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Abstract

The “Radon–Riez” property gives sufficient conditions for extracting strongly
convergent subsequences out of weakly convergent ones in Banach spaces. The key
assumption is that the norms of the elements of the weakly convergent sequence,
converge to the norm of the weak limit. This result is well known for Hilbert spaces
of which L2 is a special case, but it is also true for uniformly convex Banach spaces
of which Lp with 1 < p < ∞ are special cases. In this expository paper I will
present a proof of this more general result.

1 Introduction and problem formulation

In this note we consider the problem of under which conditions, a weakly convergent
sequence, actually converges strongly. The Radon–Riesz property states that if in addi-
tion, the norms of the weakly convergent sequence converge, then the sequence converges
strongly. This result is well known for Hilbert spaces, like L2, but it is also true for more
general Banach spaces like Lp where 1 < p < ∞. The motivation for this note comes
from [3] for a problem nonlinear elasticity, where the Radon–Riesz property is used to
prove the convergence of certain approximating sequences in the context of computing
singular minimizers of a stored energy functional.
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2 Basic notions and definitions

2.1 Banach spaces and functionals

Let X be a normed linear space with norm denoted by ∥·∥. We say that X is a Banach
space if every Cauchy sequence in X, with respect to the norm ∥·∥, converges to an
element of X. In this case we say that is X complete in its norm.

A function F : X → R on a Banach spaceX is called a (real) bounded linear functional
on X if

i) F (αu+ βv) = αF (u) + βF (v) for all u, v ∈ X and α, β ∈ R, and

ii) ∥F∥ ≡ supu̸=0

|F (u)|
∥u∥

< ∞.

The set of all bounded linear functionals on X is called the dual of X and is denoted by
X∗. It follows from this definition that X∗ is a Banach space.

A sequence of functionals (Fn) in X∗ converge weakly to F ∈ X∗, written Fn ⇀ F , if
Fn(u) → F (u) for any u ∈ X.

2.2 Inner product spaces

A linear real inner product space X is a linear space with a function ⟨·, ·⟩ : X ×X → R
such that for all u, v, w ∈ X and α ∈ R,

i) ⟨u, v⟩ = ⟨v, u⟩,

ii) ⟨αu, v⟩ = α⟨u, v⟩,

iii) ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩,

iv) ⟨u, u⟩ > 0 for all u ̸= 0.

An inner product space becomes a normed space with the norm ∥u∥ = ⟨u, u⟩1/2. This
is called the norm induced by the inner product. If the inner product space is complete
in its induced norm, it is called a Hilbert space.

In an inner product space we always have the parallelogram law :

∥u+ v∥2 + ∥u− v∥2 = 2(∥u∥2 + ∥v∥2).
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2.3 The Lp spaces

For U ⊂ Rn measurable and bounded, we define for 1 ≤ p < ∞

Lp(U) =

{
f : U → R, such that

∫
U

|f(x)|p dx < ∞
}
.

For f ∈ Lp(U) we let

∥f∥p =
[∫

U

|f(x)|p dx

] 1
p

.

L∞(U) consists of functions that are bounded almost everywhere with the norm given
by the essential supremum.

Facts about Lp spaces:

i) Lp is a Banach space for 1 ≤ p ≤ ∞.

ii) L2 is a Hilbert space with ⟨f, g⟩ =
∫
U
f(x)g(x) dx, for all f, g ∈ L2.

iii) (Lp)
∗ can be identified with Lq where

1
p
+ 1

q
= 1 for 1 ≤ p < ∞. Moreover, for every

F ∈ (Lp)
∗ there exists g ∈ Lq such that ∥F∥ = ∥g∥q and

F (f) =

∫
U

f(x)g(x) dx, ∀f ∈ Lp.

A sequence (fn) converges weakly to f in Lp, written fn ⇀ f , if

lim
n→∞

∫
U

fn(x)g(x) dx =

∫
U

f(x)g(x) dx, ∀g ∈ Lq.

We can now state and prove the Radon–Riesz property for L2:

Lemma 2.1. Let fn ⇀ f in L2 and let ∥fn∥2 → ∥f∥2. Then fn → f in L2, i.e.,
∥fn − f∥2 → 0.

Proof : Using the inner product of L2, the assumed weak convergence and that of the
norms, this follows from:

∥fn − f∥22 = ⟨fn − f, fn − f⟩,
= ∥fn∥22 − 2⟨fn, f⟩+ ∥f∥22 ,
→ ∥f∥22 − 2⟨f, f⟩+ ∥f∥22 = 0.

