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ABSTRACT

We present two models based on the theory of nonlinear elasticity of a photo–actuator consisting of a mixture
of a polymer matrix with carbon nanotubes. Both models are generalizations of the one proposed by Ahir
and Terentjev1 in which the actuation mechanism is modelled as a contraction of a given carbon nanotube in
response to an external stimuli. In the first model, a slight variation is introduced in the projection onto the axis
of the pre–strain. This new computation improves the result reported in1 for carbon nanotube photo–contraction
when a 10% pre-strain is applied. In our second model we use a nonlinear constitutive equation to describe the
mechanical response of the composite. We show that by a suitable selection of the parameters in the model,
consistent with the average constitutive parameters (Young modulus) reported in the literature, we can further
improve on the average carbon nanotube contraction for a 10% pre–strain threshold.
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1. INTRODUCTION

On-going efforts to produce novel materials with improved or augmented functionalities as sensors and actuators
frequently focus in smart materials. Smart materials respond to external stimuli in a controlled fashion. Amongst
these, stimulus-active polymers (and polymeric composites) are the subject of recent discussion. Indeed, the pos-
sibility of microsystem integration and of biocompatibility has opened the door to actuators in Braille displays,12

artificial muscles,4 and drug delivery. In the recent literature, a number of studies have reviewed the current state
of the art in shape-memory polymers responsive to a variety of stimuli (heat, light, magnetic and electric fields,
and water/solvent media),5,9 addressing physical mechanisms inherent to actuation. Historically, thermally-
activated shape-memory polymers were first studied and several activation mechanisms have been documented,
such as melting transition or in-direction heating amongst others.9 Mostly, the physics behind the actuation
can be explained by the capacity of the polymer (or polymeric composite), with negligible internal stress in the
original state, to store mechanical deformation at lower temperatures. Upon increased temperature, temporary
cross-links release mechanical stress, leading to recovery of the original shape.5 Electroactive polymers possibly
second their thermoactive counterparts in technological advancement. Two activation mechanisms prevail: field
actuation and ionic diffusion.4 In field-activated systems, a Coulomb electrostatic field induces conformational
changes by dipole aligning and Ionic electroactive polymers involve ion diffusion upon field activation; where the
macroscopic motion of charged species is responsible for actuation.

Lastly, a novel actuation mechanism has been reported for polymer-carbon nanotube composites.1 In this
scheme, irradiation of a source with distribution centered at 675 nm promotes actuation stresses of up to 100
kPa which confers a change in natural length of up to 10% within ∼0.5 min.2 These are promising characteristics
for microelectronic applications, where fast, reversible actuation is preferred to, for example, thermally-induced
processes. On that note, it is worth mentioning that although the temperature during actuation augments
by ∼15◦C, thermal saturation occurs after a few minutes of irradiation, therefore dismissing heat as trigger. In
addition, the photomechanical response of MWCNTs embedded in a silicon rubber PDMS matrix is a new effect-
not associated to a magnifying mechanism due to the presence of MWCNTs, as the pristine elastomer shows
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a minimal response to the same irradiation source due to heating. Although both expansion and contraction-
actuation modes are possible (arguably, depending on the degree of alignment due to pre-applied strains), the
magnitude of the stroke depends solely on the matrix, suggesting the possibility of photoactuation as a universal
phenomenon in polymer-MWCNT composites.

This paper is motivated by the work of Ahir and Terentjev1 in which they describe a simple model based
on the theory of (linear) elasticity, for the mechanism of photo–actuation of a composite of a polymer matrix
with nanotubes inclusions. The basic assumption in their model is that a given carbon nanotube contracts (via
an incompressible nanotube deformation) by a ratio ∆ under the influence of an external energy source. The
nanotube is assumed to be cylindrical with the contraction along the principal axis of the cylinder. The (linear)
projection of this deformation onto the principal axis of pre–strain of the specimen is then averaged over all
possible directions yielding an average nanotube actuation deformation along the pre–strain axis. This average
is then included in the equation for the (macro) stress–strain relation (Hooke’s law type) yielding a simple model
that predicts the observed change in mechanical behavior in the composite due to the external energy source.

