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Abstract 

We study numerically the stability in the energy sense of the necked states of circular plates in tension. We use a 
finite difference approximation of the displacement boundary value problem giving the necked states. This yields a 
nonlinear system of equations that depends parametrically on the boundary displacement. To study the bifurcation 
diagram of this system we use continuation methods and a numerical technique for computing bifurcating branches 
developed by Rheinboldt. For the linearization of the boundary value problem, we characterize the existence and 
disposition of eigenvalues on the real line for a large class of physically reasonable constitutive functions that exhibit 
the standard Poisson ratio effects. For a particular problem we find numerically some stability patterns never 
observed before. 

1. Introduction 

The equilibrium equations for the axisymmetric buckling of nonlinearly elastic circular plates 
under compression, not susceptible to thickness changes, have been studied by Antman [2] and 
Negron-Marrero and Antman [20]. These equations represent a geometrically exact description 
of the deformations of the plate including shear and can be deduced from the three-dimen- 
sional theory of elasticity. The corresponding problem with thickness variations has been 
studied by Negron-Marrero [19] (no buckling but with a stability analysis of the trivial solution) 
and Antman [3] (with buckling and nodal preservation for the radial flexure) where global 
qualitative descriptions of bifurcating branches are given. The constitutive equations in these 
works satisfy a one-dimensional version of the strong ellipticity condition of three-dimensional 
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elasticity. Thus the instabilities found associated with necking are consequences of the nonlin- 
earity of the response rather than of a loss of ellipticity. In most of the works on phase changes 
(see Ericksen [13], Carr, Gurtin and Slemrod [8,9] among others) these instabilities are due to 
the nonconvexity of the stored energy function. For some more general plate theories and 
further references see Naghdi [18]. 

The corresponding problem for nonlinearly elastic bars in tension has been studied among 
others by Antman [l], Antman and Carbone [4], and Owen [22]. The work of Owen includes a 
complete stability analysis of the necked states. In particular, he shows that the only nontrivial 
stable solutions are the ones with a half-neck or draw representing the first bifurcating branch 
of solutions. 

The main purpose of this work is to study numerically the stability (in the energy sense) of 
the necked states which result when a circular plate is submitted to some tension. In particular, 
we want to determine whether or not the result found by Owen [22] for bars holds for the 
corresponding problem for plates. General stability results for branches of solutions are given 
by Satinger [25], Crandall and Rabinowitz [12], and Weinberger [28]. All of these results require 
knowledge of a stable branch of solutions. The results in Maddocks [17] can be used to predict 
the instability of certain branches without any knowledge of the stability of other branches. This 
information can be read from the corresponding bifurcation diagram in the so-called displace- 
ment-loading graph (cf. Fig. 3). 

To work computationally with this problem, we employ a finite difference discretization for 
its simplicity and stability properties. This enables us to use the package of continuation 
procedures, called PITCON, developed by Rheinboldt [24]. This program limits itself to trace 
primary solution curves and only announces when a bifurcation point (of odd algebraic 
multiplicity) is detected. Since we are precisely interested in determining the stability of the 
bifurcating branches (which represent necked states of the plate), we use PITCON together 
with another numerical technique for computing bifurcating branches once they are detected. 
This other technique is due to Rheinboldt [23] and is specially useful for problems, such as the 
present case, where the number of variables is large. Having obtained these necked states, we 
carry out a spectral analysis of the linearization about these states in order to study the 
stability. 

This work is organized as follows. In Section 2 we present the boundary value problem for 
circular plates in tension which can suffer transverse deformations. In Section 3 we present the 
corresponding discretized equations. Some of the basics of bifurcation theory and continuation 
methods are given in Section 4. Rheinboldt [23] describes a numerical technique used to 
determine a point on a nontrivial branch of solutions near a bifurcation point. This is briefly 
reviewed in Section 4. In Section 5, we study numerically the stability of the nontrivial solutions 
of the boundary value problem. The existence and characterization of the disposition of 
eigenvalues for the linearized problem is a nontrivial problem and represented a source of 
difficulty in our analysis. This is due to the nonlinear interactions between radial and 
transversal -forces embodied in the characteristic equation (2.16). Despite this, in Section 6, we 
are able to characterize a large class of physically reasonable constitutive functions that exhibit 
the standard Poisson ratio effects and to establish the existence of an infinite number of 
eigenvalues for the corresponding linearized problem. We present some numerical results and 
further developments in Section 7. 
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2. The governing equations 

Consider a homogeneous nonlinearly elastic circular plate of radius 1, which is subjected to 
an axisymmetric deformation which is a pure compression or expansion, that is, no bending or 
shear. 

Let p(s) be the radius in the deformed configuration of the cylindrical cross-section of radius 
s in the reference configuration. Similarly, w(s) will denote the ratio of the height in the 
deformed configuration to the height in the reference configuration. Thus the cylindrical 
cross-section of radius s and height 2h in the reference configuration will have radius p(s) and 
height 2ho(s) in the deformed configuration. 