3



3 The Radon–Riesz property for Banach spaces

We begin this section with the definition of a uniformly convex normed space. The
definition basically says that in such space, if the length of the line segment joining any
two points in the unit sphere is bounded away from zero, then the midpoint of that
segment is bounded away from the boundary of the unit sphere.

Definition 3.1. A normed space X is called uniformly convex if for any ε > 0, there
exists δ > 0 (that depends on ε) such that for all x, y ∈ X with ∥x∥ ≤ 1, ∥y∥ ≤ 1, and
∥x− y∥ > ε, we have that ∥∥∥∥x+ y

2

∥∥∥∥ < 1− δ.

We state without proof the following result about the uniform convexity of the Lp

spaces.

Theorem 3.2 ([1]). Lp with 1 < p < ∞ is a uniformly convex Banach space.

We shall also need the following weak lower semi–continuity property of the norm in
X∗.

Proposition 3.3. Let X be a Banach space and assume that Fn ⇀ F in X∗. Then

∥F∥ ≤ lim inf
n

∥Fn∥ .

Proof : For any x ∈ X we have from Fn ⇀ F in X∗ that Fn(x) → F (x). Also

|Fn(x)| ≤ ∥Fn∥ ∥x∥ .

Letting n → ∞ we get that

|F (x)| ≤ lim inf
n

∥Fn∥ ∥x∥ .

Since x ∈ X is arbitrary, the result follows.
We now have the main result of this note.

Theorem 3.4 ([2], [4]). Let X be a uniformly convex Banach space and assume that
Fn ⇀ F in X∗ and that lim supn ∥Fn∥ ≤ ∥F∥. Then Fn → F strongly in X∗.
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Proof : Without loss of generality we may assume that F ̸= 0. By the previous proposition
and the given hypothesis we have that limn ∥Fn∥ = ∥F∥. Define

yn =
Fn

max{∥Fn∥ , ∥F∥}
, y =

F

∥F∥
.

It follows that yn ⇀ y in X∗. We now show that yn → y strongly in X∗ from which
Fn → F strongly in X∗ follows. Now 1

2
(yn+ y) ⇀ y and so, by the previous proposition:

1 = ∥y∥ ≤ lim inf

∥∥∥∥12(yn + y)

∥∥∥∥ . (3.1)

Suppose, to argue by contradiction, that for some ε0 > 0, passing to a subsequence if
necessary,

∥yn − y∥ ≥ ε0, ∀n.

By the uniform convexity, we would have that for some δ0 > 0,∥∥∥∥12(yn + y)

∥∥∥∥ ≤ 1− δ0 ∀n.

But this would be a contradiction to (3.1), which completes the proof.

Using the previous theorem and that the spaces Lp are reflexive for 1 < p < ∞, we
get the following:

Corollary 3.5. Let (fn) be a sequence in Lp, 1 < p < ∞, such that fn ⇀ f in Lp and
with limn→∞ ∥fn∥p = ∥f∥p. Then fn → f in Lp.

Proof : In the previous theorem, take

Fn(g) =

∫
U

fn(x)g(x) dx, F (g) =

∫
U

f(x)g(x) dx, g ∈ L∗
p,

and X = L∗
p. It follows that Fn ⇀ F in X and that ∥Fn∥ = ∥fn∥p → ∥f∥p = ∥F∥. By

Theorem 3.4 we get that ∥Fn − F∥ → 0, and the result follows now upon the observation
that ∥Fn − F∥ = ∥fn − f∥p.

Remark 3.6. The Radon–Riesz property does not hold in L1. The following example is
from [4, Page 169]. Let

fn(x) = 1 + sin(nx), f(x) = 1.
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Then by the Riemann–Lebesgue Lemma, fn ⇀ f in L1(−π, π). Moreover, as fn ≥ 0, we
have

∥fn∥1 =
∫ π

−π

(1 + sin(nx)) dx = 2π = ∥f∥1 .

However, (fn) does not converge strongly to f in L1(−π, π) as (sin(nx)) does not converge
strongly in L1(−π, π).

References

[1] Clarkson, J.A., Uniformly Convex Spaces, Transactions of the American Mathemat-
ical Society Vol. 40, No. 3, pp. 396-414, 1936.

[2] Riesz, F. and Nagy, B., Functional Analysis, Dover Publishing, Mineola, NY, 1990.
(Republication of 1955 edition)

[3] Negrón-Marrero, P. V. and Sivaloganathan, J., On the convergence of a regulariza-
tion scheme for approximating cavitation solutions with prescribed cavity volume,
SIAM J. Appl. Math., 80(1), 119-141, January 2020.

[4] Royden, H.L. and Fitzpatrick, P.M., Real Analysis, Fourth Ed., Pearson Education,
Inc., 2010.

6