We call the critical value of pre–strain to the value of the (macro) strain at which the stress–strain curves,
with and without an external energy source, intersect. In other words, it is the pre–strain under which the
composite does not show macroscopic actuation. Larger pre–strains would induce an average contraction upon
illumination and smaller pre–strains would induce an average expansion, but at the specific critical value of pre–
strain, the composite remains macroscopically inactive upon irradiation. In laboratory experiments with various
polymer–nanotube composites at different concentrations of nanotubes, it has been observed that this critical
pre–strain value is approximately 10%. The model in1 predicts that for a critical pre–strain value of 10%, the
average contraction per nanotube should be around 20%, i.e. ∆ ≈ 0.8. However, laboratory data reveals that
the actual critical pre–strain value is achieved with only a 1-2% average contraction per nanotube (∆ ≈ 0.98).
With a slight change in the model in1 in the way the projection of the nanotube deformation onto the principal
axis of strain is computed, we can improve on their results to a 10–13% nanotube deformation for a 10% critical
pre–strain value.

Experimental description of the Ahir-Terentjev photo–actuation system

Contrary to the other actuation modes, the physical mechanism behind photomechanical actuation remains
unknown, with some indicators leaning towards the importance of nanotube alignment in the matrix.1,2 In1,2

the authors first reported photomechanical effects in PDMS–MWCNT composites1 and later in a variety of
polymeric systems.2 Specifics on composites preparation can be found in the original reports and we will focus
on the PDMS composite preparation here. Briefly, PDMS silicon elastomer and hydrosilane curing agents were
purchased from Dow Corning and the resulting polymer network was absent of filler particles. The MWCNTS
were purchased from Nanostructured and Amorphous Materials, Inc. (Houston, TX). The MWCNTS presented
a verifiable 95% purity, with core and outer diameters of 5–10 and 60–100 nm respectively, and lengths between
5 and 15 µm.

The composite was fabricated by shear mixing of MWCNTS and silicon elastomer for at least 24 hours.
The cross-linker was then added and further mixed for another 30s, and left in vacuum for 5 min to degas.
The mixture was placed in a centrifuge reactor at 5000 rpm and 80◦C for 14 min to expedite cross–linking and
produce films of uniform thickness. Upon centrifugation, the partially–cross–linked film was uniaxially strained
to infer a mechanically–aligned distribution of MWCNTS in the matrix and the cross-linking was finalized under
the applied stress in an oven at 70◦C for an additional 24 h. Several composites with MWCNT concentrations
of 0, 0.02, 0.3, 0.5, 1, 2, 3, 4, and 7 wt% were prepared in this fashion.

It is worth to emphasize here the use of shear mixing in MWCNTS in an effort to not alter the external
chemical structure of CNTs. In this work, the authors were careful not to modify the surface chemistry of the
MWCNTS, in an attempt to minimize formation of additional sp3-hybridized defects.

A light source with peak emission at 675 nm was the promoter of the actuation, with an estimated power
density delivered to the sample of ∼1.5mW/cm2. Pristine PDMS films showed absorption of ∼3% and 0.3wt%
PDMS–MWCNTs absorbed in excess of 97% across a range of wavelengths.



Each sample was clamped under pre–applied strains ranging between 2 and 40%. This set up was assembled in
a specially designed thermally–insulated rig, where vertical deformations could be measured with a µm precision
and the exerted force upon actuation was measured by sensitive dynamometers. Thermocouples attached to the
front and back of the film, registered thermal kinetics saturated within two minutes of light irradiation. Kinetics
of the actuation itself maximized within 0.5 m of irradiation. This argument, combined with the observed order
of magnitude difference for thermally–induced deformation, suggests that the actuation described here is not of
thermal nature.