The strains for this problem are 

w(s) = (w(s), 17(s), +)Y v(s)) 

= (w(s), w’(s), P(S)/& P’(S)), (2.1) 

where the “prime” denotes differentiation with respect to “s”. Here Q-(S) represents the 
elongation of a circumferential fiber, V(S) the elongation of a radial fiber, and q(s) accounts for 
thickness variations of a mid-cross-section of the plate. 

The requirement that an infinitesimal positive volume is not reduced to zero during the 
deformation leads to the inequalities, 

P(S)/S > 0, P’(S) > 0, w(s) > 0, O<s<l. 

The stresses which produce each of the strains in (2.1) are 

(2.2) 

p(s), H(s), T(s), N(s)). 
The momentum balance laws now yield the following systems of equations, 

(sH(s))‘=sfi(s), 0 <s < 1 

(A$))‘= T(s), 0 <s < 1: 

(2.3) 

(2.4a) 

(2.4b) 

The requirement that, during the deformation, the center of the plate remains intact leads to 
the boundary condition, 

p(0) = 0. (2.5) 

We will impose a displacement boundary condition at s = 1, 

p(1) = 8, 8 > 0, (2.6) 

which simply means that in the deformed configuration the outer radius of the plate is 19. 
For w(s), we have the following boundary conditions, 

sH(s) I s=o+= 0, (2.7a) 

H(1) = 0. (2.7b) 

(These follow from an appropriate variational formulation of our problem (see Section 5).) 
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The material of the plate is homogeneously elastic; hence, there exist thrice continuously 
differentiable functions 0, H, T, N: (0, w> x FL’ X (0, ml2 + R, such that 

B(s) = fqw(s)) = q+>, +>, P(S)/& P’(S)>> 
etc. 

The strong ellipticity condition of three-dimensional 
functions a(w, 7, 7, v), etc., satisfy 

is positive-definite, 

for r, v, w > 0 and n E IR. 
Further we impose the monotonicity condition 

is positive-definite, 

(2.8) 

elasticity implies that the constitutive 

(2.9a) 

(2.9b) 

(2.9~) 

(2.10) 

where the arguments of the functions are (0, 0, 7, Y). This condition guarantees that the 
solutions to our displacement boundary value problem with w’ = 0 are unique (see [19]>. 

Some additional physically reasonable conditions which we require are 

0, T, N even in q, (2.11a) 

H oddin 7. (2.11b) 

The condition that the material of the plate is isotropic implies that 

N(o, 0, 7, v) = T(o, 0, v, r), (2.12a) 

n(w, 0, 7, v) =0(w, 0, v, r). (2.12b) 

We finally impose the growth conditions, 

N-+m as Y+=W, 
N-+ --cc as v -+ Of, 

(2.13a) 

T+m as r+m, 
T+--CC as 7 -+ Of, 

(2.13b) 

H++w as 77 + +m, (2.13~) 

R-+‘= as o+w, 
n+ --co as w + O+. 

(2.13d) 

These limits hold for fixed values of the remaining variables. 
Hence, our displacement boundary value problem (BVP) consists of equations (2.4)-(2.7) 

subject to (2.8)-(2.13). 
A solution of the BVP is called trivial if o’ = 0 and p(s) = 8s. With this choice of p(s), 

conditions (2.5) and (2.6) are clearly satisfied. The isotropy condition (2.12a), guarantees that 
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(2.4b) is satisfied. With these, and using (2.11b), the first equation in (2.4) reduces to 

0(w, 0, 8, 0) = 0. (2.14) 

Conditions (2.9c), (2.13), and the Implicit Function Theorem imply that there exists a C’ 
function 4 : (0, a~) + (0, m> such that 

0(;(e), 0, 8, 0) = 0. (2.15) 

Thus the trivial solution will have p(s) = 8s and o(s) = G(0). One can show that condition 
(2.10) implies that this is the only solution pair with w’ = 0. 

The linearization of our BVP about the trivial solution (es, k(0)) yields a linear boundary 
value problem involving the eigenvalue 8. One can show that 8 is an eigenvalue of the 
linearized problem if and only if 

(2.16) 

where N,(8) = N,(&(8), 0, 8, 0>, etc., and {j,] are the positive zeros of the Bessel function of 
the first kind of order 1. 

Note that if the function on the left-hand side of (2.16) is negative for all values of 8, then 
equation (2.16) has no solutions. In this case the linearized problem has to eigenvalues and 
consequently no bifurcation can occur from the trivial branch {(es, G(e)> 18 E R}. 

We summarize the results in [19] concerning the existence of nontrivial solutions (those with 
w’ # 0) for the BVP. 

Theorem 2.1. Let the conditions (2.91, (2.10), (2.111, (2.12), and (2.13) hold. Let 0* be an 
eigenvalue of odd algebraic multiplicity of the linearized problem. Then the BW (2.4)-(2.7) subject 
to (2JM2.13) h as a connected set of solutions C(e*) containing (e*s, G(t)*), 0*) that satisfies 
(2.2) always and is unbounded in (C’[O, l]>* x R, or contains a point that violates (2.2), or 
contains a point of the form (us, G(u), u), where u is another eigenvalue of the linearized 
problem. 

The set C(e*> exists as long as condition (2.2) holds which in turn depends on the growth 
rates (2.13). When 8 > 1, the plate is said to be in tension, and these 
interpreted as necked states; whereas if 8 < 1, the plate is under 
barrelled states of the plate. 

