect of the singular term s-'(A) between each factor of the products 
of (6.4). Thus, for example, a typical term of s-"(A)P[u; A] (s) is 

[s(G u)' (; A)]2 q(u; A) (s), (6.8) 

where q is a composition of a continuous function of w-wo, 0, sO' with the 

representations for these variables in terms of u induced by (5.15). The term (6.8) 
corresponds to (0')2 appearing in (6.4). Now (5.12), (5.16c) imply that 

s-~(A)(G u ) = (S; A) = [(3 +,3) s+-i -(a 
- 

(c 3-fl3) sl-3-1-(A) ] t-i+6(A)u3t) dt 

+ (o3 +, f3) t/-l:(A) f +(a-t-t-+436(A)] u3(t) dt. (6.9) 
Js 

For u3 confined to a bounded subset of CO([0, 1]), it is easily checked that (6.1) 
ensures that (6.9) is uniformly bounded and equicontinuous. By the Ascoli-Arzela 
Theorem it follows that (6.9) and therefore (6.8) generate compact and continuous 

operators from CO([0, 1]) to itself. Indeed, the same argument shows that all the 
terms accounted for in (6.4) can be treated likewise. 

To handle the contribution 

{5l26(A)(p -P0)} {si(A)2[TO - T?(O; A)] (N)})-'1 

118 

(6.10) 



The buckling of anisotropic plates 

of a typical term of (6.7) to the right side of (5.20), we observe that 

To(s; A)- TO(0; A) = T,(wo(s; A))- l(wo(O; A)) 
= Tj(w0(O;A), Wo(S;A)-wo(O; A)) [w(s; A)-w?(O; A)], (6.11) 

w(s; A)- w(0; A) = A(A)l-l (6.12) 
wO(s;A)-wO(O;A) = (ac1+,l1)A(A)sa1+fi1-1 

by (3.22). It follows from (6.12) that the second term in braces in (6.10) is a 
continuous function of s. It follows by the argument centred on (6.9) that the first 
term in braces in (6.10) generates a compact and continuous mapping of u from 

C?([0, 1]) to CO([0, 1]). The same kind of argument shows that the terms of (6.7) and 
related terms generate compact and continuous operators from CO([0, 1]) to itself. 

The development we have just carried out also shows that the linear mapping 
from CO([0, 1]) into itself taking u3 into 

* 1-s~(A)Q(8s; A) (G3 u3) (s; A) 

is compact and continuous (because e < X in (6.1)) and that 

F[u; A] = o(llu; C?([0, 1]Il), 

as u- 0. These observations together with Theorem 3 form the essential 

hypotheses of the global bifurcation Theorem of Rabinowitz (I97I) and of 
associated continuation theorems of Leray-Schauder type (Rabinowitz I973; 
Alexander & Yorke 1976). In applying these results to our problem, we need only 
account for the possiblity that the operators of (5.20) need not depend continously 
on A. 

To state our result we introduce 

Ah = {A > 0: n(A)e C /}, etc., (6.13) 

(see (3.16) and (3.18)). The continuity of n, a consequence of the implicit function 
theorem in virtue of (2.19) and (3.18), ensures that Ah and Av are open subsets of 

(0, oo). We thus have 

THEOREM 4. Let [A-, A) contain a number X such that (X, A+) is a component 
open interval of Ah and such that (A-, X) n Ah = 0. (No and T0 are continuous for 
A E (A-, A), see figure 1.) If K is an eigenvalue of the linear problem (4.5) subject to 

01(0) = 0 = 01(1) (or equivalently ofu(s)+sl-(A)Q(s;A) (G3u3) (s;A) = 0) having odd 

algebraic multiplicity, and if K E (A-, A+), then bifurcating from the point (A, u) = (K, 0) 
in (A-, A+) is a maximal connected family c'(K) of non-trivial solution pairs of (5.20) 
having at least one of the following properties: (i) W(K) is unbounded in (A-, 
A+) x C?([0, 1]), (ii) the closure of c(K) contains a point of the form (K*, O) where K* is 
another eigenvalue of the linearized problem with K* E (A-, A+), (iii) the closure of W(K) 
contains a point of the form (A-, u) or (A+, u). If W is any maximal connected set of 
solution pairs in (A-, A+) x CO([0, 1]) that does not contain a point of the form (K, 0) 
where K is an eigenvalue of the linearized problem, then W has at least one of properties 
(i), (iii), or (iv): W contains a loop in the sense that there is an essential mapping of 
I onto a circle in (A-, A+) x C?([0, 1]). 
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7. ANALYSIS OF THE TAYLOR PLATE 

We now study the global bifurcation of solutions to the equations for the Taylor 
plate (cf. the last paragraph of ?2). Our results are representative of those for 
problems for which N?(0; A) = -oo. By restricting our attention to Taylor plates, 
we can carry out the formulation and analysis of the governing integral equations 
in a way that is both far more efficient and closer to the underlying mechanics 
than that of ??5 and 6. Either that approach or the present one can be adapted, 
with some effort, to handle general problems for which N(0; A) = -oo. (One 
approach is to embed the constitutive equations for Taylor plate into a family 
of constitutive equations for which N(0; A) = - oo and then use global multi- 
parameter bifurcation theory; see Negron-Marrero (1985).) 

We retain (2.27a) and the relevant specializations (2.31)-(2.36). Then the 
mapping (v, 7, ,) (N(v, y,a/), H(v, , ,u),M(v, , u)) has an inverse (v#, y#, #t) with 

o(Z) 1a# 1 v#, (7.1) 

# (n, h, m) - o(Z) 1# (n, h, m)l - 0 (7.2) 

as n--oo or as Iml - oo, 

v* is even in h and m, (7.3a) 

v* is odd in h and even in m, (7.3b) 

/u# is even in h and odd in m. (7.3c) 

There is some ambiguity in (7.2) in that it is not apparent where on the curve 
v = (olul in (v, /)-space the strains v and u end up as n-> oo or Iml - oo in some 
prescribed way. When (n, h, m) approaches an extreme along a curve, the actual 
values of v, q,# are defined as the limits (provided that they exist). We shall 
illustrate this fact below. 