Following this experimental set up, responses of a 1wt% PDMS composite to irradiation under applied pre-
strain is shown in Figure 7 in.2 Notably, for low applied pre–strains (below 10%), the composite expands upon
irradiation. However, applied pre–strains above 10% yield contraction. This phenomenon seems to be common to
composites of varying MWCNT concentration; all switching actuation direction around 10% pre-applied strain.
A tentative explanation for this phenomenon takes into account the realignment of MWCNTs in the matrix for
the different pre–applied strains.

2. THE MATHEMATICAL MODELS

We consider a composite formed of a polymer matrix with nanotubes inclusions. We assume perfect bonding
between the two phases and that the composite is uniform and isotropic. Also, we assume each nanotube to
be a cylindrical (slender) structure, the principal axis been the axis of the cylinder. We will study the effects
of non-linearity on the forecast average contraction per nanotube ∆ dictated by a 10% critical pre–strain value.
The non–linearity study will be performed in two stages; first, considering a semi–linear model and introducing
a fully non linear model in a later stage. Adoption of this stepped approach, will facilitate the assessment of the
incorporation of non–linearities in photoactuation. Indeed, the semi–linear model still considers an incompressible
deformation but will make use of a non-linear stretch of the deformation along a principal axis (unlike in1). In the
non-linear approach, a non-linear stress-strain constitutive equation along with the hypothesis of compressibility
will be used.

2.1 The semi–linear model

Let (θ, ψ) be angles in spherical coordinates with respect to a cartesian coordinate system {i, j,k}, where θ is
the angle with respect to k and ψ is the angle with respect to i in the ij plane. Define:

e1(θ, ψ) = cos θ cosψ i+ cos θ sinψ j− sin θ k, (1a)

e2(θ, ψ) = − sinψ i+ cosψ j, (1b)

e3(θ, ψ) = sin θ cosψ i+ sin θ sinψ j+ cos θ k. (1c)

If the composite is subject to a (macro) deformation λ along the z axis and assuming the specimen undergoes
an incompressible deformation, the corresponding deformation gradient is given by:

Fm =
1√
λ
(i⊗ i+ j⊗ j) + λk⊗ k. (2)

If a given nanotube has spherical angles (Θ, ψ) before this macro deformation, then after the deformation Fm

the angle ψ remains the same, but Θ changes to θ where:

cos θ =
k ·Cm · e3(Θ, ψ)√

k ·Cm · k
√
e3(Θ, ψ) ·Cm · e3(Θ, ψ)

=
λ3/2 cosΘ[

sin2 Θ+ λ3 cos2 Θ
]1/2 , (3)

and Cm = Ft
mFm. (Note that e3(Θ, ψ) points along the principal axis of the nanotube cylinder before the macro

deformation.) Using this relation one can easily get that:

tanΘ = λ3/2 tan θ, sinΘdΘ =
λ3 sin θ[

cos2 θ + λ3 sin2 θ
]3/2 dθ.



We assume that the effect of photo actuation is given by a contraction by a factor of ∆ along the principal
axis of a nanotube cylinder. In the pre–strained composite, that is, after the deformation Fm, the deformation
gradient corresponding to an incompressible deformation of the nanotube is given by:

Fa =
1√
∆

(e1(θ, ψ)⊗ e1(θ, ψ) + e2(θ, ψ)⊗ e2(θ, ψ)) + ∆ e3(θ, ψ)⊗ e3(θ, ψ). (4)

The principal stretch along the k axis (henceforth called the z axis) corresponding to this deformation is given
after simplification by:

λz(θ,∆) = ‖Fa · k‖ =

[
∆2 cos2 θ +

1

∆
sin2 θ

]1/2
. (5)

Remark : In1 the authors used the linearization of this stretch about Fa = I (which is when ∆ = 1). This
linearized stretch along the z axis is given by:

εz(θ,∆) = ∆ cos2 θ +
1√
∆

sin2 θ. (6)

In our first modification of their model, we use (5) which is geometrically more accurate than (6).