3. Discretization of the problem 

nontrivial solutions can be 
compression, representing 

We now describe a finite difference approximation of the BVP of Section 2. Let {si = ih IO < i 
G n} be a uniform partition of [O, 11 into n subintervals, with h = l/n. Let u(s) denote a 
function defined on [0, 11, and ui an approximation of u(s~), 0 G i G n. 
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We will use the notation, 

6Ui = (ui+l - UJ/h, (3.la) 

(U/s)i+l/2 = (“i+r + ui)/(si+r + si), (3.lb) 

‘i+l/2 = (‘i+l + si)/2y (3.lc) 

G’+1/2 = G @, 
( r+1/2, awi> (P/s)i+l/2> 6P,)7 (3.ld) 

for 0 < i <n - 1, for any vector u = (uO, ul,. . . , u,), and for any constitutive functions G, G,, 
G,,.... Note that equations (2.4) and (2.8) are equivalent to 

Q++,)) -~~~(~(~,)) = /“ta(w(t)) dt, (3.2a) 
SI 

@(n+2)) -@++,)) = /“T(w(t)) dt, (3.2b) 
Sl 

for any s1 and s2 in (0, 1). Taking s1 = ~~_r,~ and s2 = s~+~,~ and using the discretizing 
operators defined in (3.1) together with the Trapezoidal Rule for approximating integrals, we 
can discretize (3.2) as 

[ ‘i+ l/2 
Hi+1/2 

-‘i-1/2 Hi-1’2 1 [ -h si+1,2.i+1’2 +s~_~,~LI~-“‘]/~ = 0, (3.3a) 

[ ‘i+l/2 
Nit’/2 

-‘i-1/2 
Ni-l/2] _h[Ti+l/2+ Ti-l/2]/2=0, (3.3b) 

for 1 <i<n - 1. 
The boundary conditions (2.5) and (2.6) are discretized as 

PO = 0, p, =e. (3.4) 

Now taking s1 = 0 and s2 = s~,~ in (3.2a), using the discretizing operators defined in (3.11, 
together with the right endpoint rule for approximating integrals, we can approximate (2.7a) by 

s1/2 H1’2 - hs,,2@‘2/2 = 0. (3.5a) 

Similarly one can discretize (2.7b) by 

- s,_~,~H~-~‘~ + hs,,,20n-1’2/2] = 0. ] (3 Sb) 

Our discretized boundary value problem (DBVP) consists of (3.31, (3.41, and (3.5). Thus 
studying the solutions of the discretized problem, we can get some idea of how the solutions of 
the BVP of Section 2 behave. The question of how well the solutions of the DBVP approximate 
those of the BVP shall be pursued elsewhere. 

Note that the DBVP defines a mapping F : D c R2n+1 -+ R2” where 

D={(oo, ~l,“‘,W,, PI, P2,.‘.,Pn)-2n+11 

oi, pi > 0 for all i, pi <P~+~, 1 <i <n - 1, pn = O), (3.6) 

and F, and F, are defined respectively by (3.5a) and (3.5b), Fi is given by the left-hand side of 
(3.3a) for 1 < i < n - 1 and, for n + 1 < i < 2n - 1, Fi is given by the left-hand side of (3.3b). 
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4. Continuation methods and bifurcation points 

The discretized problem (3.3)-(3.5) has the general form 

F(x, 0) = 0, (4.1) 

where F: D c ET+’ + R”, x = (x1, x2,. . . , xm), m = 2n, and 0 E [w. The function F is called 
regular if its Jacobian matrix, DF(x, 0) is of full rank for all (x, 0) belonging to 

S = ((x, 0) I F(x, 0) = O}. (4.2) 

Under this condition it can be shown (see [24]) that S consists of continuously differentiable 
curves that do not intersect. If (x(t), 0(t)> is such a curve passing through the point (x0, 13,>, 
then differentiating (4.1) with respect to “t” we obtain the initial value problem: 

DF(x(t), e(t)) * (x’(t), w) = 0, 

WO)~ %>) = (XlD %I, 
P-3) 

where x’(t) = dx/dt, etc. Most continuation method packages solve (4.31, or an extended 
system, to “predict” the next point on the curve (x(t), e(t)>, and then “correct” this prediction 
with an iterative process like Newton’s method. This is the case for the package PITCON (see 
[24]) which is the one we used in our computations of Section 7. 

When the regularity condition on F fails we can have bifurcations. More specifically, let 
D,F(x,, 0,) = L, be singular. We say that (x,,, 0,) is a simple bifurcation point if 

N( L,) = span{u}, UTU = 1, 

&%I~ 00) E R(J%)* 
(4.4) 

A theorem of Crandall and Rabinowitz [ll] states that under conditions (4.4) and another 
condition on the second derivatives, there exist two curves qi(t> = (x,(t), O,(t)), i = 1, 2, such 
that 

qi(0) = (x0, e,), i = I, 2, 

41(O) # 41(O). 
(4.5) 

In this case, the theorem of Crandall and Rabinowitz also states that there exists t, > 0, such 
that 

x2(t) =x1(t) + tu + o(t), It I <t,, (4.6a) 

e,(t) = 8, + 0(t). (4.6b) 

Let L(t) =Ll,F(q,(t)). If (x0, 0,) is a simple bifurcation point, then h(t) = det(L(t)) has a 
simple root at t = 0. Thus, to detect a simple bifurcation point, it suffices to verify the sign of 
h(t). 

