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Abstract

We present the equations of isotropic elasticity in two (for a circu-
lar domain) and three dimensions (for a sphere) for the special case
of radial solutions. This is equivalent to a nonlinear (quasilinear)
boundary value problem depending parametrically on the boundary
displacement. By using a formal linearization procedure about the
trivial (affine) solution, we show that the critical load for cavitation
(the opening of a hole at the center) can be characterized by an alge-
braic equation involving the boundary displacement and the constitu-
tive functions. We give examples for specific materials and compare
our formal results with some previous numerical experiments.

1 Introduction

The phenomena of void formation on bodies in tension have been observed
among others by [7] in laboratory experiments. (See also [6] for a review on
cavitation in rubber.) Ball [2] showed in the context of nonlinear elasticity,
that void formation or ”cavitation” can decreased the (potential) energy of a
body in tension when the tension is sufficiently large. In fact for a spherical
body composed of isotropic material, when the tension is sufficiently large,
the purely radial deformation that opens a hole at the center of the ball, is a
global minimizer among such deformations. We refer to [9] for a nice account
of cavitation in nonlinear elasticity.
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A very important problem here is that of characterizing or computing
the critical tension at which cavitation occurs. As cavittation can point
the initiation of fracture or rupture on a body, the computation of such
critical tension is a very important one from the structural design point of
view. This problem has been studied extensively in the past but we mention
here the works of [8], [5], [15], and [13]. However most of the formulas for
the critical tension involve complicated expresions like, improper integrals,
which upon solution require further approximations. In this paper we develop
a criterion for the critical tension in terms of a purely algebraic equation that
involves the boundary displacement and the parameters of the corresponding
constitutive equations. This is done for the displacement boundary value
problem in which the outer radius of the ball is specified, and for a general
class of nonlinear constitutive equations (cf. (5), (6), (7)). The free boundary
condition on the inner surface when a cavity forms, specifies that the normal
component of the Piola- Kirchkoff stress tensor is zero on the cavity surface.

In Section 2 of the paper we describe the model problem from the point
of view of the Calculus of Variations and derive the corresponding Euler-
Lagrange equations. In Sections 3 and 4 we do a formal linearization of
the Euler Lagrange equations and get necessary conditions for the existence
of eigenvalues which represent possible bifurcation points for the fully non-
linear problem. This bifurcation points represent the critical displacements
at which cavitation occurs. For a particular example we compare the crit-
ical displacement predicted by the algebraic criterion with that of previous
numerical experiments.

2 A Model for Nonlinear Elasticity

We consider a body which in its reference configuration occupies the region

Ω = {x ∈ ℜn : ||x|| < 1} (1)

where n = 2, 3 and || · || denotes the Euclidean norm. Let p : Ω → ℜn denote
a deformation of the body and let its deformation gradient be

F (x) =
dp

dx
(x) (2)

The requirement that p(x) preserves orientation takes the form

detF (x) > 0 , x ∈ Ω (3)
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Let W : Mn×n
+ → ℜ be the stored energy function of the material of the body

where Mn×n
+ = {F ∈ ℜn×n : detF > 0}. Note that physically reasonable

W ’s must satisfy that W → ∞ as either detF → 0+ or ||F || → ∞. The
total stored energy on the body due to the deformation p is given by

I(p) =
∫
Ω
W (F (x))dx (4)

The equilibrium configuration of the body satisfies (3) and minimizes (4)
among all functions belonging to an appropriate Sobolev space and satisfying
appropriate boundary conditions. (See Ball (1977a,b)).

A physically reasonable model for W for an isotropic and homogeneouos
material is as follows. Let v1, . . . , vn be the eigenvalues of (F tF )1/2 which
are called the principal stretches. We take

W (F ) = Φ(v1, . . . , vn) , F ∈ Mn×n
+ (5)

where for n = 2

Φ(v1, v2) = A(vα1 + vα2 ) +B(v−β
1 + v−β

2 )

+ C(v1v2)
γ +D(v1v2)

−δ (6)

and for n = 3

Φ(v1, v2, v3) = A(vα1 + vα2 + vα3 ) + B(v−β
1 + v−β

2 + v−β
3 )

+ C((v1v2)
γ + (v1v3)

γ + (v2v3)
γ)

+ D((v1v2)
−δ + (v1v3)

−δ + (v2v3)
−δ) (7)

+ E(v1v2v3)
ϵ +G(v1v2v3)

−ϕ

and all the coefficients and variables in the exponents are nonnegative except
for α which is usually taken greater or equal to one. The different terms
in (7) (similar comments apply to (6)) satisfy the requirement that infinite
expansions or compressions of fibers, surface or volume elements within the
material, must be accompanied by an infinite energy. Note that (6)–(7)
satisfies

Φ(v1, v2) = Φ(v2, v1) , for n = 2 (8)