With these formulas we can compute the average stretch upon actuation by averaging over all possible
nanotube orientations:

λ̂z(∆, λ) =
1

4π

∫ 2π

0

∫ π

0

λz(Θ,∆) sinΘdΘdψ =

∫ π

0

λz(θ,∆)Pλ(θ)dθ, (7)

where

Pλ(θ) =
λ3 sin θ

2
[
cos2 θ + λ3 sin2 θ

]3/2 . (8)

One can check that
∫ π

0
Pλ(θ) dθ = 1, and since Pλ(θ) ≥ 0, we can interpret Pλ(θ)δθ as the probability of finding

nanotubes making angles with the z axis in the range [θ, θ + δθ], after the composite is subjected to the macro
deformation λ along the z axis.

The stress–strain response of the composite along the z axis is given by the linear relation (Hooke’s law):

S = Y (λ− 1), (9)

where the Young modulus Y is an average of the mechanical properties of the polymer–nanotube composite. The
corresponding stress due to photo–actuation will be modeled with:

Sact = Y (λ̂z(∆, λ)− 1). (10)

Note that (9) is linear in λ but (10) is not due to the nonlinear dependence of Pλ on λ (cf. (8)). The net macro
stress along the z axis is given by:

Snet = S − Sact = Y (λ− λ̂z(∆, λ)). (11)

Note that S and Snet cross or intersect precisely for those values of (∆, λ) for which:

λ̂z(∆, λ) = 1. (12)

Note that this condition depends only on the photo–actuation parameter ∆ and the macro strain λ, and not
on the Young modulus Y ! (This might be a limitation of the semi–linear model.) Experimentally it has been
determined that this crossing occurs for ∆ ≈ 0.98 and λ ≈ 1.1, pretty much independent of the composite.2 In
the terminology of the introduction, we have that the critical pre–strain value is approximately 10%.
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Figure 1. (Left) The surface λ̂z(∆, λ) as a function of (∆, λ) for 0.75 ≤ ∆ ≤ 1.0 and 1 ≤ λ ≤ 1.4. (Right) Level curve
λ̂z(∆, λ) = 1.
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Figure 2. Graphs of S and Snet as predicted by the model for an average nanotube contraction factor of ∆ = 0.87.

For the numerical simulations we used a value of Y = 1.15 MPa as reported in1 for the average Young
modulus of the 1 wt% PDMS composite they used in their experiments. We first show in the left hand side of
Figure 1 a surface for the values of λ̂z(∆, λ) as a function of (∆, λ) for 0.75 ≤ ∆ ≤ 1.0 and 1 ≤ λ ≤ 1.4. On the
right hand side of the same figure we show the level curve of this surface at height one. This corresponds to the
solution set of equation (12) for 0.75 ≤ ∆ ≤ 1.0 and 1 ≤ λ ≤ 1.4. From this plot we can read that the model
predicts a crossing of S and Snet at λ = 1.1 for a value of ∆ = 0.87 approximately. For this value of ∆, we
show in Figure 2 the graphs of S and Snet as predicted by the model. These results are in agreement with the
corresponding ones reported in.1 In Figure 3 we show the graph of the effect of photo–actuation as measured by
the difference Snet − S. The dotted line in this plot joining the initial and final points, is just for reference to
emphasize the nonlinear behavior of photo–actuation.

The value of ∆ = 0.87 predicted by the model is smaller than the one observed experimentally of 0.98, but
better than the one predicted by the model in1 using (6) instead of (5).
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Figure 3. Effect of photo–actuation as measured by the difference Snet − S.