Normally the continuation method package limits itself to trace the primary solution curve, 
say qi(t) in (4.51, and only announces when a bifurcation point is detected. To compute q&t) 
we used a technique due to Rheinboldt [23] which exploits the representation (4.6) of q2(t). 
That is, if we are in a neighborhood of a bifurcation point, then we can approximate x,(t) in 
(4.6a) by a Taylor polynomial of order two. We use this approximation in (4.6a), and after 
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dropping the “o(t)” terms, we get an initial approximation to a point on x&t>. The method 
then uses this initial guess in a singular chord method iteration that, under certain conditions, 
converges to a point on x3(t). The whole process requires just one evaluation of DF and one 
LU factorization, and is specially useful for problems in which “m” is large, which is the case 
here where “m” is proportional to the degree of the approximation. For further details on the 
method we refer to [23]. 

5. Stability criteria 

In this section we will define what is meant for a solution of the BVP of Section 2 to be 
“stable”, or “unstable” in the energy sense and how to determine numerically the stability. 

If the material of the plate is hyperelastic, then there exists a function W: (0, ~0) x [w x (0, ~0)~ 
+ R, called the stored energy function, such that 

L?=W,, H= w,, T= W,, N= WV, (5.1) 

and the total energy of the plate is given by 

I(o, P) = iisW(+), w’(s), ,+)/s, P’(S)> ds. (5.2) 

We consider the problem of minimizing I(o, p) over the set 

A, = ((w, p) E C’[O, 112 )(2.2), (2.5), and (2.6) hold}, (5.3) 

for a given 19 > 0, where C’[O, 11 denotes the space of continuous functions on [0, 11 with 
continuous derivatives on [O, 11. 

A necessary condition for (w, p) EA@ to be a local minimum of I is that a21(o, p), the 
second variation of I at (w, p), be positive-semidefinite, i.e., 

62z(o, p) . (w, u) > 0, (5 -4) 

for all smooth (w, v) with v(O) = 0 = u(1). A solution of the BVP will be called stable if 

S2J(% P) . (WY u> > 0, (5.5) 

for all smooth nontrivial (w, U) with u(0) = 0 = u(l). Otherwise, (w, p> will be called unstable, 
i.e., if there exists nontrivial (w, U) such that equation (5.5) is nonpositive. The following result 
concerning the stability of the trivial solution of Section 2 is proved in [19]: 

Theorem 5.1. Let condition (5.1) hold so that the material of the plate is hyperelastic. Hence the 
trivial solution (es, G(e)>, defined by (2.151, is unstable for those values of 0 for which 

W,z,V) - K&VK”(~) .2 

w,?JuV+-P”(~) 
>J1, 

where W,,(e) = W,,(&(e), 0, 8, 0>, etc. (cf. (2.161). 
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The second variation of I at (0, p) acting on (w, U) smooth with u(0) = 0 = ~(1) is defined by 

d2 
a2qw, p) * (w, u) = - de21(W + ew, p + EU) I s=o. (5.6) 

Define the 4 X 4 matrix M(o, 7, T, v> by 

I fkJ 0, fk flv I 

(5 -7) 

\ NoJ NIJ N7 NV J 
Then with 

x(s) = (w(s), w’(s), U(S)/& U’(S))T, 
w(s) = (+>, I’, P(S)/& P’(S)>, (5.8) 

an elementary but otherwise lengthy computation shows that 

a21(w, p) . (w, u) = _/+(s)~ICI(W(~))X(~) ds. (5 -9) 

We now study how to check (5.5) numerically. As in Section 3, let {si = ih 10 < i < n} be a 
uniform partition of the interval [O, l] into n subintervals, with h = l/n, and recall the notation 
(3.1). We shall also use the notation M i+1/2 for the matrix (5.7) with entries 0: ‘I*, L?:““, 
etc. Hence, applying the midpoint rule on each of the intervals [si, si+i], i = 0,. . . , II - 1, and 
using the discretizations (3.11, we can approximate (5.2) by 

n-l 

lh(wh, Ph) = C Si+l/2Wi+1’2* (5.10) 
i=o 

We now consider the minimization of (5.10) over the set (3.6). It is now easy to check that the 
(negative of the) first variation of (5.10) is given by (3.3), (3.4) and (3.51, and that the second 
variation is given by 

n-1 

A21h(oh, p/J. (wh, u/J =h c ~~+~,~(xfrt’/~)~~~+l/‘~~l/~, 
i=o 

where wh, ph, wh, uh E lJY+‘, and 

(5.11) 

xh i+1’2 = ((wh)i+1,2? 6(w,)i~ (“h/s)i+l,2> S(Uh)i)T, (5.12) 

for i = 0,. . . , n - 1. Note that for convenience of notation, we choose to number the compo- 
nents of vectors in LQn+’ from 0 to IZ. Alternately, we can obtain (5.11) by directly applying the 
midpoint rule to (5.9). 