Φ(v1, v2, v3) = Φ(vσ(1), vσ(2), vσ(3)) , for n = 3 (9)

where σ is any permutation of {1, 2, 3}. This condition is equivalent to the
material of the body been isotropic.
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We study the special case of (4) in which the deformation p(·) is radially
symmetric, i.e.,

p(x) = ρ(||x||) x

||x||
, x ∈ Ω (10)

for some scalar function ρ. In this case one can easily check that

v1 = ρ′(s) , v2, . . . , vn =
ρ(s)

s
, s = ||x|| (11)

Thus (4) reduces (up to a constant multiple) to

I(p) =
∫ 1

0
sn−1Φ

(
ρ′(s),

ρ(s)

s
, . . . ,

ρ(s)

s

)
ds (12)

From (3) we get the inequalities

ρ′(s) ,
ρ(s)

s
> 0 , 0 < s < 1 (13)

We assume that the boundary is uniformly displaced which for (10) takes the
form

ρ(1) = λ , λ > 0 (14)

The Euler-Lagrange equation for (12) is(
sn−1Φ,1

(
ρ′(s),

ρ(s)

s
. . . ,

ρ(s)

s

))′

=

(n− 1)sn−2Φ,2

(
ρ′(s),

ρ(s)

s
, . . . ,

ρ(s)

s

)
(15)

where 0 < s < 1, subject to (14) and

ρ(0) ≥ 0 , lim
s→0+

sn−1Φ,1

(
ρ′(s),

ρ(s)

s
. . . ,

ρ(s)

s

)
= 0 (16)

(See Ball (1982) for conditions under which the minimizer of (12), (13),
and (14) satisfies (15), (16)). The second condition in (16) states that if
a hole opens at the center (ρ(0) > 0), then the component of the stress
normal to the surface of the hole, is zero. For α < n, Ball (1982) proved that
for λ sufficiently large, the minimizer of (11) satisfies (16) with ρ(0) > 0, i.e.,
a hole opens up at the center of the ball. This phenomena of void formation
is called cavitation.
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3 The Linearized Euler-Lagrange Equations

Note that from (8)–(9) it follows that

ρ(s) = λs (17)

is a solution of (14)–(16) for all values of λ. We call (17) the trivial or
affine solution. We now study the linearization of (14)–(16) about the trivial
solution (17). We shall use the notation Φ,1(λ) for the derivative of Φ with
respect to the first argument evaluated at (λ, . . . , λ), etc. By using (8)–(9),
one can easily check now that the linearized equation is given by

(sn−1v′)′ + (n− 1)

[
(n− 2)

Φ,12(λ)

Φ,11(λ)
− (n− 1)

]
sn−2v

s
= 0 (18)

subject to

lim
s→0+

sn−1
[
Φ,11(λ)v

′ + (n− 1)Φ,12(λ)
v

s

]
= 0 , v(1) = 0 (19)

The solutions of (18) are of the form sr where r is a root of the quadratic
equation

r2 + (n− 2)r + (n− 1)

[
(n− 2)

Φ,12(λ)

Φ,11(λ)
− (n− 1)

]
= 0 (20)

We now study conditions under which (18), (19) have nontrivial solutions.
The values of λ for which this happens, called eigenvalues, represent possi-
ble bifurcation points for nontrivial branches of solutions (not equal to (17))
for (14)–(16). Those eigenvalues for which v(0) > 0 represent possible bifur-
cation points for branches of solutions with ρ(0) > 0, i.e., cavitating solutions.
We consider the cases n = 2 and n = 3 separate.

4 Two Dimensional Cavitation

We study now the case where n = 2 in (18)–(20). It follows that r = ±1 are
the roots of (20). Hence

v(s) = c1s+
c2
s

(21)
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is the general solution of (18). Now (19a) reduces to

lim
s→0+

[
(Φ,11(λ) + Φ,12(λ))c1s+ (Φ,12(λ)− Φ,11(λ)

c2
s

]
= 0 (22)

Note that if c2 = 0, then (22) is satisfied. However since (19b) implies
that c1 = −c2, we would have c1 = 0 also and (21) would be trivial. Thus
for nontrivial solutions of the form (21), we must have c2 ̸= 0. Thus any
eigenvalue when n = 2 represent a possible bifurcation point for a branch of
cavitating solutions. In this case (22) reduces to Φ,11(λ) = Φ,12(λ), which
because of our notation, is equivalent to

Φ,11(λ, λ) = Φ,12(λ, λ) (23)

Upon recalling (6) and after some simplifications, it follows that (23) is equiv-
alent to the following algebraic equation

α(α− 1)Aλα−2 + β(β + 1)Bλ−β−2 = γCλ2(γ−1) − δDλ−2(δ+1) (24)

We study the solution set of (24) graphically by considering the intersection
of the graphs of the functions on the left and right sides of this equation. The
multiplicity of solutions of this equation depends essentially on the values of
the exponents α and γ.

Case 1: (α < 2 and γ > 1) In this case there is always a unique solution
of (24). We show in Figure (4.1) a typical graph for this situation. In
this and similar figures, the dotted curve represents the left side of (24)
and the solid curve the right side.

Case 2: (α < 2 and γ < 1) In this case there can be none or several solutions
depending on the relative sizes of the coefficients and exponents in (24).
We show in Figure (4.2) a graph in which we get two intersections.