Let us replace (2.20c) with the integral of (2.23) from 0 to s. Using v*, #a, ,*# we 
convert the governing equations for the Taylor plate, embodied by (2.8a), (2.9), 
(2.12), (2.14), (2.16), (2.20), (2.23) and (2.26), to the following system of integral 
equations: 

(S) = v (n(s), h(s), m(s)), (7.4) 

1(s) = # (n(s), h(s), m(s)), (7.5) 

U(s) = u#(n(s), h(s), m(s)), (7.6) 

where sn(s) - Ag(p(l)) cos (s), (7.7) 

sh(s) Ag(p(1)) sin 0(s), (7.8) 

sm(s) a-Ag(p(1)) [v(t)sin0(t)+ ?(t)cos(t)]dt. (7.9) 
Jo 
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Here the 0 and p(l) appearing on the right-hand sides of (7.7)-(7.9) are defined 
by 

0(s) = f(t)dt, (7.10) 
/o 

p(1) = [v(t) cos 0(t) -(t) sin (t)] dt, (7.11) 
o 

and a lim sm(s) = (1) + Ay(p(1)) [v(t) sin (t) +(t) cos 0(t)] dt (7.12) 

is defined to be the functional of v, y, 
- 

satisfying 

1f#* (n(t),h(t), m(t))dt = 0. (7.13) 

Our monotonicity and coercivity conditions imply that (7.13) can be uniquely 
solved for a. (Note that (2.8) and (2.9) imply that the integrand in (7.12) is just 
5'(t) ) 

Under these definitions, (7.4)-(7.6) constitute our integral equations for the 

Taylor plate. The right-hand sides define mappings of 

{vP ,/ Ce ([0, 1]): v() > (Z) I(z (s)1, /L(t)dt = 0}. (7.14) 

Under mild constitutive restrictions to be imposed, we shall show that these 
mappings are compact self-mappings. 

Example. If we adopt (2.6) with o(z) = z, if we take a three-dimensional stored- 
energy function 0 to have the form 

Q(v, , Iu, z) = a-1A (v-z )- +A(v-ztu) +By2, (7.15) 
where A > 0, B > 0, ca > 1, and if we define the stored energy function for a Taylor 
plate by 

z 
W(v, , t) = QP(v,q #I, z) dz, (7.16) 

J- 

then (2.38) yields 

A-1N(v, ,A) = J [1-(v-z/z)-a-l]dz -z 
= f2Z+ (O L)- [(V+Z Z)-a-(v-Z/-)-a] for #-0, 

[2Z[1-v- -1] for u = 0, (7.17a) 

B-1H(v, r),/) = 4Zy, (7.17b) 

A-M(v, ,,) = J (v- z/t)-~lzdz = ()-1 z)-~ dz 
j-z J-z ^ 

a(a - 1) /U2]-l [(V + ZlU)-a (V + xZLa) - (v- Z,)-" (v- CaZJ)] 

-= 
? for , 0, 
0 for t= 0. (7.17c) 
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Note that the form of (7.15) is appropriate for a Taylor plate under compression. 
Representations (7.17 a, c) depend continuously on u for v-Z Zll > 0. Constitutive 

equation (7.17 a) reduces to (4.21) when ut = 0 if k-1 = a+ 1, K = (2Z)-1. We also 
find that q(v) of (4.22) reduces to lZ2 (cf. (4.15)). 

The inverse (v#,/I#) of (7.17a, b) cannot in general be expressed in closed 
form. Nevertheless, it is easy to verify that (7.1)-(7.3) hold. We can use (7.17) 
to illustrate the comment following (7.3) in the process of showing that 

v#(n(s),h(s),m(s)) and -#*(n(s),h(s),m(s)) have well defined limits as s\0. Let us 
divide (7.17c) by (7.17a) and then replace N(v,, 1t) and M(v, , u) in the resulting 
equation with n and m of (7.7) and (7.9). Letting s -0 and using the fact that 

0(s)->0 as s - 0, we get 

(a - 1) a (v+Zu)- (v - aZ)-(v-Z#u)Y (v+ ) (718) 
(7.18) AY(p( 1 )) 2aZ(v2 - Z2)a + ( _- ZU)a - (V + Z#) 

' 

where v and ,u are evaluated at 0. If /,(0) = 0, then (7.2) implies that v(0) = 0 
and vice versa. Let us suppose otherwise, that v(0) > 0 and Zc(0) = + v(0). The 
substitution of these values into (7.18) implies that 

A = Ag(p(1)) Zsign t(0). (7.19) 

Note that it is unlikely that the solution a of (7.13) would satisfy this condition. 

(Indeed, for 101 small enough, it cannot.) Let us show that (7.19) is inconsistent 
with the full system (7.17a, c), which we rewrite as 

2AZ(v-Zu)-' = (c- 1) uM- (v + aZu) (N-2AZ), (7.20a) 

2AZ(v + Zt)-a = (a- 1) pM- (v -aZu) (N-2AZ). (7.20b) 

Suppose that Zu(0) - n(O) > 0. We set 

e(s) = v(s)- Z,(s). (7.21) 

Replacing N and M in (7.20) with n and m of (7.7) and (7.9) and using (7.19), we 
deduce from (7.20a) that 

e(s) = [AZs/Agav(O)]la +..., (7.22) 

where the ellipsis stands for terms negligible with respect to the visible term as 
s -0. Because 0(s) = ut(0)s+ ..., we now obtain from (7.20b) that 

2AZ(2v-e)- = Ags-c(s) = g AgL AZ(O) (7.23) 

As v(0) is presumed positive, equation (7.23) yields a contradiction in the limit as 
s->0. Thus we deduce that if (7.17) holds, then 

v#(n(s), h(s), m(s)), #n(n(s), h(s), mr(s)), t* (n(s), h(s), m(s))- O (7.24) 

as s- 0. 
This conclusion is compatible with the results of ??3 and 4 for Taylor plates. 

(Note that the singularities in the equations for Taylor plates are such that a need 
not be 0 even though u(0) = 0.) Indeed, by a more complicated version of the 
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analysis centred on (7.22) and (7.23) we may deduce from (7.20) that there are 
constants C1 and C2 depending on A and the solution such that 

v#(n(s),h), , m(s)) = C1 s/(%+l) + ..., #(n(s),h(s), m(s)) = 
C2 l/(+l).... (7.25) 

Let us assume that the constitutive functions v#, #, #, in general, enjoy the 
properties of this example. Specifically, we require that (7.24) hold and that (7.25) 
has the following generalization. The moduli of continuity of sv#*(n(s),h(s), 
mn(s)), r#(n(s),h(s),m(s)), #{(n(s),h(s), m(s)) have bounded C?-norms when the 
functions v, y, , occurring in the definitions of n, h, m are confined to a bounded 
subset of (7.14). 