We call a solution pair (w,, ph) E Rn+l X lW+l of the DBVP of Section 3, h-stable if 

A21,(w,, Ph). (wh, uh) > 0, (5.13) 

for all nontrivial 

twh, u/J E w+l x lRn+l with (u~)~ = 0 = (u~)~. (5.14) 
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If A*I,(w,, p/J - hh, uh) G 0 for some nontrivial (wh, uh) satisfying (5.14), then the solution pair 
(0 ,,, pJ is called h-unstable. 

Under certain conditions, it can be shown that a solution of the BVP is stable if and only if 
the corresponding solution of the DBVP is h-stable for h sufficiently small. This question will 
be pursued elsewhere. For the purpose of this work, we shall assume this fact and thus we take 
(5.13) and (5.14) as our numerical stability criteria. 

We now want to relate the conditions (5.13) and (5.14) to the Jacobian matrix DF of Section 
3. For any (oh, ph) ED (cf. (3.6)), we shall denote by L(w,, ph) the 2n X 2n matrix obtained by 
evaluating the Jacobian matrix of (3.3)-(3.5) at ( wh, pJ with the (2n + 1)st column deleted. We 
now have: 

Theorem 5.2. Let condition (5.1) hold. Hence for any (w,, vh) satisfying (5.14) we have that 

A*L,(q, P/J * (wh, v/J = -<(w,, v/z), L(o,, p/z). (+a, u/t>), (5.15) 

where ( . , * ) denotes the usual inner product in R*“. Thus a solution (wh, ph) of the DBW of 
Section 3 is h-stable if and only if L(w,, ph) is negatiue-definite. 

Proof. Using the definitions of Mi+l/* and xF1/*, we can write (5.11) as 

A21h(0h, Ph) * cwh, %) 

n-l 

=h c s~+~,~[(J~~~‘/“(w,)~+~,~ +C$+l’*8(~~)~ +,nS+1’2(vh/~)i+l,2 
i=o 

+.nl"/2s(v,),)(w,),+~,2 

+ (H;+“*(w~)~+~,~ + H;+“*6(w& + H;+1’2(vh/s)i+I,2 + H:“/“S(V~)~)S(W,)~ 

+ (T;+“2(Wh)i+I,2 + T;+1’26(wh)i + T~+“*(v~/s)~+~,~ + T~+“*~(v~)~)(v~/s)~+~,~ 

+(N:+~‘*(W~)i+1,2+~~+~‘*8(W~)i+~~+~’2(v~/S)i+1,2+~~+~~*~(v~)i)~(v~)i]l 

(5.16) 

Note that this sum consists basically of four terms involving the constitutive functions a, H, T, 
and N. With the aid of (3.1) and (5.14), the first of these terms can be written as 

+(n~-1~*(W,)i_1,2+~~-“*qw,)i_, +n:-““(v,/s)i_1/2+n~-‘?qvh)i_1)]. 

Similarly one can analyze the other terms in (5.16). Combining these results and the definition 
of L(o,, pJ we get (5.15). 

An examination of the matrix L(o,, ph) shows that it is symmetric. Thus from (5.15) and the 
definition of h-stability, it follows that a solution (oh, ph) of the DBVP of Section 3 is h-stable 
if and only if L(wh, ph) is negative-definite. 0 
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Thus to determine numerically the h-stability of a solution of the DBVP it is enough to study 
the eigenvalue structure of L(wh, ph), namely, if all the eigenvalues of L(oh, ph) are negative, 
then (We, ph) is h-stable. On the other hand, if at least one eigenvalue of L(o,, ph) is positive, 
then (oh, ph) is h-unstable. To study the eigenvalue structure of L(o,, pi> we used the 
computer package EISPACK (see [27]). 

6. Constitutive equations 

We now introduce some additional hypotheses, called constitutive equations, which serve to 
distinguish between different types of material behavior. Since different types of materials react 
in different ways to the same force, these assumptions will enable us to completely determine 
our problem from the numerical point of view. 

Recall that the material of the plate is hyperelastic if (5.1) holds for some stored energy 
function W(w, 7, 7, v). The functions W that we consider reflect the physically reasonable 
hypothesis that infinite compressions or expansions of fibers, surface elements, and volume 
elements within the body require a correspondingly infinite energy. Thus we let 

= _ &(&“’ + &-(vm)l+bl - $(‘“)l-az + &p)1+b2 
1 

- &(Tv,)1-a3 + -&Tv,)1+b3 + &?q+h’+ j&p”)“65 

where the Aj, j = 1, 2, 3, Bi and bi, i = 1,. . . , 6, are nonnegative and the ai, i = 1, 2, 3, are 
greater than one. Note that (6.1) satisfies the standard Poisson ratio effects. For example, 
W+ 0~) as v + O+ or v + CO while the other variables remain fixed, that is, an infinite energy is 
required to produce an arbitrarily large compression or expansion of a radial fiber. 