2.2 A nonlinear model

We discuss now a model which uses a nonlinear stress–strain constitutive equation for the response of the
composite. The idea is that with a more general model of mechanical behavior, we may be able to capture more
details of the physics of the actuation process.

As before, we assume that the composite is subject to a (macro) deformation of λ along the z axis. Instead of
the incompressibility assumption we had before, we consider now a compressible deformation with deformation
gradient given by:

Fm = µ(λ) (i⊗ i+ j⊗ j) + λk⊗ k, (13)

where µ(λ) is a function to be determined by the boundary conditions. A calculation similar to the one be-
fore shows that if a given nanotube has spherical angles (Θ, ψ) before this macro deformation, then after the
deformation Fm the angle ψ remains the same, but Θ changes to θ where:

cos θ =
λ cosΘ[

µ2(λ) sin2 Θ+ λ2 cos2 Θ
]1/2 , (14)

and that:

tanΘ =
λ

µ(λ)
tan θ, sinΘdΘ =

λ2µ(λ) sin θ[
µ2(λ) cos2 θ + λ2 sin2 θ

]3/2 dθ.

We keep the same assumptions on a given nanotube deformation due to photo–actuation so that formulas
(4) and (5) still hold. Using the formulas above, we have that the average stretch upon actuation is given now
by:

λ̂z(∆, µ(λ), λ) =

∫ π

0

λz(θ,∆)Q(θ, µ(λ), λ)dθ, (15)

where

Q(θ, µ(λ), λ) =
λ2µ(λ) sin θ

2
[
µ2(λ) cos2 θ + λ2 sin2 θ

]3/2 . (16)

As before Q can be interpreted as a probability distribution for the angular distribution of nanotubes in the
deformed macro specimen.

We now describe the mechanical response of the composite. The proposed model is based on the theory of
nonlinear elasticity as described, e.g., in.3 Let W : Lin+ → R be the stored energy function of the composite



(assumed to be homogenous) where Lin+ = {F ∈ M3×3 : detF > 0} and M3×3 denotes the set of real 3 × 3
matrices. The first Piola–Kirchhoff and Cauchy stress tensors are respectively given by:

S(F) =
d

dF
W (F), σ(F) = (detF)−1S(F)Ft. (17)

The material of the composite is isotropic if there exists a function Ŵ : (0,∞)3 → R such that∗:

W (F) = Ŵ

(
1

2
F · F, 1

4
FFt · FFt,detF

)
. (18)

We now have that:11

S(F) = Ŵ, 1F+ Ŵ, 2FF
tF+ (detF)Ŵ, 3F

−t. (19)

For the function Ŵ we use the following (Hadamard–Green type) expression:

Ŵ (v1, v2, v3) = av1 + b(v21 − v2) + cvγ3 + dv−δ
3 , (20)

where a, d, δ > 0, and b, c, γ ≥ 0. Combining (17), (19), and (20) we get that for the deformation (13):

σ(Fm) = diag(σ11(µ, λ), σ22(µ, λ), σ33(µ, λ)), (21)

where σ11(µ, λ) = σ22(µ, λ) and

σ11(µ, λ) = (µ2λ)−1
([
a+ b(µ2 + λ2)

]
µ2 + cγ(µ2λ)γ − dδ(µ2λ)−δ

)
(22a)

σ33(µ, λ) = (µ2λ)−1
(
(a+ 2bµ2)λ2 + cγ(µ2λ)γ − dδ(µ2λ)−δ

)
. (22b)

We require that the reference configuration be stress free, that is S(I) = 0, which implies that:

a+ 2b+ cγ − dδ = 0. (23)

Also if we require that the linearization of (19) about F = I coincides with the linear theory of Section 2.1, then
we get the additional condition on the parameters in (20):

Y = 3(a+ b). (24)

We take as boundary conditions that σ11 = σ22 = 0 which leads to:[
a+ b(µ2 + λ2)

]
µ2 + cγ(µ2λ)γ − dδ(µ2λ)−δ = 0. (25)