Under these conditions, we can invoke the Arzela-Ascoli theorem to show that 
the right-hand sides of (7.4)-(7.6) define a compact self-mapping of (7.14). We thus 
obtain an analogue of Theorem 4. 

If we add to the restrictions of (7.14) the requirements that I0(s)l < 21 and 
v(s) < 1, then we can use the methods of ?10 to show that the right-hand sides of 
(7.4)-(7.6) still define a self-mapping of the modified (7.14). The only significance 
of this observation is that it justifies (7.15)-(7.17), which are meaningful only 
where the plate is under compression. This issue is not crucial, however, because 
the essential consequences of (7.15)-(7.17) are (7.24) and (7.25), which are 
statements about what happens near s = 0, and the centre of the plate is always 
under compression. 

8. PRESERVATION OF NODAL PROPERTIES ON BRANCHES 

In this section we show that each connected set of solution pairs not containing 
a trivial solution has a distinctive nodal pattern for 0 and that branches 

bifurcating from the trivial branch at simple eigenvalues inherit their nodal 
patterns from the corresponding eigenfunctions. 

Let us outline the basic ideas, due to Crandall & Rabinowitz ( 970, 197 ), used 
to study the preservation of nodal properties. Let W be a connected set of pairs 
(A, 0) in [0, oo)x C'([0, 1]). Let 

- {0 e C1([0, 1]): 0(0) = 0 = 0(1), 0 has exactly 
k zeros on (0, 1), each of which is simple}. (8.1) 

4s is open. Its boundary 

c8 c {0 e C1([0, 1]): 0 as a double zero}. (8.2) 

Let (A*#,0)eW with 0# eg. Then for every (A, 0)ec, the function 0 cgk unless 
there is a (Ab, 0b)E with 0b having a double zero. (If C were a curve, then this 
result would say that the only place on W that 0 could change its nodal pattern 
is where it has a double zero.) If 0b is the solution of a regular second-order 

ordinary differential equation admitting the solution 0 = 0, then the standard 

uniqueness theorem for initial value problems would imply that 0b = 0. 
Our problem, however, is not regular. Moreover (4.11), (5.12), (5.15c), (5.16c) 

and (6.1) imply that 0(0) = 0 = 0'(0), yet there are non-trivial solutions. We must 
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therefore refine our approach. We now treat the case in which N0(O; A) > -oo and 

(4.14) holds. We first show that (5.3) behaves very much like a second-order 

ordinary differential equation for 0 alone. We then transform this equation to one 
for which we can readily obtain a useful uniqueness theorem. Thus we must study 
A3/l. For this purpose we get some preliminary results. 

The positivity of H, (from (2.27 a)) and inequality (2.35) imply that the function 

yHH(w) has an inverse h^(T, v, h, cr,/). As (r, , 0, Co, I) = 0 by (2.31), we have 

1(rT,v, H(w), o, /,) = [ j i ,v, tH(w), r, /) dt H(w) _ q(w)H(w). (8.3) 

As 0(s)/s, 0'(s)->0 as s-0, we can use (5.15) to show that N(w(s))->N(O;;A) 
as s->0. Thus (2.20a) implies that 

T(s;A) _ 8-1 A((l))+ T(w(t))dt ->N(0;A) as s->0. (8.4) 

(Here and below we regard w, 0, etc., as corresponding to a solution ensured by 
theorem 4.) It follows from (2.20b) and (8.3) that 

H(w(s)) = T(s; A) sin 0(s), 8(s) = q(pw(s)) F(s; A) sin 0(s). (8.5) 

Let us now study A3. Using analogues of (6.2) we find that a3 of (5.5) has the 
form 

a3 = -(M4 sin 0/s +MT5 0') (p'-p/s)-M,(cos 00'- sin /s)-M4 sin 0/s-M5 0' 

+ (z sin o/s + Z 0') cos 0 + ((pN- v) Fsin 0, (8.6) 

that a2 has a similar form, and that the cofactor of al in A3 equals 

H,3 4(M4 +M,5 6')-H,(M,,4 C +M,5 0'). (8.7) 

By treating A3/4 just as we treated A1/l in the first part of ?6, we deduce that 
f3 consists of terms like those of (6.4) and (6.7). But the argument centred on 
(8.6) or (8.7) shows that each term in f3 actually contains either (sin )/s = 

[(sinO)/O](0/s) or 0'. By using (5.11), (5.12), (5.15), (5.16) and (6.1) we find 
that the coefficients of 0/s and O' in f3 can be written as continuous functions of s 
times sv(A). Thus (5.3) has the form 

L3 = - sQ(s; A) 0 + s X(A)[X(s) 0/s + Y(s) 0'], (8.8) 

where X and Y are continuous functions (depending on a solution of the boundary 
value problem, see theorem 4). 

To handle the fact that 0(0) = 0 = 0'(0), we note that near s = 0 the regular non- 
trivial solution of (4.5a) has the form c(s) s83+f3 where c is continuous on [0, 1] and 
c(0) 7 0. Accordingly we might be led to set 

0(s) = 8S3(A)+/3(A)X(), (8.9) 

and find that (8.8) is equivalent to 

82#3+1 2 
/= S2132QX/S + S2/3+(I{[X + (a.3 ?/3) 1] X/S ? YX'}. 
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If we substitute (8.9) into (5.15c), we readily obtain representations for X and 
X', which show that X and s83+f3-^X' are continuous. Thus x' is continuous if 
e > a3 +,. This inequality is compatible with (6.1) if 

a3+ 3 >- 2, 2al -3a+ 2f,1- ,l3 2, 

the second inequality being equivalent to the first when (4.12) holds. Because we 
merely require that a3+f,3 > 1 and because the failure of X' to be continuous 
would prove troublesome, we replace (8.9) with 

0(s) = s3(A)+?3(A)-1fi(s), (8.11) 

so that (5.15c) and (8.8) are equivalent to the less elegant relations: 

= (s8- -23+1) tf3-a3+^u3(t) dt s (t#3-'3+-t-a3-f3+) u3(t)dt, (8.12) 

(s2-13 y')' + (1- 23) 82 -2 /s = _ - 1Q #+ 52-2+6[Zlf/s + YV'], (8.13) 

where Z - X + (a3 + 3- 1) Y. 
As u3 is continuous, we deduce from (8.12) that ieCl([O, 1]) n C2((o, 1]) and 

furthermore that I1"1I, I(ifr/s)'I < const. s6 -3-/3. Thus ,fi", (f/s)' are integrable and 
', (i/s8) are absolutely continuous when e a3+ 1-l. This inequality is 

compatible with (6.1) when a3+A3 > 1 (which we assume) and 

2a1- a3 + 281--l3 > 1. (8.14) 

In light of the comments of the paragraph containing (8.11), we henceforth assume 
(8.14). 