It follows now from (5.1) and (6.1) that 

n = ( -A1(VO)-al +Bl(VW)b+ + ( -A2(T0)-a* +B2(Tm)b’)7 

+(--A&my + B3(7VW)b3)TV, (6.2a) 

H= B4qb4 +B,(Tv)~% +B,(y)'%, (6.2b) 

T= (--A2(no-a2+B2(m)b')~ + (-A3(nuo-a3 +B,(mm)b3)vw +B,(q~)~~q, (6.2~) 

N=(-A~(I/w)-~‘+ B,(~w)~')w +(--A3(~zm-U3+B3(wo)b3)~~ +B,(~v)~~T. (6.2d) 

We now relate (6.1) to the conditions (2.11) and (2.12). 
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Proposition 6.1. The function (6.1) satisfies the isotropy condition (2.12) if 

A, =A*, B, =Bz, 

a, =a2, b, = b,. 

In addition, (2.11) holds if 

b,, b,, and b, are odd. 

(6.3) 

(64 

Proof. Upon inspection of (6.2a), (6.2~1, and (6.2d), one can easily see that (6.3) implies (2.12). 
Note also that from (6.2), it follows that fl is independent of q, N contains 77 only to the power 
b, + 1, T contains q only to the power b, + 1, and H contains q to the powers b,, b,, and b,. 
Thus (2.11) holds if (6.4) holds. q 

The parameters Ai, Bi, ai, and bj in (6.1) determine completely the material behavior of the 
plate. Different values of these parameters would determine whether the plate is composed of 
rubber, wood, etc. We now study the existence of solutions of the equation (2.16) when (5.1) 
and (6.1) hold. 

Theorem 6.2. Let (6.3) hold and assume that b, = 1 and that ai = b, = a, i = 1, 2, 3, in (6.1). If 
1 < a < 1 + tfi, then (2.16) has an infinite number of solutions (O,,,} with 9, + 03 as m + ~0. 

Proof. Let (Y = G(O) be the solution of equation (2.15) (or (2.14)). Then, from (6.2) we get that 

NO(O) = (a - l)A1(O~)-a + (a + l)BI(O~)a 

+((a - l)A,(B*a)-’ + (a + 1)B,(02a)a)B, (6Sa) 

N,(e) = (aA,(e~) + aB,(ea)a-1)n2 + (aA3(02n)-“-1 + aB,(f32+-1)(Ba)2, (6Sb) 

O,(e) = 2(aA,(&+‘-’ + aB,(B~)a-‘)e2 + (d,(e2a)-a-1 + aB,(e2a)“-1)B4. (6.5~) 

Equation (2.15) can be written as 

2( -Al(ea)-a + B,(ea)‘)e + ( -A,(e2a)-a + B,(e*a)‘)e* = 0. 

This equation can be solved for (Y yielding 

(6.6) 

a2a = e-3a+l 
2A#!F1 +A, 

2B, + B30af1 ’ 
(6-T 

From this expression we get the asymptotic formulas: 

(y - (2A1/B3)1’2ae-(3’+1)/2u, 0 + 03, 

(y - (A3/2B1)1’2P~-(3a-1)/2a, 8 + O+. (6.8) 



P.K Negrbn-Marrero, B.L. Santiago-Figueroa /Applied Numerical Mathematics 13 (1994) 491-512 

Combining (6.5) with (6.8) we get that 

N,(8) - Cle(a+1)‘2, 8 + w, 

Xl(0) - C28 
(-a+1)/2 8 + Of, 7 

503 

(6.9a) 

40) - c,8 
(a/2)-2s(1/2a) 

> 

UO) - c,o 
-(a/2)-21(1/2a) 

, 

8 + 03, 

0 -+ o+, 
(6.9b) 

fw> - c50 3+(a/2)+(1/2a) 
> 8 + co, 

%@> - c& 
3-(a/2)-(1/2a) 

> 0 -+ o+, 
(6.9~) 

Cl = (u + 1)A1(B,/2A1)“* + aB3(2Al/B3)1’2, 

c2 = (u - 1)B,(A,/28,)“* + aA,(2B,/A,)l’*, 

c3 = &4,(2A,/B,)(‘-“)/2” + aR3(2Al/B3)(U+1)‘20, 

cq = aBl(A,/2Bl)‘“+1~‘2” + &4&4,/2B,)“-““‘“, 
(6.10) 

c5 = 2uA,(2Al/B3)-(“+1)‘2” + aB,(2A,/B,)‘“-‘)‘*“, 

cg = 2aB1(A,/2R1)(“-‘)‘*” + fzA&43/2Bl))(u+1)‘2a. 

If we let Q(0) denote the function on the left-hand side of (2.16), then we get from (6.9), (6.101, 
and b, = 1 that 

where 

-3a2 + 6a + 1 
Q(O) - 

2c34 

au/2+3+1/2a 
> e+m, 

-3a* - 6a + 1 
QP> - 

2cdG 

03-a/2-1/2a 
) 0+0+. 

