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Abstract

An array of mirrors that directs or reflects sunlight onto a collector tower is
called a heliostat. Heliostats have successfully been employed in several countries
(Spain and US) as a means of generating clean renewable energy. The usual arrays
of heliostat mirrors have them set in a kind of semi-circular planar arrangement,
each mirror facing the collecting tower. Recently it has been found that if the
mirrors are arranged in a pattern reminiscent to the way leaves arrange in many
plants (and related to the golden ratio), then the efficiency of the heliostat is greatly
increased. In this project we study whether such arrangements or others increase
efficiency as well, but in non planar arrangements of mirrors. After finding an
expression for the total collected light by the tower in terms of the geometrical pa-
rameters of the mirror array (location of mirrors centroids and angles of inclination
and rotation), we use a nonlinear optimization computer package to determine the
values of these parameters that maximize the total collected light. We perform
simulations for sunlight azimuthal and elevation data of regions in California (US),
Spain and Dubai.

1 Introduction

Finding alternative energy sources has been a problem in this and last century. Modern
technologies like the wind turbine and solar cell have help us but we still need to find
other alternatives. In this paper we explore an alternative energy source based on an
array of mirrors called heliostats. This array of mirrors directs or reflects sunlight into
a collector tower. The energy collected can be used to power turbines that can generate
electricity. This technology has been used by countries like Spain1 and the United States.

∗pablo.negron1@upr.edu
†jomarie.jimenez@upr.edu
1http://www.abengoasolar.com
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Usually the mirrors are arrange in a semi-circular fashion around the tower on a flat
terrain, with each mirror “facing” the tower. Recently it has been shown [6] that if the
mirrors are arranged in a pattern, similar to the one leaves arrange in some plants [2],
then the efficiency of the heliostat improves substantially. In this paper we study whether
such arrangements or others increase efficiency as well, but in non planar arrangements
of mirrors like those setup on the ladder of a hill.

In Section 2 we derive the basic equations for the reflected sun light for a single
mirror. These expressions depend on the geometrical parameters of the mirror (angles of
rotation and inclination, length and width, location in terms of its centroid), the height
and dimensions of the tower and its collector, as well as the angles characterizing the
incident ray. These equations are used in Section 3 to get an expression (cf. (12)) for
the total collected light by the tower, now for a mirror array assuming no interference
between mirrors. The mirrors in this model can be at different heights, either above
ground level or placed on a hill. The problem now is to determine the angles of rotation
and inclination, as well as positions of the centroids, that maximize the total collection
by the tower from the mirror array.

2 Basic equations for a single mirror

Let P0 be a plane containing the point (x0, y0, z0). Assume that P0 makes angle α1 with
the xy plane where 0 ≤ α1 ≤

π
2
, and that the line of intersection between P0 and the xy

plane makes an angle α2 with the x axis (in the positive direction) where 0 ≤ α2 ≤ π. It
follows that this plane has unit normal given by:

N = [sinα1 sinα2,− sinα1 cosα2, cosα1] . (1)

An equation for P0 is thus given by

N · (x− x0, y − y0, z − z0) = 0. (2)

An incident sunlight ray with azimuthal and zenith angles θ and ψ respectively, can
be described by

vi = [sinψ sin θ, sinψ cos θ, cosψ] , (3)

where θ ∈ [0, 2π] and ψ ∈ [0, π]. The angle θ is measured clockwise from the positive y
axis (the north direction). An easy calculation now shows that the reflected ray, using
Snell’s law, is given by

vr = 2(vi ·N)N− vi. (4)

We let θr ∈ [−π, π] and ψr ∈
[

−π
2
, π
2

]

be the azimuthal and elevation angles respectively
for vr. Note that these angles are functions of α1, α2, θ, and ψ, independent of the point
of reflection over P0.

A mirror M with centroid (x0, y0, z0) and angles α1, α2, is now given by

M = {(x, y, z) : z = z0 + tan(α1)[− sin(α2)(x− x0) + cos(α2)(y − y0)]} , (5)
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and (x, y) are restricted to

[

x
y

]

= Rα2

[

u
v

]

+

[

x0
y0

]

, u ∈
[

−
mw

2
,
mw

2

]

, v ∈
[

−
ml

2
cos(α1),

ml

2
cos(α1)

]

. (6)

Here mw, ml are the width and length respectively of the mirror, and Rα2
is the rotation

matrix

Rα2
=

[

cos(α2) − sin(α2)
sin(α2) cos(α2)

]

.

Note that M is a function of α1, α2, and c = (x0, y0, z0). Thus we occasionally write
M(α1, α2, c) to emphasize such dependence.

