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Abstract

In this paper we describe a model based on mechanical signaling to study the
propagation of wavefronts in Drosophila embryos during mitosis. In this model the
embryo membrane is modeled using the equations of elasticity for thin membranes,
including the effects of external (dipole type) forces and a damping term. After a
brief introduction to the equations for thin membranes and mechanical signaling,
we describe a finite element scheme for the approximate solution of the resulting
diffusion type system of partial differential equations. We present some preliminary
results of a computer simulation using the proposed model assuming the embryo
membrane is an ellipsoidal shell.

1 Introduction

In early embryos of many species mitosis progresses as a wavefront through the embryo.
Some kind of inter–cellular signal regulates the mitotic behavior as the divisions are spa-
tially and temporally organized across the embryo. Such signaling is generally assumed
to be biochemical in nature, but there is also a strong mechanical component to mitosis
due to the displacements of the chromosomes during division. There are 14 cycles in
mitosis. At the beginning of the ninth cycle, all of the nuclei migrate to the shell of the
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embryo. The mitosis wavefronts are only observed between cycles 9-13. For a given cycle
(of mitosis) in a given embryo, two wavefronts (metaphasic and anaphasic) travel at the
same speed. Both wavefronts slow down with cycle, and produce large-scale collective
motion of the nuclei. In this paper we use the model proposed in [4] for the early embryo
as a mechanically excitable medium, through which mitotic wavefronts can propagate
via stress diffusion.

2 Mechanical signaling

We think of the embryo membrane as an ellipsoidal shell in three dimensions. The shell
deforms due to three types of forces:

• internal mechanical forces due to the elastic properties of the shell;

• active force dipoles generated by the mitotic spindles;

• passive friction.

If u(x, t) represents the displacement vector, then the equations of three dimensional
elasticity for the above set of forces are given by:

Γ
∂u

∂t
= divC[∇u] + div

[
N∑
k=1

gk(u)δ(x− xk)dk ⊗ dk

]
, (1)

where C is the (linear) elasticity tensor and is given by

C[∇u] = λ(tr (E))I+ 2µE, E =
1

2

[
∇u+∇uT

]
,

with λ, µ characterizing the mechanical properties of the shell. In addition there are initial
and boundary conditions that we shall specify later. For details about the structure of the
term corresponding to the force dipoles we refer to [1] and [7]. The N above represents
the number of nuclei on the shell that might undergo mitosis. We added to the basic
dipole type force model the function gk that serve as a mechanism for “activating” the
k–th dipole when certain local condition is satisfied (cf. (11)) which makes equation (1)
to be nonlinear in u.

These equations need to be further specialized so that:

i) one can make use of the fact that the shell is very thin compared to its axial dimen-
sions;
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ii) the partial derivatives involved have to be put in terms of curvilinear coordinates to
make use of the two dimensional character of the shell.

There are several standard models of shells in the literature that result from this two step
process. The equations that we shall employ in this work are due to Koiter [5]. We refer
to [8] for a justification or derivation of Koiter’s equations from the three dimensional
theory of nonlinear elasticity.

3 The equations for thin shells: Koiter’s equations

The development and notation in this section follows very closely the presentation in [2].
A parametrization of a surface S ⊂ R3 consists of a mapping θ : ω ⊂ R2 → R3 such
that S = θ(ω). Let

aα(y) = ∂αθ(y), α = 1, 2,

a3(y) =
a1(y)× a2(y)∥∥a1(y)× a2(y)

∥∥ ,
be the covariant basis at θ(y) ∈ S, and let {a1, a2, a3} be the corresponding contravariant
basis, i.e., ai · aj = δij (Kronecker delta)1. Let

aαβ = aα · aβ, aγτ = aγ · aτ ,

bαβ = a3 · ∂βaα, bβα = aβσbσα, Γσ
αβ = aσ · ∂βaα.

The matrix (aαβ) is called the metric tensor or first fundamental form of S, and (bαβ) is
the second fundamental form of S. It follows that (aαβ)(aγτ ) = I. The functions

{
Γσ
αβ

}
are called the Christoffel symbols of the second type.