This equation determines µ as a function of λ. If we write

tz(λ) = σ33(µ(λ), λ),

then equations (9), (10), and (11) are given now by:

S = tz(λ), (26a)

Sact = tz(λ̂z(∆, µ(λ), λ)), (26b)

Snet = S − Sact. (26c)

Note that S and Snet cross or intersect precisely for those values of (∆, λ) for which:

λ̂z(∆, µ(λ), λ) = 1. (27)

∗The first argument in Ŵ measures local deformations of fibers, the second one measures local surface deformations,
while the third argument (the determinant) measures local volume changes.
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Figure 4. Graph of λ̂z(∆, µ(1.1), 1.1) for the parameters (28) with a, d chosen to satisfy (23) and (24), and Y = 1.15.

Note that now, contrary to the model of Section 2.1, this equation depends on all the mechanical parameters in
(20) through µ(λ) which is given as the solution of (25).

For the simulations we used the following values for the parameters in (20):

b = 0.01, c = 0.1, δ = 0.1, γ = 0.1, (28)

and a, d are chosen to satisfy (23) and (24), with Y = 1.15 MPa. In Figure 4 we show a sketch of λ̂z(∆, µ(λ), λ)
for the fixed value of λ = 1.1 corresponding to a pre–strain of 10% for the composite. We see from this figure
that the crossing of S and Snet (cf. (27)) would occur at a 10% pre–strain for a ∆ = 0.9 approximately. (The
values in (28) were chosen after some trial an error, to maximize the value of ∆ for this crossing.) Figure 5 shows
the corresponding graphs in this case for S and Snet. We note a difference in the size of the stresses (smaller in
this model) corresponding to those in Figure 2, of 20–25% for less than 20% pre–strain, up to roughly 40% for
40% pre–strain. This could be accounted for by the compressibility assumption that makes the material of the
composite somewhat “easier” to deform. Thus the compressible model do not reproduce that well the magnitude
of the stresses but preditcs a better average nanotube contraction factor (∆ ≈ 0.90).

In2 Young modulus for nanocomposites were reported in the range of 0.5 up to 1.5 MPa approximately
depending on the wt% concentration, with errors in the order of ±0.1. In Figure 6 we show the same graphs
as above but for† Y = 1.25. In this case we have better agreement with the corresponding values in Figure 2
for pre–strains less than 20%, with the differences again increasing up to roughly 30% for 40% pre–strain. Thus
some of the differences in the values of the stresses as predicted by the nonlinear compressible model might be
attributed to experimental errors present in the reported Young modulus.

3. CONCLUSIONS AND COMMENTS

In this work, we have reproduced in some detail the model proposed by Ahir and Terentjev1,2 to explain
photoactuation of nanocomposites. Change of direction in photoactuation at particular pre–strains offers an
opportunity to correlate macroscopic deformations in the composite with nanoscopic deformations in the fillers.
In this scheme, a linear model predicts large values of nanotube contractions which have not fully been verified
experimentally. The predicted nanotube contraction can be lowered by optimizing calculations either in the
projection or by computing non linear deformations in a compressible solid. With all, major questions still
remain at the atomic level regarding the nature of the polymer–nanotube interface.6,7, 13 In addition, specifics

†For Y = 1.25, the value of ∆ for a crossing of S and Snet at a 10% pre–strain, is again 0.9 approximately.
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Figure 5. Graphs of (26a) and (26c) for the compressible model with Y = 1.15.
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Figure 6. Graphs of (26a) and (26c) for the compressible model with Y = 1.25.



about the mechanisms for nanotube contraction, bending, or torsion in the matrix need further study. For
instance, it is known that the radial response of a CNT is very different from the axial response.10,14 This radial
response might be important when computing the nanotube average stretch upon actuation in (7) or (15). A full
treatment based on the theory of composite materials8 might be usefull to account for these additional efects.
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