(6.11a) 

(6.11b) 

The result of the theorem now follows since the coefficient of the power of 8 in (6.11a) is 
positive provided 1 < a < 1 + ifi. 0 

7. Numerical results and conclusions 

We combined the methods described in Sections 4-6 into a computer program that finds 
approximate solutions of the system (3.3)-(3.5). The basic parts of this program are as follows: 

(a) 

(b) 

Given a starting value of 8, we compute the trivial solution corresponding to this 8 by 
solving the equation (2.14) using Newton’s method. 
Starting from the solution computed in (a), we use the program PITCON to generate the 
curve of trivial solutions. The sign of the determinant of D,F is checked to detect 
possible bifurcation points. 
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Table 1 
Values for coefficients of (6.1) 

i Ai Bi ai bi 

1 1 1 2 2 

2 1 1 2 2 

3 1 1 2 2 

4 - 10 - 2 

5 _ 1 ‘_ 2 

6 _ 1 - 2 

(cl Once a bifurcation point is detected, that is, a change in the sign of the determinant of 
D,F, a bisection method is used to reduce the length of the interval in which the 
bifurcation point lies. 

(d) Each bifurcation point localized in (cl is processed with the algorithm described in 
Section 4 to get a point on the bifurcating branch. Once this point on the new branch is 
successfully detected, we use PITCON again to continue tracing the bifurcating branch. 

(e> On each point of the computed branches, the stability criteria of Section 5 are applied. 

We used II = 64 in equations (3.31, (3.41, and (3.5) and the values for the coefficients in (6.1) 
as given in Table 1. All computations were carried in double precision on an IBM RS/6000 
and full machine precision was used in PITCON, i.e., the absolute and relative error tests in 
the routine used the machine epsilon. 

The numerical results indicate that the trivial branch is stable up to the first bifurcation 
point (0 = 6.1934 approximately) after which it becomes unstable. This result is in agreement 
with Theorem 5.1. We computed part of the first three nontrivial bifurcating branches. In Fig. 1 

0.10 - 

2 

$ 

: 

B 
A 

‘1”. ‘I’. 1”s ‘3 * 

0 50 100 150 200 
0 

Fig. 1. First branch of nontrivial solutions bifurcating from 0 = 6.1934 approximately. 
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Fig. 2. A blow-up of the section of the first branch corresponding to the turning point opening to the left. 

we show part of the first branch. The vertical axis in this figure is a measure of the 
nonuniformity of the deformation in terms of the thickness, i.e., 

There are two turning points at approximately 8 = 157.55 and 8 = 14.88. The sections of the 
branch labeled A, B, and C are stable, unstable, and stable respectively in the sense of Section 
5. We show in Fig. 2 a blow-up of the neighborhood of the turning point at 8 = 157.55 which 
shows more details of this section of the branch. In Fig. 3 we show the displacement-load 
diagram for the first branch. Here the loading Ah is defined by 

where we use the O(h2> approximation of p’(l) given by 

rh = &(3(ph)n - 4bh)n-l ’ bh)n-2)’ 

The sections labeled A, B, and C correspond to those labeled similarly in Fig. 1. Note that the 
stability changes in this diagram are exactly at the horizontal folds of the curve (see [17]). One 
can observe also that as we traverse this curve in the direction of increasing displacement, the 
loading decreases except for the section of the curve between (A, = 1.291, 8 = 14.88) and 
(A, = 1.794, 0 = 45.84) where it increases. This lack of monotonicity in the loading response is 
characteristic of “plastic” behavior and in problems of phase transitions (see, e.g., [8,9,13]). 
Note however that the function N in (6.2d) is monotone in V. Finally in Fig. 4 we show an 
energy-displacement diagram for the first branch. The section labeled C on the first branch 
has the lowest energy except for a section to the left of 0 = 20. Note that the turning points in 
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0.0 0.6 1.0 1.6 2.0 

h 
Fig. 3. Displacement-load diagram for the first branch. 

this diagram (which coincide with those of Fig. 11, which correspond to stability changes, are 
“cusps” as predicted by the theory. 

The qualitative behavior of the second branch is more complicated than that of the first and 
is shown in Fig. 5. The branch is unstable at the bifurcation point 0 = 7.8 approximately, and 
undergoes a stability change in the region shown separately in Fig. 6. The sections of the 

0 SO 100 150 200 
e 

Fig. 4. Energy-displacement diagram for the first branch. 



P.% NegrchMarrero, B.L. Santiago-Figueroa /Applied Numerical Mathematics 13 (1994) 491-512 507 

I 

== 

q 0.016 - 

i 

0.014 L- 
O 

Fig. 5. Second branch of nontrivial solutions bifurcating from 8 = 7.8645 approximately. 

branch labeled A, B, and C are stable, unstable, and stable respectively. The fact that there are 
stable solutions on a branch representing multiple necked states and that there are unstable 
solutions on the first branch is completely different to the corresponding result for bars in 
tension found by Owen [22]. 

0.014 1 . I . * 1 * . . I 
0 50 100 150 

e 

Fig. 6. Stable (A, C) and unstable (B) sections of the second branch. 
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0.0095 - 

. 
2 

;;; 0.0090 - 

h 

0.0065 - 

0 50 100 150 
8 

Fig. 7. Third branch of nontrivial solutions bifurcating from 19 = 9.2203 approximately. 

In Fig. 7 we show part of the third branch corresponding to solutions of (3.31, (3.4), and (3.5) 
with two full “necks”. Again the qualitative behavior is very complicated, however no stable 
solutions were found in this branch. Figs. 8-10 show mid-cross-sections of solutions from each 
branch corresponding to 8 = 20. These pictures include the information of both oh and ph. The 
dotted-line curve represents the corresponding trivial solution. The height of the original plate 
has been normalized to one. 