Case 3: (α > 2) In this case also there can be none or several solutions
depending on the relative sizes of the coefficients and exponents in (24).
We show in Figure (4.3) a typical graph in which γ > 1 and there is
one intersection. In Figure (4.4) we show a case in which γ < 1 and
there are two intersections.

Note that when α > 2, an examination of (6) and (11) shows that any solution
of (13)–(15) with ρ(0) > 0 has infinite energy. Thus the only physically
reasonable bifurcating cavitating branches would be in Cases 1 and 2 above.
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The particular example, A = C = D = 1.0, B = 0, α = γ = δ = 1.5
was studied in detail by Negrón-Marrero and Betancourt (1993) using an
accelerated steepest descent method to minimize (11) directly. We show
in Figure (4.5) the results they obtained for the cavity size of the minimizer
of (11) as a function of λ−1. Thus in this figure there is a bifurcation point for
λ in [1.08,1.09] approximately. This particular example corresponds to Case
1 above. If we solve equation (24) numerically, we get a root at λ = 1.0994
approximately which agrees very well with the numerical results.

5 Three Dimensional Cavitation

We study now the case where n = 3 in (18)–(20). One can easily check in
this case that the singular point s = 0 for (18) is in the limit point case
(see Stakgold (1979)). Thus we expect a mixed spectrum having possibly
continuous and discrete parts. The roots of (20) are now given by

r± = −1

2
± 1

2
g(λ)1/2 , g(λ) = 17− 8

Φ,12(λ)

Φ,11(λ)
(25)

Consider first the case in which g(λ) < 0. In this case the general solution
of (18) is given by

v(s) = s−1/2
[
c1 cos

(√
−g(λ) ln

√
s
)
+ c2 sin

(√
−g(λ) ln

√
s
)]

(26)

Condition (19b) implies that c1 = 0 in (26). An easy computation shows
now that (19a) is satisfied for any value of c2 and λ such that g(λ) < 0. Thus
{λ : g(λ) < 0} belongs to the continuous spectrum.

When g(λ) > 0, the general solution of (18) is given by

v(s) = c1s
r+ + c2s

r− (27)

Condition (19b) implies that c1 = −c2 and since r++1 > 0, (19a) reduces to

lim
s→0+

c2 (Φ,11(λ)r− + 2Φ,12(λ)) s
r−+1 = 0 (28)

Note that if r− + 1 > 0, equation (28) is satisfied with no restrictions on
c2. Thus we are in the continuous spectrum again. On the other hand, if
r− + 1 < 0, then to get solutions without c2 = 0, we need that

Φ,11(λ)r− + 2Φ,12(λ) = 0 (29)
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which upon simplification reduces to the algebraic equation

Φ,11(λ, λ, λ) = Φ,12(λ, λ, λ) (30)

We summarize our results so far in the following theorem.

Theorem 5.1 When n = 3 the continuous spectrum of (18), (19) consists
of

{λ : g(λ) < 1} = {λ : 2Φ,11(λ) < Φ,12(λ)} (31)

and the discrete part is given by the solutions of (30).

Note that from (7) it follows that (30) with the plus sign is equivalent to

α(α− 1)Aλα−2 + β(β + 1)Bλ−(β+2) + γ(γ − 2)Cλ2(γ−1)

= ϵEλ3ϵ−2 − ϕGλ−(3ϕ+2) − δ(δ + 2)Dλ−(2δ+2) (32)

Again we study the solution set of (32) graphically by considering the in-
tersections of the graphs of the functions on the left and right sides of this
equation. Motivated by the growth hypotheses in Ball (1982), we assume
that

γ =
α

α− 1
(33)

It then follows that
2(γ − 1) < α− 2 iff α > 3 (34)

We then have the following cases:

Case 1: (1 < α < 2) It follows now that γ > 2 and 2(γ − 1) > 2. Thus the
third term to the left of (32) and the first to the right are the dominant
ones. We get at least one intersection if 3ϵ−2 > 2(γ−1), i.e., 3ϵ > 2γ.
A typical graph is like the situation depicted in Figure (4.3).

Case 2: (2 < α < 3) We now have that γ < 2 and 2(γ − 1) < 2. The third
term to left of (32) is still the dominant one but now with a negative
coefficient. Thus we have an intersection for any ϵ > 1. A typical graph
is shown in Figure (5.1).

Case 3: (α > 3) It follows from (34) that the first term to the left of (32)
and the first to the right are the dominant terms. Thus we have an
intersection if 3ϵ − 2 > α − 2, i.e., 3ϵ > α. A typical graph is like the
situation depicted in Figure (4.3).

Note that an examination of (7) and (11) shows that any bifurcating
cavitating branch in Case 3 has infinite energy.
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Fig. (4.1): A typical graph for Case 1 in 
which α < 2 and γ > 1.

Fig. (4.2): A typical graph for Case  in 
which α < 2 and γ < 1.
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Fig. (4.3): A typical graph for Case 3 in 
which α > 2 and γ > 1.

Fig. (4.4): A typical graph for Case 3 in 
which α > 2 and γ < 1.
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