We assume the collecting tower is cylindrical with centre axis at the origin and diam-
eter 2aT . The tower is of height H with the collector on top of height R. The reflected
ray vr does not necessarily hit the tower collector. There are two conditions for this ray
to hit the reflector: one concerning the azimuthal angle of the reflecting ray, and the
other on the elevation angle characterizing the height at which this ray potentially hits
the tower. Let (x, y, z) be a point on M and in reference to Figure 1, which shows the
projection onto the xy plane of this point and the tower, we define the following angles:

γ(x, y) = sin−1

(

aT
√

x2 + y2

)

, δ(x, y) = Tan−1(−x,−y). (7)

Here ω = Tan−1(a, b) (the four quadrant inverse tangent function) is the angle that the
ray from the origin and containing the point (a, b) makes with the positive x axis, where
ω ∈ (−π, π). The condition on the azimuthal angle of the reflecting ray now takes the
form:

δ(x, y)− γ(x, y) ≤ θr ≤ δ(x, y) + γ(x, y). (8)

If θr satisfies this condition, then the line in the xy plane with this direction and con-
taining the point (x, y), will intersect the circle of the tower in at most two points. If
we write vr = (vr,1, vr,2, vr,3), then these intersections are given by (x + t vr,1, y + t vr,2),
where t is a solution of the quadratic

(x+ t vr,1)
2 + (y + t vr,2)

2 = a2T . (9)

We now have:

Lemma 2.1. The quadratic equation in t given by (9) has real solutions if and only if

(8) holds.

Proof : Let ω be the angle between the vectors (x, y) and (vr,1, vr,2). The discriminant in
(9) is non-negative if and only if cos2 ω ≥ cos2 γ(x, y). In reference to Figure 1, we have
that ω = π + δ(x, y)− θr. Thus the discriminant is non-negative if and only if

cos2(δ(x, y)− θr) ≥ cos2 γ(x, y).
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tower

Figure 1: Angles γ(x, y) and δ(x, y) for a given point (x, y, z) on the mirror. The green
line segment represents the projection onto the xy plane of a reflected ray.

As δ(x, y)−θr ∈
[

−π
2
, π
2

]

is necessary for the reflecting ray to hit the tower, and γ(x, y) ∈
[

0, π
2

]

, the above inequality implies that δ(x, y)− θr ≤ γ(x, y) or δ(x, y)− θr ≥ −γ(x, y),
i.e., that (8) holds.

If (xp, yp) is the intersection point closest to (x, y), then in reference to Figure 2, we
have that the height condition for the reflecting ray to hit the collector, is given by

H ≤ z + tan(ψr)
√

(x− xp)2 + (y − yp)2 ≤ H +R. (10)

If α1 <
π
2
, we can solve for z in equation (2) to get that the inequality above is in terms

of (x, y) only.
Let D be the set of all (x, y) satisfying (6) and the inequalities (8) and (10). If A

represents the area of the region in M with (x, y) ∈ D, then the energy collected by the
tower’s collector from the mirror at (x0, y0, z0), is proportional to A. In the following
lemma we establish an expression for this area.

Lemma 2.2. Let A be the area of the region in M with (x, y) ∈ D. If we write N =
(N1, N2, N3) in (1), then provided N3 6= 0, we have that

A =
1

2N3

∫

∂D

(

[(N3 −N1N2)x−N2
2 y] dy − [(N3 +N1N2)y +N2

1x] dx
)

. (11)

Proof : We can parametrize M with (x, y) ∈ D by

Φ(x, y) =

(

x, y,−
1

N3
(N1x+N2y + d)

)

, (x, y) ∈ D,
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Figure 2: Diagram used for the height condition for a reflecting ray vr hitting the tower.

for some constant d. Let f : D → R
3 be the vector field given by

f(x, y, z) = (−y, x,N1x+N2y), (x, y) ∈ D.

It follows now that ∇ × f = (N2,−N1, 2) and the normal to M is given by N̂ =
(N1/N3, N2/N3, 1). Hence (∇× f) · N̂ = 2, and

∫∫

M

(∇× f) · N̂ dA = 2

∫∫

M

dA = 2A.

Thus, by Stokes Theorem, we get

2A =

∫

∂M

f · dr =

∫

∂M

(−y dx+ x dy + (N1x+N2y) dz),

=

∫

∂D

(−y dx+ x dy + (N1x+N2y)(−(N1/N3) dx− (N2/N3) dy),

=
1

N3

∫

∂D

(

[(N3 −N1N2)x−N2
2 y] dy − [(N3 +N1N2)y +N2

1x] dx
)

.

Note that both A and D are functions of α1, α2, θ, ψ, and c = (x0, y0, z0). Thus
occasionally we shall write A(α1, α2, c, θ, ψ), the same with D, to emphasize such depen-
dence. It is interesting to note that in the case N1 = N2 = 0 and N3 = 1, equation
(11) reduces to the standard one for the area of a plane region, obtained from Green’s
Theorem.
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3 Equations for the mirror array

We now use the equations from the previous section to define a total collected energy
function for a mirror array. We will assume that the centroids are specified, and the
mirror angles vary from mirror to mirror and during the day. Thus, with indexes i for
the mirror number and k for the hour of the day, we consider a finite collection of mirrors2
{

M (i,k)
}

characterized by the angles and centroids:

α
(i,k)
1 , α

(i,k)
2 , c(i) = (x

(i)
0 , y

(i)
0 , z

(i)
0 ), 1 ≤ i ≤ N, 1 ≤ k ≤M.