A deformation of the surface S is given by a function of the form θ + η where
η = ηia

i : ω → R3 is the displacement deformation vector. For a given η, we define
covariant and contravariant basis, metric tensors, etc., on the deformed surface:

aα[η] = ∂α(θ + η), aαβ[η] = aα[η] · aβ[η], etc.

bαβ[η] =
1√
a[η]

∂αβ(θ + η) · (a1[η]× a2[η]), a[η] = det(aαβ[η]).

1Roman indexes run over 1, 2, 3 while greek indexes run over 1, 2. We make use of the repeated index
notation in which an expression like pαηα stands for the sum p1η1 + p2η2, etc..
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We can now define the tensors:

Gαβ[η] =
1

2
[aαβ[η]− aαβ] , (change in metric),

Rαβ[η] = bαβ[η]− bαβ, (change in curvature).

The energy functional associated to a displacement deformation vector η = ηia
i of the

shell, is defined now by:

E(η) =
1

2

∫
ω

[
εaαβστGστ [η]Gαβ[η]

+
ε3

3
aαβστRστ [η]Rαβ[η]

]
j(y) dy −

∫
ω

piηi j(y) dy,

where piai is the average body force across the thickness of the shell, ε is the shell
thickness,

j(y) =
√
a(y), a(y) = det(aαβ(y)), y ∈ ω,

and

aαβστ (y) =
4λµ

λ+ 2µ
aαβ(y)aστ (y) + 2µ

(
aασ(y)aβτ (y) + aατ (y)aβσ(y)

)
,

are the contravariant components of the elasticity tensor in curvilinear coordinates.
Koiter’s nonlinear equations are the Euler–Lagrange equations for E(·). The lin-

earization of these equations about η = 0 gives the linear Koiter’s equations, which are
given by [2]:

−
(
nαβ + bασm

σβ
)
|β − bασ(m

σβ|β) = pα, in ω,

mαβ|αβ − bσαbσβm
αβ − bαβn

αβ = p3 in ω,

together with some boundary conditions. Here the covariant derivatives tαβ|β and tαβ|αβ
are given by:

tαβ|β = ∂βt
αβ + Γα

βσt
βσ + Γβ

βσt
ασ,

tαβ|αβ = ∂α(t
αβ|β) + Γσ

ασ(t
αβ|β),

The
{
nαβ

}
and

{
mαβ

}
are the components of the stress and bending moments with

respect to the covariant basis, and are related to the deformation via the constitutive
equations :

nαβ = εaαβστγστ [η], mαβ =
ε3

3
aαβστρστ [η], (2)
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where

γαβ[η] =
1

2
[∂βηα + ∂αηβ]− Γσ

αβησ − bαβη3,

ραβ[η] = ∂αβη3 − Γσ
αβ∂ση3 − bσαbσβη3 + bσα(∂βησ − Γτ

βσητ )

+bτβ(∂αητ − Γσ
ατησ) +

(
∂αb

τ
β + Γτ

ασb
σ
β − Γσ

αβb
τ
σ

)
ητ ,

are the linearized change in metric and curvature tensors.
Using the linear Koiter’s equations, we get that the shell version of (1), averaging

over the thickness of the three dimensional shell like structure, is given by

Γ aβα∂tηβ =
(
nαβ + bασm

σβ
)
|β + bασ(m

σβ|β) + pα, in ω, (3a)

Γ ∂tη3 = −mαβ|αβ + bσαbσβm
αβ + bαβn

αβ + p3 in ω, (3b)

where now the {ηi} are functions of (y, t). Using the constitutive equations (2), the above
equations give a system of three fourth order differential equations for the unknowns {ηi}.
However in the numerical scheme that we describe in the next section, we consider the
bending moments as unknowns as well. Thus we expand the system above with:

ε3

3
aαβστρστ [η] = mαβ, in ω. (4)

Thus we end up now with a second order system of seven equations for the unknowns {ηi}
and

{
mαβ

}
. The expression for nαβ in (2) is still used in (3a). Also we need to specify the

boundary and initial conditions, and the {pi} corresponding to the force dipole moments
in (1).

4 Numerical schemes and results

We take the surface S to be the ellipsoid:

x2

a2
+

y2

b2
+

z2

c2
= 1,

which can be parametrized by:

θ(θ, φ) = (a cos θ sinφ, b sin θ sinφ, c cosφ), (5)

where
y = (θ, φ) ∈ [0, 2π]× [0, π].