THEOREM 5. Let 0 correspond to a solution of the boundary value problem and 
let f be defined by (8.11). If there is an ae[O, 1] such that if(a) = 0 = f'(a), then 

=0. 

Proof. If a e(0,1], then the result follows from the standard uniqueness 
theorems for regular initial value problems. Thus let a = 0. By using variation of 
constants we find that (8.13) subject to the initial conditions 

((0) = 0 = Vi'(0) (8.15) 

is equivalent to 

2 f3 (s) = (stl - --23t) t23 - Q( ) (t) + t- [ (t)j + Z (t) d'(t 
(8.16) 

whence we compute that 

l[k(s)/s]'l + " (s)l < C(s + s^1-l) sup [lI(t)/tl + lk'(t)l], (8.17) 
Ot?s 

where C is a constant. (The meaning of C can vary from appearance to 

appearance.) Let 

v(s8) (/(s)/s, vI/(s)), 
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As f/s and Y' are absolutely continuous, it follows that Ivl' < Iv'l so that (8.17) 
yields 

v'(s) < CsK-ly(s), K- l+min(1,e-1) >0, y() sup v(t). (8.19) 

As (8.15) implies that v(0) = 0, we can integrate (8.19) to obtain 

v(s) < CsKy(s) < CSKy(S) for 0 < s S, (8.20) 

whence y(S) CSKy(S) for Se[0, 1]. (8.21) 

Now choose S > 0 so small that CSK < 1. Then (8.22) implies that y(S) = 0 so that 
= = 0 on [0, S] and thus on all of [0, 1]. 
Remark. The corresponding proof of Antman (1978) is faulty. Straightforward 

modifications of the proof just given correct it. Alternatively, the analogue of 

(8.8), which is more specific than the equation used by Antman, can be attacked 

directly by a uniqueness theorem of Kamke type. 
Let A be an eigenvalue of the linearized eigenvalue problem and let u be the 

corresponding eigenfunction (in the equivalent formulation of the problem as an 

integral equation). In particular, the eigenfunction 01 is related to u3 by (5.15c). 
Note that u3 satisfies the linearization of (5.20c), but that this linearization is not 
obtained from (5.20c) by discarding s-F?3: there are linear terms hidden in F3 as 

(5.3) shows. 
The work of Crandall & Rabinowitz ( 970, 197 ) can be applied to our problem 

to yield 

LEMMA 1. Let A be an eigenvalue of the linearized problem with (the generic 
property of having) algebraic multiplicity 1. Let u be the corresponding normalized 

eigenfunction and let P(A) project CO([0, 1]) onto span (u). Then there is a number 
a > 0 and there are continuous functions 

K: [-a,a]-->R, v:[-a,a] ->[I-P(A)]C?([O, 1]) 

with K(0) = 0, v(0) = 0 such that (A+K(t),t[u+v(t)]) is a solution pair of (5.20). 
Moreover, there is a neighbourhood S of (A, 0) such that if (A, u) is a solution pair of 
(5.20) lying in g, then either u = 0, or else there is a te [-a, a] such that (A, u) = 

(A + K(t), t[u + v(t)]). 

Let V, correspond to the eigenfunction 01 through (8.11) or equivalently 
correspond to u3 by (8.12). From (8.12) and lemma 1 we conclude that there is a 

continuously differentiable function [- a, a] x [0, 1] a (t, s) X(t, s) E R such that on 
the non-trivial solution branch bifurcating from (A, 0) 

(A,? ) = (A+K(t), t[?1(.')+ (t, )]). (8.22) 

As EC1([0, 1]), we readily deduce (cf. Crandall & Rabinowitz 1970, 1971) the 

following. 

THEOREM 6. Let (A-, A+) be an interval with the properties described in Theorem 4. 
Let e (A-, +) and let A be an eigenvalue of the linearized problem with algebraic 
multiplicity 1. Then f = sl-'3-#30 on the non-trivial branch bifurcating from (A, 0) 
inherits its nodal pattern from f/1 and preserves that pattern along the branch as long 
as A (A-, A+). 
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These nodal patterns are thus preserved globally when the trivial problem and 
thus the full problem have solutions depending continuously on A. When the 
solution of the trivial problem has a discontinuity at A = 6 (0, oo), then the 
bifurcation diagram may have the form shown in figure 2. In the next section we 
shall show that the branch e can have the same nodal pattern as a, despite their 

separation. 

0 

A 
FIGURE 2. Typical bifurcation diagram when the problem has a discontinuity at A = . The 

ordinate corresponds to some convenient functional of 0. The branch a has a nodal pattern 
that it inherits from the eigenfunction of the linearized problem corresponding to A. 

We now study the preservation of nodal structure for Taylor plates, which are 

representative of plates for which N(0O; A) = - oo. We set 

J(s) = sm(s). (8.23) 

Then the problem (7.4)-(7.10) is equivalent to 

0'(s) = u# (- s-lg(p(l)) cos 0(s), s-'Ag(p()) sin 0(s), s-J(s)), (8.24) 

J'(s) = -Ag(p(1)) [v sin 0(s) + # cos (s)], (8.25) 

together with the boundary conditions 0(0)O = 0 = (1). In (8.25) the arguments of 
v# and *# are those of I#* in (8.24). 

In studying the nodal properties of 0 we again face the difficulty that 

0(0) = 0 = 0'(0) as a consequence of (7.25). Rather than introduce a new variable 

by an analogue of (8.11) (which would be an effective procedure), we pursue an 
alternative approach, which is far more efficient for Taylor plates and which more 

directly exploits the constitutive properties: we study the nodal properties of J. 
From (7.3b, c) and Taylor's Theorem, we obtain 

y*(n,h,m) = [f #(n,th,m)dthh = h(n,h,m)h, (8.26a) 

/1(n,h,m) = (m h, t)dt m - f-m(n, h,m)m, (8.26b) 

with h and ]gm positive by (2.27). We study nodal properties only for 

127 

10(8)1 1 2TC (8.27) 



P. V. Negron-Marrero and S. S. Antman 

Then (8.25), (8.26a) imply that J'(s) = 0 if and only if 0(s) = 0. Thus J can change 
its nodal properties only where 0 and J have simultaneous zeros (provided (8.27) 
holds). If 0 and J have a simultaneous zero at s0 > 0, then 0 = 0 = J by standard 

uniqueness theory. Thus to get an analogue of theorem 6, we need only prove an 

analogue of theorem 5, namely that the only solution of (8.24), (8.25) satisfying 

0(0) = 0 = J(0) (8.28) 

is the trivial solution. 