In reference to (5) and (6), we have that M (i,k) = M(α
(i,k)
1 , α

(i,k)
2 , c(i)). We use the

notation
α1 = (α

(i,k)
1 ), α2 = (α

(i,k)
2 ), c = (c(1), . . . , c(N)).

Let (θ(k), ψ(k)), k = 1, . . . ,M , represent pairs of azimuthal and zenith angles for
incident sunlight rays during a particular day. We define

D(i,k) = D(α
(i,k)
1 , α

(i,k)
2 , c(i), θ(k), ψ(k)).

This corresponds to the set of all (x, y) such that (x, y, z) ∈ M (i,k) for some z, and such

that the pair (θ
(i,k)
r , ψ

(i,k)
r ) satisfies the inequalities (8) and (10). Here (θ

(i,k)
r , ψ

(i,k)
r ) are

the azimuthal and elevation angles of the reflecting ray from mirror M (i,k) and incident
sunlight ray with angles (θ(k), ψ(k)).

Let A(i,k) = A(α
(i,k)
1 , α

(i,k)
2 , c(i), θ(k), ψ(k)) be the area of the region inM (i) with (x, y) ∈

D(i,k). The energy collected by the tower’s collector from the mirror array3 is given by

E(α1,α2) =

N
∑

i=1

M
∑

k=1

Is(θ
(k), ψ(k), α

(i,k)
1 , α

(i,k)
2 )A(i,k)∆tk ≡

N
∑

i=1

M
∑

k=1

E(i,k)∆tk, (12)

where Is accounts in part for the insolation, in units of kilowatts per square meter per
day, and ∆tk is a time increment (in fraction of a day).

The insolation Is includes the effects of the atmosphere air mass and the so called
cosine effects. The air mass, for a given zenith angle ψ, is defined by

AM =
1

cos(ψ)
.

The insolation due to the air mass effect is modeled by (cf. [1], [3]):

IAM = 1.353
[

0.7AM0.678

]

.

The cosine effect for incident sunlight ray vi and mirror with normal direction N, is
proportional to vi ·N. Thus for the net insolation Is we take:

Is(θ, ψ, α1, α2) = (vi ·N)IAM = 1.353(vi ·N) 0.7AM0.678

.
2We assume all the mirrors have the same dimensions mw,ml.
3At this point we are neglecting possible interference between mirrors.
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4 Numerical simulations

For the simulations, since we are not considering mirror interference, we can maximize
each of the functions E(i,k) in (12) individually. Each of this optimizations is performed
using the function fmincon of MATLABTM. The selection of the initial point for the
minimization process is rather important as these functions are very “flat”, that is, they
are zero in a large part of its domain, with the nonzero part of the graph in a rather
small region. Thus for the initial angles of a given mirror, we work with the inequalities
(8) and (10), with (x, y, z) set to the centroid of the mirror, and solving for all angles
satisfying these inequalities. We then pick any point in this region.

The specific values for the different parameters in the modeled were chosen as follows
(all lengths in meters), for the mirrors:

mw = 10, ml = 10,

with the centroids in a rectangular array with three rows of 17 mirrors, each row higher
than the one in front. Specifically:

c(j+17(s−1)) = (−50 + rj,−125 + ρ(s− 1), zj), j = 1, 2, 3, s = 1, 2, . . . , 17,

where ρ = 250/16, (r1, r2, r3) = (0,−40,−80), and (z1, z2, z3) = (5, 15, 25). The tower
is taken in the form of a right circular cylinder with radius aT = 7, solar collector of
height R = 14, and tower height H = 100. The inequalities (8) and (10) were solved
using meshes for the local mirror coordinates uv in (6) with 40 × 40 points. Once
the mesh points (x, y) satisfying these inequalities are determined, we use the function
boundary of MATLABTM, to extract the boundary points of this discrete region. After
constructing splines for the boundary points, we use these together with the midpoint
rule to approximate the areas given by (11). In the simulations we used data of azimuthal
and zenith angles from Dubai, March 31st, during the hours of 7:00AM to 6:00PM, in
increments of one hour. The results are summarized in Figures 3–5. The dots in these
figures correspond each to a mirror on a given row, with color indicating the magnitude
associated with the dot on the corresponding scale. Figures 3–4 show the optimal mirror
angles, while Figure 5 show the associated mirror energies (in kilowatts), each per row and
during the day. The optimal total array energy (cf. (12)) computed was approximately
964 kw. Finally in Figure 6 we show a diagram of the mirror array at noon with mirrors
in their optimal positions. Black vectors correspond to the plane normals and the blue
ones represent incoming sunlight rays.
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Figure 3: Diagram of the computed optimal α1 angles for the array as functions of the
hour of the day.
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Figure 4: Diagram of the computed optimal α2 angles for the array as functions of the
hour of the day.
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Figure 5: Diagram of the computed optimal energies (kw) for the array as functions of
the hour of the day.
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Figure 6: Diagram of the mirror array with mirrors in their optimal positions at noon.
Black vectors correspond to the plane normals and the blue ones represent incoming
sunlight rays.
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