5



This mapping is singular at the poles given by φ = 0, π. Thus for our numerical simula-
tions we work instead with the punctured ellipsoid given by (5) with

y = (θ, φ) ∈ [0, 2π]× [κ, π − κ] ≡ ω,

where κ ∈ (0, π) is small. The covariant and contravariant bases {aj} and
{
ak
}
can now

be computed explicitly. We can now specify the boundary conditions in (3) and (4): the
functions {ηi} and

{
mαβ

}
are required to be periodic in θ, and for φ = κ, π−κ we require

that:

(nαβ + bασm
σβ)νβ = 0, α = 1, 2, (6a)

mαβ|βνα = 0, aγδαβ(∂αη3)νβ = 0, γ, δ = 1, 2. (6b)

We take as initial conditions that:

ηi(·, 0) = 0, i = 1, 2, 3, mαβ(·, 0) = 0, α, β = 1, 2. (7)

Let vi(y)a
i and

{
wαβ(y)

}
be smooth variations that are periodic in θ. A lengthy but

otherwise elementary calculation shows that the weak form of (3) and (4) subject to (6)
is given by:

ε3

3

∫
ω

(∂αη3)
[
aγδαβ(∂βwγδ) + ∂β

(
aγδαβ

)
wγδ + aγδαβwγδΓ

σ
σβ

]
j(y) dy

+
ε3

3

∫
ω

aγδαβ
[
Γσ
αβ∂ση3 + bσαbσβη3 − bσα(∂βησ − Γτ

βσητ )− bτβ(∂αητ − Γσ
ατησ)

−
(
∂αb

τ
β + Γτ

ασb
σ
β − Γσ

αβb
τ
σ

)
ητ
]
wγδ j(y) dy +

∫
ω

mγδwγδ j(y) dy

+

∫
ω

[
Γ(∂tη3)v3 −mαβ|β(∂αv3)−

(
bσαbσβm

αβ + bαβn
αβ
)
v3
]
j(y) dy

+

∫
ω

[
Γ aβα(∂tηβ)vα + (nαβ + bασm

σβ)∂βvα

−
(
Γα
βσ(n

βσ + bβτm
τσ) + bασm

σβ|β
)
vα
]
j(y) dy =

∫
ω

pkvk j(y) dy (8)

The right hand side involving the pkvk is chosen to be consistent with the forcing term
in (1) corresponding to the force dipoles. In particular, taking variations consistent with
the Kirchhoff–Love assumption in Koiter’s model and the vectors {d1, . . . ,dN} in (1) to
belong to span {a1, a2}, we get that∫

ω

pkvk j(y) dy = −
N∑
k=1

∫
ω

gk(η)δ(y − y
k
)dβ(k)d

α
(k)[vβ|α − bαβv3] j(y) dy, (9)
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where
{
y
1
, . . . ,y

N

}
⊂ ω are the curvilinear coordinates of the force dipoles, that is

dk = dα(k)aα(yk
), k = 1, . . . , N , and

vβ|α = ∂αvβ − Γσ
αβvσ.

Let ∆t > 0 be given, and set ti = i∆t, i ≥ 0. We let η(i) = η
(i)
j aj and mαβ

(i) to denote

approximations of η(·, ti) and mαβ(·, ti) respectively, and

nαβ
(i) = εaαβστγστ [η

(i)].

The time derivatives appearing in (8) will be approximated by:

∂tηj(·, ti) ≈
η
(i)
j − η

(i−1)
j

∆t
, j = 1, 2, 3, i = 1, 2, 3, . . . .

Using this and (9) we have the following time discretized version of the weak form (8):

ε3

3

∫
ω

(∂αη
(i)
3 )

[
aγδαβ(∂βwγδ) + ∂β

(
aγδαβ

)
wγδ + aγδαβwγδΓ

σ
σβ

]
j(y) dy

+
ε3

3

∫
ω

aγδαβ
[
Γσ
αβ∂ση

(i)
3 + bσαbσβη

(i)
3 − bσα(∂βη

(i)
σ − Γτ

βση
(i)
τ )− bτβ(∂αη

(i)
τ − Γσ

ατη
(i)
σ )