Suppose that (7.17) holds. Then by the same kind of analysis of (7.20) that 

yielded (7.25) we find that 

#m (n(s),h(s),m(s)) = Cs+..., (8.29) 

and that /m has the same character. (A similar relation holds for ,# and ^ii.) Thus 
we deduce from (8.24)-(8.26) that there is a positive number C (depending on the 
solution and A) such that 

01' < CJI, IJI' < clOl. (8.30a, b) 

By standard methods of differential inequalities, we find that the only functions 

satisfying (8.28), (8.30) are trivial. The full force of (8.29) was not needed to 

produce this desired conclusion. It would have sufficed if the right side of (8.29) 
were replaced with Csy with y > 0. (In this case (8.30b) would be replaced with 

IJI' < Cs\-ll\.) 
Thus for a large class of Taylor plates, the only place where the nodal properties of 

J can change on a connected branch in (8.27) is at the trivial solution. Moreover, 
J inherits its nodal properties from eigenfunctions of the linearized problem 
corresponding to eigenvalues of algebraic multiplicity 1. 

9. PRESERVATION OF NODAL PROPERTIES ACROSS GAPS 

We now focus our attention on figure 2. We wish to obtain conditions ensuring 
that the branch e has the same nodal properties as branch a, despite their 
disconnectedness. Our basic idea is to embed our constitutive functions into a 

family continuously parametrized by a real variable q with our actual functions 

corresponding to q = 1 and with a set of constitutive functions for isotropic 
materials corresponding to q = 0. We thus obtain a two-parameter bifurcation 

problem to which we could conceivably apply global multiparameter continuation 
and bifurcation theory (see, Alexander & Yorke 1976; Alexander & Antman 1981 ; 
Fitzpatrick et al. 1983; Ize et al. 1986). We should hope that the disconnected 
branches a, e of figure 2 could be connected to a solution branch for the isotropic 
plate, which is known to be connected (cf. Antman 1978), by a 'sheet' of solution 

pairs (u, A, q) of our two-parameter problem. In this case a and e would have the 
same nodal properties (as the branch for the isotropic plate) by virtue of the 

analysis of ?8. 
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Let us note that because we study only axisymmetric solutions, the isotropy 
conditions for plates imply that (Antman I978): 

T(T, v, 0, (-, u) = N(v, T, 0, t, o), 

2(z, v, 0, Or, ) = M(V, r, 0, I, o), (9.1) 

H(T, v, 0, (T, ,) = H(P, , 0, /, C, ). 

We adopt (9.1) as our definition of isotropy. 
We now show that there are subtle difficulties to be overcome in transforming 

these intuitive notions into hard mathematics, but that the essential ideas survive 
the transformation. We first study the construction of the one-parameter family 
of constitutive functions. The mathematically obvious choice of such a family is 

T(w, q) = qT(w)+ (1 -q) T(w), etc., (9.2) 

where T, etc. are constitutive functions for an isotropic plate. The isoclines for the 
phase portrait for the equations for the trivial equilibrium state of our anisotropic 
plate are given by T = h(n), 7 = v(n). We denote the corresponding isoclines for 
(9.2) by 

T = h(n;q), = v(n;q) with h(n;1) = h(n), v(n; 1) = v(n). (9.3) 

For illustrative purposes, we suppose that the roles of h(n) and v(n) in figure 1 
are switched. Then the direction of the arrows on the curve T = f(n) is reversed. 
In this case the trivial solutions jumps as A crosses the value -a/g(f(a)) where the 
curve n = -Ag(T) passes through (f(a), a). This value of A corresponds to ~ of figure 
2. We refer to the resulting phase portrait as the reversal of figure 1. It has the 
same critical points as figure 1. 

Let us choose N, T so that the critical points of the (reversal of) phase portrait 
figure 1 correspond to trivial states for the isotropic plate. As (3.12), (3.13) and 
(9.1) imply, this choice is effected by requiring these critical points to lie on the 
curve n = N(z, z) of (the reversal of) figure 1. Then we can expect (9.2) to have the 
isoclines shown in figure 3. By following the arguments of ?3, we find that the 
range of the trivial solutions 0(' ;A, q),N(- ;A, q) for any fixed value of A does 
not change at all for q (0, 1]. Consequently, as q-> 0, the functions T0( ; A, q) and 
N?( ;A, q) cannot approach the constant values they must have for an isotropic 
material. Thus the governing equations for a plate of material (9.2) with q > 0 
depend discontinuously on A; moreover, the size of the discontinuities does not go 
to zero as q- 0. We can therefore expect that the bifurcation diagram in (0, A, q)- 
space for the family of materials (9.1) has the character of that of figure 4. 
However nice the sheets of solutions are, we have no grounds to expect them to 
touch a non-trivial solution branch for the isotropic plate and thus to expect a and 
? of figure 2 to have the same nodal properties. 

Thus we cannot achieve our goals with (9.2). Instead of (9.2) we must require 
that as q - 0 the ranges of 0( ; A, q), N?( ; A, q) reduce to single values. Let us again 
choose N, T so that the singular points in the (reversal of) phase portrait figure 1 
for the trivial solutions of the anisotropic plate correspond to trivial equilibrium 
states for the isotropic plate. A glance at the equations for the latter shows that 
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nL 

Tr 

(f(a), a) 

*- T = v(n, 1) 

-T = v(n, q) 

T = v(n, O) = h(n, 0) 

(f(b), b) 

FIGURE 3. The family of isoclines corresponding to (9.3) when the reversal of figure 1 holds. 
Here q E (0, 1). This figure corresponds to that part of the reversal of figure 1 for b < n < a. 
In this figure we have assumed that N, T are such that (f(a), a) and (f(b), b) correspond 
to trivial states for the isotropic plate. 

U 

0 

FIGURE 4. Bifurcation diagram for the material of (9.2). u represents any convenient property 
of the solution u, e.g. max 10(s)1. The branches a, e on the plane q = 1 correspond to those 
of figure 2. T is the branch for an isotropic plate. a and b are the edges of the sheet S, X. 
For the naYve homotopy (9.2), we cannot expect X, X, c to touch one another. 

it is an easy matter to construct N, T thus. We wish to construct the family 
(w, q) HP T(w; q), etc. so that the corresponding isoclines have the behaviour 
illustrated in figure 5. 