-,.,,I 
0 5 10 15 20 

Fig. 8. Mid-cross-section of the plate corresponding to a stable solution on the first branch and f3 = 20. 
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0 5 10 15 20 

Fig. 9. Mid-cross-section of the plate corresponding to a stable solution on the second branch and 0 = 20. 

Finally to test the convergence of the discretization of Section 3, we computed solutions on 
the first branch for 8 = 20 and for IZ = 4, 8,. . . ,64. We used the solution corresponding to 
n = 128 as the exact discretized solution for the purpose of estimating the errors. We use the 
notation 

where w, stands for the solution @h corresponding to h = l/n. (Here we understand that in 

0 5 10 15 20 

Fig. 10. Mid-cross-section of the plate corresponding to an unstable solution on the third branch and 13 = 20. 
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Table 2 
Computed solution for first branch; 0 = 20 

n e(o,> 

4 0.603516E - 02 

8 0.299702E - 02 
16 O.l11665E-02 
32 0.360440E - 03 
64 0.879578E - 04 

e(o,)/e(w2,) 

- 

0.201372E-t 01 
0.268394E + 01 
0.309801E + 01 
0.409788E + 01 

e(p,) 
0.816343E + 00 

0.138659E + 00 
0.271721E - 01 
0.577927E - 02 
0.148201E - 02 

e(p,)/e(pA 
- 

OS88739E + 01 
0.510301E + 01 
0.470165E + 01 
0.389961E + 01 

@n - @128 only the components of wlZ8 corresponding to those of o, are used in the 
computation.) The results, shown in Table 2, show an approximate rate of convergence of 
O(h2). The nonlinearities implicit in (2.81, the restrictions (2.21, and the singular behaviors 
embodied in (2.13) make the full analysis of convergence of the method of Section 3 a 
nontrivial task. A simpler version of this problem, but still exhibiting the nonlinear and singular 
behaviors, is analyzed in [21] where the discretization of the corresponding model for the 
deformations of the plate without necking (consisting basically of just the second equation in 
(2.4)) is shown to have 0(h2> convergence rate. The results in [5-71 should be helpful in the full 
analysis of the discretization of Section 3. This approach will be pursued elsewhere. 

Our results show that the nonlinear plate theory considered here is richer than the 
corresponding rod theory studied by Owen [22] and consequently it can be used to describe 
phenomena that are usually explained or associated with plastic behavior. There is however one 
important point to bear in mind when comparing both results. Suppose that instead of a 
displacement boundary value problem, we pose the problem of Section 2 as a dead-load 
boundary value problem, that is, we specify N(1) instead of p(l) (cf. (2.6)). Hence the 
corresponding variational formulation of the problem would correspond to an unconstrained 
problem of the calculus of variations and the problem of Section 5 would be the constrained 
problem corresponding to the constraint (2.6). The set of equilibrium points for both problems 
coincides. For the particular problem we treated, the first three branches of such equilibria are 
given by Figs. 1, 5, and 7. For the unconstrained problem, the stability criterion is given by (5.5) 
but only with the condition u(0) = 0. The stability criterion that we used in Section 5 is thus 
equivalent to the second variation of the unconstrained problem be positive-definite on the 
tangent space defined by the constraint. This reduces to (5.5) with u(0) = 0 = u(l). Thus, an 
equilibrium point could be stable for the constrained problem but unstable for the uncon- 
strained version. In fact, the first branch depicted in Figs. 1 and 3 was found to be unstable for 
the unconstrained problem. Thus it could be the case that the stability results in Owen [22], 
which are for the dead-load problem, are different when the corresponding displacement 
problem is analyzed. 

A simple perturbation analysis about, say, the first bifurcation point shows that in general we 
have a pitchfork bifurcation at such point. (This is true for the general problem stated in 
Section 2.) We computed the other part of the pitchfork corresponding to the branch in Fig. 1 
and found that it corresponds to an unsymmetric pitchfork of the type shown schematically in 
Fig. 11. (The dashed section of the curve represents unstable equilibria.) The equilibria on the 
other part of the pitchfork have the same qualitative shape as in Fig. 8 but thinner on the 
center and fatter on the boundary. 
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Fig. 11. Schematic representation of the unsymmetric pitchfork corresponding to the branch in Fig. 1. The dashed 
portion of the curve represents unstable equilibria. 

The numerics for the particular problem we treated, also indicate that the number of simple 
interior zeros of o -G(e) in [O, 11, inherited from the corresponding eigenfunction, is pre- 
served globally along a given bifurcating branch. This has been shown for a general class of 
nonlinear boundary value problems for regular ordinary differential equations (ODES) by 
Crandall and Rabinowitz [lo], for certain systems of ODES that can be reduced to a scalar 
equation by Shih and Antman [26] and Negron-Marrero and Antman [20], for a special class of 
systems of ODES with a “weak” coupling by Healey [14], and for scalar quasilinear partial 
differential equations with symmetries by Healey and Kielhofer [15,16]. We shall pursue this 
question for our problem elsewhere. 
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