−
(
∂αb

τ
β + Γτ

ασb
σ
β − Γσ

αβb
τ
σ

)
η(i)τ

]
wγδ j(y) dy +

∫
ω

mγδ
(i)wγδ j(y) dy (10)

+

∫
ω

[ Γ

∆t
η
(i)
3 v3 −mαβ

(i) |β(∂αv3)−
(
bσαbσβm

αβ
(i) + bαβn

αβ
(i)

)
v3
]
j(y) dy

+

∫
ω

[ Γ

∆t
aβαη

(i)
β vα + (nαβ

(i) + bασm
σβ
(i))∂βvα −

(
Γα
βσ(n

βσ
(i) + bβτm

τσ
(i)) + bασm

σβ
(i) |β

)
vα
]
j(y) dy

=

∫
ω

[ Γ

∆t

(
aβαη

(i−1)
β vα + η

(i−1)
3 v3

)
−

N∑
k=1

gk(η
(i−1))δ(y − y

k
)dβ(k)d

α
(k)(vβ|α − bαβv3)

]
j(y) dy

For {vk} and {wαβ} in an appropriate finite element space (continuous piecewise poly-

nomials say) and η(i−1),
{
mαβ

(i−1)

}
given, one can compute from (10) the approximations

η(i),
{
mαβ

(i)

}
. The process is repeated up to a maximum value of time tmax. This process

was implemented using the package FreeFem++ (cf. [3]).
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reference configuration: x2

a2
+ y2

b2
+ z2

c2
= 1 a = b = 1, b = 2.5, κ = 0.01

shell thickness ε = 0.01

elasticity tensor µ = 3
8
, λ = 0.25

dragging coefficient Γ = 0.01

FE mesh approximately 3000 nodes

Number of nuclei (force dipoles) N=72

∆t 0.05

tmax 1 (time units)

Table 1: Parameter values for the numerical simulations.

For the functionals gk(η) we use:

gk(η) =

{
ρ, if

∥∥∥η(y
k
)
∥∥∥ ≥ cmin,

0, otherwise,
(11)

where cmin(= 0.01) is some minimal “threshold concentration” and ρ(= 0.02) is a measure
of the force dipole magnitude. The Dirac delta function is approximated by:

δ(y) ≈ Me−K‖y‖2

,

where K(= 100) controls the pulse “localization” and M is a constant to adjust for a
unit pulse. The dk’s in (10) are taken as randomly generated unit vectors tangent to the
shell.

The various parameters used in the simulations are shown in Table 1. We show in
Figure 1 the initial configuration together with the finite element mesh generated by
FreeFem++. In Figure 2 we show the computed deformed configuration of the shell after
tmax = 1 time unit, using 144 forced dipoles uniformly distributed over the shell but
with random dipole directions. Two “rings” of dipoles close to the poles of the shell
are initially active so the that the time evolution can proceed. In Figure 3 we illustrate
some of the dynamics of the process of going from Figure 1 to Figure 2. The coloring
in this figure is given by the norm of η, where ”blue“ represents a small deformation
compared to ‘’red” which represents a large one. One can see initially the two initial
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active dipole rings near the poles, and as time goes there is a wavefront of active dipole
that moves towards the equator of the shell. In Figure 4 we show part of the dynamics
for a simulation with the same parameters as above but with dipole pointing towards the
poles of the shell.

5 Comments and conclusions

There are several model equations for thin shells. Some of these, like Koiter’s equations,
can be rigorously justified as a limiting case of the 3D equations for a shell structure.
Although there are several programs for solving thin shell equations, there are little or
none for time dependent problems. We need to fine tune parameters in the model to
better reflect the biology of the actual phenomena. We need to compute with many
more nuclei for realistic results. In particular to measure the speed of propagation of the
wavefront. The Drosophila egg is actually filled with a fluid. We need to consider the
effects of the interaction between this fluid and the shell membrane.
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Figure 1: Initial configuration and finite element mesh.
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Figure 2: Computed deformation after tmax = 1 time units with 144 forced dipoles.
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Figure 3: Some of the dynamical process from Figure 1 to 2 showing a wavefront traveling
from the poles of the shell to the equator.
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Figure 4: Some of the dynamical process showing a wavefront traveling from the poles
of the shell to the equator for dipoles pointing to the poles of the shell.
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