We first show how to construct the embedding appropriate to trivial solutions, 
i.e. we construct continuous functions q T(T, fr; q), N(T, 'r ; q) so that 

T(T,v; 0) = T(T,v,O,O,O), T(r,v; 1) = T(T,v0,0,0),etc. (9.4) 

We restrict our attention to solutions satisfying the bounds 

T(S)> >O, V(S) e >O V8 ELO,l], (9.5) 
where e is prescribed, so we need only concern ourselves with constitutive 
functions defined on the corresponding region of (T, v)-space. This restriction 
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(f(a), a) --A 

T = h(n, 1) / 
, /3 7 r= v(n, 1 ) 

3 

(f(b), b) 

FIGURE 5. The desired nesting of isoclines when the reversal of figure 1 holds for q = 1. If 
0< ql < q < 1, then r = v(n) = v(n, 1) corresponds to path 1,7,6; T = v(n;q2) to path 
1,2, 8,5, 6;T = v(n; ql)topath 1,3,9,4,6;andT = v(n, ) = h(n, 0)topath 1, 13, 6. Similarly 
T = h(n, q2) corresponds to path 1,2,11,5, 6. (The common limit T = h(n, ) = v(n,O) as 
q-0 need not be related to T =f(n).) 

means that we do not fully treat cases in which the curve n =- Ag(T) intersects 
T = f(n) at a value of n in an unbounded component of JXv (cf. figure 1). 

To fix ideas let us set F(r, v; q) = T(T, v; q) - T(-, v). By our requirement that the 
critical points of (the reversal of) figure 1 correspond to trivial equilibrium states 
of the isotropic plate we know that F(c, c; 1) = 0 when v = c = r defines such a state. 
We must contrive a function F such that the set (q = , v):e < T,v < 1, 
F(T, v; q) = 0} has the properties that [e, 1] x [e, 1] = = q = o q2 if 0 < ql < q2, 
and that the area of 6q (is defined) and is a continuous, decreasing function of q. 
If N is defined analogously, then figure 5 is valid. 

In figure 6, we illustrate the graph of F( , ; 1) and a typical section of it. We 
define a q - F( , ;q), which flattens this graph as q * 0, by showing how to flatten 
this section. The steps are illustrated in figure 7. Formally, for k > 1, we set 

F(k-lv, v; q) 

=F(k-1, v; l)- 2(1 -q) F(k-lb b, l)+F(k-la'a' 1)-F(k-lb,b, ) (v b)] (9.6) 

a 
tZf~h I ,v = k7 

V T 

FIGURE 6. The graph of F(', ?; 1) over the L-shaped region {(T, v): e < T < b, a < v < b} U {(T, v): 
a <T X< b, e < v < b}. The area under the section of this graph with the typical plane 
v = kr containing the line r = 0 = v is shaded. We have represented this graph as lying 
above the (T, v)-plane only for illustrative convenience. 

5-2 
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when 1 < q < 1, 

F(k-lr, v;q) =0 for b < v <(q), ot(q) < v < a, when 0 < q < 

F(k-lv, P; q) = F(k-'v, ;) -(1-2q) [F(-l/(q)(q), ( ) 

F(k- lo(q), z() -F(k-lfl(q), fl(q), 1) 
+(q)- f(q) 

for /(q) < v< ca(q) when 0 < q < 1, 

cx(q)=a-(i -q)(a-b) for 0<q <, 

f3(q)=b+(i-q)(a-b) for 0O<q<l. 

The adjustments for k < 1 are immediate. To avoid any trouble with the fact that 
the function in figure 7 c is not differentiable, we finally smooth out the rough spots 
locally by a standard mollification process. In this way we ensure that F is 
continuous and that F( , ; q) inherits the smoothness of T and T. We construct 
N by an identical process. 

(a) 
I 

l 

(b) ~ 

,-- 

2.1 i 

b a 

I I 
I I I I 

b A(q) c(q) a 
v 

FIGURE 7. Flattening of the shaded section of figure 6 in a way 
that produces figure 5. 

We now replace (9.2) with 

T(w; q) = T(r, v;q) +q[T(w)--T(, v, 0,0,0)] + (1 -q) [T(w)-T(r, v, O,0, O)], (97) 
H(w;q) = qH(w)+(1-q)H(w), ..., 

with N(w; q) defined as T(w; q) and with (w;q) and M(w; q) defined as H(w;q). 
The embedding (9.7) produces figure 5. This figure implies that if the trivial 
solution for the anisotropic plate has a jump at a critical value of A, then the use 
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of (9.7) halves the size of the jump at q = 1, and then as q-> 0 separates the values 
of A at which the jumps occur while diminishing the size of the two resulting 
jumps. It is intuitively reasonable to attribute the same kind of behaviour of 
discontinuities to the bifurcation diagram. In this case, we should obtain 
something like figure 8 in place of the unsatisfactory figure 4. When figure 8 is 
valid, we find that the branches a and 6 have the same nodal properties because 
they can be connected by branches e, c, A, which contain no trivial solutions. 

u X 

0 

FIGURE 8. Bifurcation diagram for material of (9.7). ,X, W are solution sheets with/ lying 
above e and with A lying above y. c is a branch for an isotropic plate. 

There are, however, certain reservations to be overcome before we can embrace 
figure 8 as an accurate depiction of the bifurcation process: (i) We have no 
assurance that the branches e and/ever touch c as shown. Branch e, for example, 
could end on the eigencurve a of the linearization of the two-parameter problem 
about the trivial solution. In this case a cannot be connected to 6 so as to ensure 
that they have the same nodal properties. (ii) A careful reading of the references 
on global continuation and bifurcation theory cited in the first paragraph of this 
section shows that there is no warrant to presume that the solution sheets X, X, 
W are surfaces; they are merely guaranteed to be connected sets (not necessarily 
maximal) each point of which has Lebesgue dimension 2. Under modest 
restrictions on a and 6 (of a kind to be described below) we can construct such 
sheets v and X containing a and 4, but we have no assurance that these sheets 
also contain c. These sheets could become unbounded in u at a positive value of 
q for each fixed A or they could be folded over, never touching the plane q = 0, but 
each intersecting the plane q = 1 on disconnected branches. 

We could show that such possibilities cannot occur by producing very sharp 
estimates for solutions. Some very useful estimates are obtained by Antman & 
Negr6n-Marrero (i989), but they are inadequate for the preclusion of behaviour 
qualitatively different from that of figure 8. Moreover, the complexity and 
generality of our problem would make the derivation of the requisite estimates a 
formidable task. 

We finesse these difficulties by the simple expedient of constructing the sheets 
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X, X, X, not as continuations of a and e, but as continuations of c. We accordingly 
sacrifice the assurance that a contains a and X contains t. Nevertheless, for 
each q0 > 0, the intersection of the sheets a, X, W with the plane q = qo is the 
bifurcation diagram for an anisotropic plate. Antman & Negron-Marrero (I989) 
furnish estimates ensuring that solutions u cannot blow up in certain large regions 
of solution-parameter space. The global continuation theory of Alexander & 
Yorke (1976) then implies that in these regions the sheets X, X, (6 reach the plane 
q=1. 

That the sheets a, X, 6 can be continued from c (except at the intersections of 
c with e and y is shown by an argument based on the implicit function theorem 

(cf. Alexander & Yorke (1976)). The essential condition for this argument to be 
valid is that the Frechet derivative of (5.20) with respect to u on c be non-singular. 
(This derivative would be singular at points of c at which secondary bifurcation 

occurs.) The verification of this non-singularity is not a triviality, but it only 
requires an analysis of the equations for an isotropic plate. Our basic construction 
is still valid as long as the points on c where the Frechet derivative is singular are 
discrete. In this case we might obtain more sheets than if this derivative is regular. 

Let us note that there could well be bifurcations like that of figure 2 with no 
non-trivial solution branches to the left of the line A = 6, or, more generally, there 
could be a number of non-trivial branches generated on this line and lying to its 

right that do not bifurcate from the trivial branch and that have no corresponding 
branches to its left. Such phenomena can be studied by the homotopy methods we 
have developed in this section. 

10. COMMENTS 

For the sake of brevity we have eschewed a careful treatment of non-degenerate 
problems with NV(0; A) = - oo in favour of a careful treatment of the Taylor plate. 
An inkling of the complexity engendered by studying non-degenerate problems 
can be gained by examining the paragraphs containing (3.24)-(3.28) (also cf. 
Antman & Negr6n-Merrero 1987, ?9). By adapting the methods we have 
developed for problems with N(0;A) > -oo and for Taylor plates, we could 

readily handle non-degenerate problems with N?(0;A)=-oo at the cost of 

conducting rather lengthy and dull analyses. 
If N0(0; A) = - oo, our solutions obviously exhibit extremely singular behaviour 

at s = 0. This response is manifested at the slightest pressure. The nature of 
solutions depends critically on the shear response. Many studies of nonlinear 
problems for elastic structures use constitutive laws giving certain stresses or 
resultants as linear functions of certain strains under the assumption (often 
unjustified) that such linear laws are typical of any reasonable law. But there is 
no way that a linear law can be presumed capable of describing what happens at 
the centre of the plate when N?(0; A) = - oo. (In fact, if the constitutive law were 
linear and N?(0; A) = - oo, then the orientation of the material would be reversed 
near the centre of the plate.) These remarks indicate why a central role of nonlinear 

elasticity is to explain the behaviour at singularities. 
Whether or not N(0; A) = - oo, the solutions of our problems for anisotropic 
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plates satisfy 0(0) = 0 = 0'(0) (cf. ?4). In studying nodal properties of solutions in 
?4, we had to make special scalings (cf. (8.11) and (8.23)) to compensate for the 
fact that a non-trivial 0 can have a double zero at s = 0. The same kind of scalings 
introduced in ?5 supported the compactness theorems of ?6. In contrast, in 
Antman's (1978) corresponding treatment of isotropic plates a non-trivial solution 
cannot have a double zero at the origin. This fact is also reflected in his 
formulation of integral equations and in the ensuing proof of compactness, which 

requires an exploitation of the isotropy in a way that is neither needed nor possible 
for anisotropic plates. In this sense, the theory of isotropic plates seems to 

represent a singular extreme of that for anisotropic plates and cannot be reckoned 
as easier to analyse than the latter theory. A desire to understand the nature of 
difficulties that arise in the study of geometrically exact theories of isotropic plates 
was one of the motivations leading to the research described above. 

In (2.6) we could have taken (o to have the form o(s, q, z) = (s, 40)g(z), say, 
where g is given and 8 is an unknown function measuring thickness variations (cf. 
Antman & Carbone I977). We would then add 8 to (2.2) and continue to use the 
modified (2.6) only for motivation. In this case there would be two more strain 
variables appearing in (2.13), namely 8 and &'. Under these conditions, the 
character of the governing equations would be considerably altered. In particular, 
the simple and elegant analysis supporting ?3 would have to be replaced with a 
difficult technical treatment in which physical interpretation would be submerged. 
(The appropriate techniques would be an extension of those developed by Negr6n- 
Marrero (1985).) The treatment of ?4, which relies on the results of ?3 would 

necessarily become significantly more complicated. The treatments of ??5 and 6 
would remain essentially the same. It now appears conceivable that the techniques 
of ?8 could be carried over to this more general problem. (This question will be 

analysed elsewhere in a more transparent setting.) Even if S were constrained to 

depend on the other strain variables of (2.13) (so as to model incompressible media 
or to cause an appropriate stress to vanish somewhere), the same kinds of 

complications would ensue. 
Were 8 constrained to depend on the unknown strains T and v, then condition 

(4.12) would still hold. If 8 were a strain variable, a generalization of (4.12) would 
follow from the generalized (2.6). 

We have adopted the policy of prescribing 8 so as to keep our treatment as 

transparent as possible, while permitting q in (4.12) to be fairly general, so as to 

capture the main effects of the presence of transverse strains. 
Our construction in ?9, characterized by figure 8, actually affords a mechanism 

by which solution pairs on the branch 6 can be reached by continuation from 
accessible solutions. Our result could therefore lead to effective numerical 

procedures for determining 6. We also remark that the possession of a distinctive 
nodal pattern by a branch can be used to check numerical constructions of points 
on the branch. If a continuation procedure leads to a solution not having the 

appropriate nodal properties, that solution must be deemed to be spurious and the 
numerical procedure deemed to have ceased to be reliable. 

135 



136 P. V. Negr6n-Marrero and S. S. Antman 

The research reported here represents a considerable extension of that of 

Negr6n-Marrero (1985). His work was supported partly by a grant from the 
IBM Corporation, by NSF Grant RII-8611963, and by the SERC of the United 

Kingdom. The work of S.S.A. was supported partly by NSF Grant DMS-85- 
03317 and by AFOSR-URI Grant 87-0073. We are grateful to A. Nachman, who 
several years ago brought the paper of Taylor (I9I9) to the attention of S.S.A. 

REFERENCES 

Alexander, J. C. & Antman, S. S. I98I Global behavior of bifurcating multi-dimensional 
continua of solutions for multiparameter nonlinear eigenvalue problems. Archs ration. 
Mech. Analysis 76, 339-354. 

Alexander, J. C. & Yorke, J. A. 1976 The implicit function theorem and global methods of 
cohomology. J. Funct. Anal. 21, 330-339. 

Ambartsumian, S. A. 1967 Theory of anisotropic plates (In Russian.) Moscow: GIFML. 
Ambartsumian, S. A. 1974 General Theory of Anisotropic Shells (in Russian), Moscow: Nauka. 
Antman, S. S. I978 Buckled states of nonlinearly elastic plates. Archs ration. Mech. Analysis 

67, 111-149. 
Antman, S. S. 1983 Regular and singular problems for large elastic deformation of tubes, 

wedges, and cylinders. Archs ration. Mech. Analysis 83, 1-52; Corrigenda, ibid., 95 (1986), 
391-393. 

Antman, S. S. & Carbone, E. R. 1977 Shear and necking instabilities in nonlinear elasticity. 
J. Elasticity 7, 125-151. 

Antman, S. S. & Negr6n-Marrero, P. V. 1987 The remarkable nature of radially symmetric 
equilibrium states of aeolotropic nonlinearly elastic bodies. J. Elasticity 18, 131-164. 

Antman, S. S. & Negr6n-Marrero, P. V. 1989 Bounds for large buckled states of anisotropic 
plates. (In preparation.) 

Antman, S. S. & Rosenfeld, G. 1978 Global behavior of buckled states of nonlinearly elastic 
rods. SIAM Rev. 20, 513-566. Corrections and additions, SIAM Rev. 22 (1980), 186-187. 

Carrier, G. F. 1944 The bending of the cylindrically aeolotropic plate. J. appl. Mech. 66, 
A129-A133. 

Crandall, M. G. & Rabinowitz, P. H. 1970 Nonlinear Sturm-Liouville problems and topological 
degree. J. Math. Mech. 19, 1083-1102. 

Crandall, M. G. & Rabinowitz, P. H. 1971 Bifurcation from simple eigenvalues. J. Funct. Anal. 
8, 321-340. 

Fitzpatrick, P. M., Massab6, I. & Pejsachowicz, J. 1983 Global several-parameter bifurcation 
and continuation theorems: a unified approach via complementing maps. Math. Annln 263, 
61-73. 

Hoff, N. J. 1981 Stress concentrations in cylindrically orthotropic composite plates with a 
circular hole. J. appl. Mech. 48, 563-569. 

Ize, J., Massab6, I., Pejsachowicz, J. & Vignoli, A. 1986 Nonlinear multi-parameter equations: 
Structure and topological dimension of global branches of solutions. Proc. Symp. Pure Math. 
45, 529-540. 

Lekhnitskii, S. G. 1957 Anisotropic plates, 2nd edn. (In Russian.) Moscow: GITTL. (English 
transl. (1968) by S. W. Tsai & T. Cheron. Gordon & Breach.) 

Negr6n-Marrero, P. V. 1985 Large buckling of circular plates with singularities due to 
anisotropy. Dissertation, University of Maryland, U.S.A. 

Rabinowitz, P. H. 1971 Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 
7, 487-513. 

Rabinowitz, P. H. 1973 Some aspects of nonlinear eigenvalue problems. Rocky Mountain 
J. Math. 3, 161-202. 

Reissner, E. 1958 Symmetric bending of shallow shells of revolution. J. Math. Mech. 7, 121-140. 
Steele, C. R. & Hartung, R. F. 1965 Symmetric loading of orthotropic shells of revolution. 

J. appl. Mech. 32, 337-345. 



The buckling of anisotropic plates 137 

Stuart, C. A. I976 Differential equations with discontinuous nonlinearities. Archs ration. Mech. 
Analysis 63, 59-75. 

Stuart, C. A. & Toland, J. . F 980 A variational method for boundary value problems with 
discontinuous nonlinearities. J. Lond. math. Soc. 21, 319-328. 

Taylor, G. I. 1919 On the shape of parachutes. In The scientific papers of Sir Geoffrey Ingram 
Taylor, vol. III (1963), pp. 26-37. 

Walker, J. L. 1958 Structure of ingots and castings in liquid metals and solidification. Cleveland, 
Ohio: American Society for Metals. 


	Article Contents
	p. 95
	p. 96
	p. 97
	p. 98
	p. 99
	p. 100
	p. 101
	p. 102
	p. 103
	p. 104
	p. 105
	p. 106
	p. 107
	p. 108
	p. 109
	p. 110
	p. 111
	p. 112
	p. 113
	p. 114
	p. 115
	p. 116
	p. 117
	p. 118
	p. 119
	p. 120
	p. 121
	p. 122
	p. 123
	p. 124
	p. 125
	p. 126
	p. 127
	p. 128
	p. 129
	p. 130
	p. 131
	p. 132
	p. 133
	p. 134
	p. 135
	p. 136
	p. 137

	Issue Table of Contents
	Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 427, No. 1872 (Jan. 8, 1990), pp. i-iv+1-240
	Volume Information [pp.  i - iv]
	Front Matter
	The Stress-Driven Redistribution of Point Defects in the Vicinity of Crack-Like Singularities [pp.  1 - 23]
	Heat Transport into a Shear Flow at High Peclet Number [pp.  25 - 30]
	Emendations to a Proof in the General Three-Dimensional Theory of Oscillating Sources of Waves [pp.  31 - 42]
	Quantum Theory and the Brain [pp.  43 - 93]
	Singular Global Bifurcation Problems for the Buckling of Anisotropic Plates [pp.  95 - 137]
	The Scattering of Sound by Two Semi-Infinite Parallel Staggered Plates II. Evaluation of the Velocity Potential for an Incident Plane Wave and an Incident Duct Mode [pp.  139 - 171]
	The Analysis of Interlaminar Fracture in Uniaxial Fibre-Polymer Composites [pp.  173 - 199]
	Comparison of the Minimum Plastic Spin and Rate Sensitive Slip Theories for Loading of Symmetrical Crystal Orientations [pp.  201 - 219]
	Reduction of the Characteristic Initial Value Problem to the Cauchy Problem and Its Applications to the Einstein Equations [pp.  221 - 239]
	Back Matter



