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Abstract

We apply a genetic algorithm combined with a direct optimization

method to problems of the Calculus of Variations in one dimension

that exhibit the Lavrentiev phenomena� The genetic algorithm is

used as a predictor of the direct method� In this way we take ad�

vantage of the localization property of the genetic algorithm together

with the fast local convergence of the direct method� The numerical

results show that this combination produces very e�ective and robust

methods for computing singular minimizers�

Key words� Genetic algorithm� calculus of variations� Lavrentiev phenom�
ena�

� Introduction

The basic problem of the Calculus of Variations in one dimension can be
stated as �nding a function u � �a� b� � � belonging to a certain class A of
functions satisfying certain boundary conditions such that the integral

I	u
 �
Z b

a
f	x� u	x
� u�	x

 dx 	�
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is minimized� The problem of minimizing 	�
 is called regular if the integrand
f	x� u� z
 is C� and fzz �  for each 	x� u
� Minimizers of 	�
 can be singular

in the sense that they may be discontinuous or have unbounded derivatives
at some points� For these problems one could further have�

�� The Lavrentiev phenomena 	����� ���


inf
A�W ����a�b�

I	u
 � inf
A
I	u


�� If 	uj
 is a sequence in W ���	a� b
 that converges almost everywhere to
the minimizer u� of 	�
� then I	uj
�� as j ���

Here and henceforth Lp	a� b
 denotes the space of functions whose p�th power
is integrable on 	a� b
 in the sense of Lebesgue� and W ��p	a� b
 denotes the
Sobolev space of functions u that have a distributional derivative u�� both
of which belong to Lp	a� b
� 	See ���
� Examples of singular minimizers are
given in ���� ���� ���� The above two conditions suggest that usual �nite
element methods to solve 	�
 may fail both in approximating u� and I	u�

in the general case in which the location and type of singularity is unknown�
A method based on a decoupling technique was introduced in ��� and ����
that circumvents both of these two problems� In this method the decoupled
integral

�I	u� v
 �
Z b

a
f	x� u	x
� v	x

 dx 	�


is introduced where u belongs to W ���	a� b
 plus some boundary conditions
and v belongs to L�	a� b
� The problem now is to minimize 	�
 subject to the
condition Z b

a
ju�	x
� v	x
j dx � � 	�


For an appropriate �nite element discretization of 	�
 and 	�
 with discretiza�
tion parameter �h�� it is shown in ��� that for a sequence 	hj� �j
 � 	� 

both of the problems cited above can be overcome� However this convergence
result does not specify how the sequence f	hj� �j
g can be chosen� In practice
one has to add to these two parameters a penalization parameter correspond�
ing to 	�
 and a discretization parameter for the integrals in 	�
 and 	�
 which
makes the method impractical particularly in higher dimensions� A related
method that works as well with a modi�cation of the functional 	�
 is the
so�called element removal method introduced by ����� ����� In this method
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the regions of large function values or derivatives are omitted in a certain
sense from the integrand in 	�
�

Direct minimization methods for 	�
 based on quadrature rules can over�
come the Lavrentiev phenomenon and energy approximation problems cited
above� In ���� a method based on a Richardson extrapolation formula and a
generalized mid�point rule is used to compute singular minimizers of certain
problems in one and two dimensions� There is no guarantee however that
such methods will work for general problems as the discretizations are tai�
lored suited to the problems and convergence depends strongly on the initial
guess for the iterations�

In any case� decoupled or direct method� the computations are sensitive to
the initial point and can get trapped in local minima of the functional� This is
where genetic algorithms can be useful� Genetic algorithms are methods that
simulate a process of survival of the �tness for optimizing a given function�
Some ��tness� value is assigned to every element in a group or population
of possible optima and processes of natural selection and mutation are im�
plemented to generate a new population of hopefully better individuals� The
process is repeated and convergence to a solution is guaranteed under certain
conditions� 	See ����
� The important characteristic of the genetic algorithm
is that because of its random nature� the method searches a much larger
region of the space than a typical deterministic or direct method� Thus they
do not get trapped into local minima very often and consequently can locate
global optima fairly well� Also it has been observed that for large optimiza�
tion problems� the execution time for genetic algorithms grow linearly with
the size of the problem compared with the standard minimization methods
that grow quadratic in time� In this paper we apply a genetic algorithm
combined with a direct method to problems of the form 	�
 that exhibit the
Lavrentiev phenomena� The genetic algorithm is used as a predictor of the
direct method� In this way we take advantage of the localization property of
the genetic algorithm together with the fast local convergence of the direct
method� The numerical results show that this combination produces very
e�ective and robust methods for computing singular minimizers� The bib�
liography on genetic algorithms is extensive but we refer the reader to ����
and the references there in�

In Section � we describe some model problems of the form 	�
 that exhibit
the Lavrentiev phenomena and that we will solve numerically� On Section
� we describe the discretizations of the model problems and Section � is
devoted to describing the genetic algorithm and the operators used� Finally
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we give in Section � some numerical results and conclusions�

� Model Problems

We present in this section some examples of problems of the form 	�
 that
exhibit the Lavrentiev phenomenon and that we will use to test our numerical
schemes� For the proofs of all the results on this section as well as other
examples we refer to ���� ���� ���� and ����

Consider the problem of minimizing the functional

I	u
 �
Z �

�
	u	x
� � x
�u�	x
� dx 	�


for functions u � W ���	� �
 and satisfying the boundary conditions u	
 � �
u	�
 � �� Since the integrand is always non�negative the function u�	x
 � x���

is the minimizer which has an unbounded derivative at x � � Furthermore
it can be shown that

I	u�
 � inf
W ��r�����

I	u
 	�


for any r � ����
For our second example� we consider the radially symmetric deformations

of a unit disk in the plane composed of an isotropic� homogenouos� and
hyperelastic material� The disk is subjected to a uniform displacement of �
units of its outer boundary� If we let �	s
 denote the radius in the deformed
con�guration of the circle with radius s in the undeformed con�guration�
then the equilibrium con�guration of the disk is given as the minimum of the
following functional�

I	�
 �
Z �

�
s�

�
��	s
�

�	s


s

�
ds 	�


among functions � in

A� � f � � W ���	� �
 j �	
 �  � �	�
 � � � ��	s
 �  a�e� g 	�


Here �	v�� v�
 represents the stored energy function of an isotropic� homoge�

neouos and hyperelastic material and is given by

�	v�� v�
 � A	v�� � v�� 
 � C	v�v�

� �D	v�v�


�� 	�


�



and all the coe�cients and variables in the exponents are nonnegative except
for 	 which is usually taken greater or equal to one� The di�erent terms in 	�

satisfy the requirement that in�nite expansions or compressions of �bers� or
surface elements within the material� must be accompanied by an in�nite
energy� The conditions �	
 �  and ��	s
 �  in the set A� correspond to
the requirement that an element of positive area can not be reduced to zero
during the deformation� In ��� it is shown that 	�
 has a minimum � � A�

for any � � � Furthermore� for 	 � � and � su�ciently large� the minimizer
satis�es �	
 �  and 	Lavrentiev phenomena


inf
A�

I	�
 � inf
A��W

��r
s �����

I	�
 	�


for any r � � where

W ��r
s 	� �
 �

�
� � W ���	� �
 j

Z �

�
s

�
��	s
r �

�
�	s


s

�r�
ds ��

�
	�


The condition �	
 �  is called cavitation and implies that a hole opens at
the center of the disk�

� Discretizations

For the model problem 	�
 let

xi � ih �  � i � n � h � ��n 	��


and ui denotes an approximation of u	xi
� We write

uh � 	u�� u�� 
 
 
 � un
 � u� �  � un � � 	��


Then we discretize 	�
 as follows�

Ih	uh
 � h
n��X
i��

�

�

h
	u�i � xi


� � 	u�i	� � xi	�

�
i
	�ui


� 	��


where

�ui �
ui	� � ui

h
�  � i � n� � 	��


Note that Ih is a function of n� � variables that we minimize numerically�
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For the model problem 	�
 we let

si � ih �  � i � n � h � ��n 	��


and �i denotes an approximation of �	si
� We use the notations

si	��� �
si � si	�

�
� �i	��� � �

�
��i�

�i � �i	�
si � si	�

�
	��


where  � i � n� �� With

�h � 	��� ��� 
 
 
 � �n
 � �n � � 	��


we discretize 	�
 by

Ih	�h
 � h
n��X
i��

si	����
i	��� 	��


which now is a function of n variables that we minimize numerically�

� A Genetic Algorithm

In this section we describe some aspects of the genetic algorithm� For further
details on genetic algorithms and related topics see ���� ���� ���� and �����

Genetic algorithms are methods that simulate a process of survival of the
�tness or natural selection for optimizing a given function� A �tness function

is used to assign a ��tness� value to every element in a group or population

of possible optima� The processes of natural selection and mutation are
implemented using certain operators so as to generate a new population of
hopefully better individuals� The process is repeated and convergence to a
solution is guaranteed under certain conditions� The important characteristic
of the genetic algorithm is that because of its random nature� the method
searches a much larger region of the space than a typical deterministic or
direct method� Thus they do not get trapped into local minima very often
and consequently can locate global optima fairly well� The basic steps of a
genetic algorithm can be described as follows�

�� 	Initialization
 Generate a usually random initial population of N in�
dividuals and assign to each a �tness value�

�� 	Selection
 From the given population select those individuals that are
most �tted and that will be represented in the next generation�
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�� 	Reproduction
 A portion of the population reproduces to generate
o�springs of the most �tted individuals�

�� 	Mutation
 A portion of the population undergoes a process of muta�
tion to generate potentially new individuals�

�� 	Evaluate
 Assign �tness values to the new population and repeat from
step 	�
�

We now describe in some details each of these basic steps but �rst we
mention that we use a �oating point implementation of the genetic algorithm
in which each individual is represented by a vector of n � � �oating point
numbers where n is speci�ed in 	��
 or 	��
� The use of a �oating�point
alphabet makes for a more natural representation of the individuals in our
population and reduces the size of the search space� We mention however
that most of the theoretical analysis for genetic algorithms is for the binary
alphabet�

��� Initialization

For the initial population we used a randomly generated N � 	n� �
 matrix
where N represents the population size and n � � the number of variables
in 	��
 or 	��
� The rows of this matrix are called individuals or chromosomes

and n� � is the chromosome length�

��� Selection

In the selection process individuals are selected for the next generation ac�
cording to their �tness� A spinning roulette mechanism is simulated in the
following manner� Let �ti� � � i � N be the �tness values for all the pop�
ulation individuals and let �ttot �

PN
j�� �tj be the total �tness� Then for

a randomly generated number r� the i�th individual is passed to the next
generation if

i��X
j��

�tj � r �ttot �
iX

j��

�tj 	��


This process is repeated N times� Note that several copies of a given individ�
ual can �survive� to the next generation this of course been more probable
for the most �tted individuals�
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��� Reproduction

After the selection process is completed� a fraction of the selected individuals
are chosen formating or crossover� The process is called arithmetic crossover

and can be described as follows� For a given number pm between zero and
one� the mating rate� a fraction pm of the population is randomly selected for
mating� Given two individuals u� v for mating� a new pair �u� �v is generated
as follows�

�u � r u� 	�� r
v � �v � 	�� r
u� r v 	�


where r is a randomly generated number between zero and one�

��� Mutation

The mechanism of mutation is used in the genetic algorithm to introduce
variability� The selection process described in Subsection 	���
 above has the
tendency of stabilizing the population� That is� after several iterations� the
selection process by itself tends to produce similar individuals� which may
or may not represent global minima� The mutation process then is used
to break this early convergence of the method by randomly inserting new
individuals into the population� In particular we used what is called non�

uniform mutation� Given a number � between zero and one� the mutation

rate� a fraction � of the total of N	n� �
 �bits� in the population is selected
for mutation� If the variable x � �a� b� is chosen for mutation� then a new
value �x is generated according to�

�x �

�
x � 	b� x
fg � r� � 
�
x � 	x� a
fg � r� � 
�

	��


where r�� r� are randomly generated numbers between zero and one� and

fg � �� rifract� � ifract �
�
��

iterc
itermax

	�
	��


and iterc� itermax are the current iteration index and maximum number of
iterations respectively� Since fg is small as iterc increases� the mutation
mechanism disminishes as the iteration counter increases�

The �tness function for our discretized model problems 	��
 and 	��
 is
given by

�f	uh
 �
�

� � Ih	uh

	��
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so that for �f we have now a maximization problem� Finally we mention
that in the actual implementation we used also an elitist strategy in which
the best individual of the previous generation is kept� If the best individual
of the current generation were worse� then the best member of the previous
generation would replace the worst member of the current population�

� Numerical Results and Conclusions

We describe now the results of applying the genetic algorithm in combina�
tion with a direct method to the model problems of Section �� The direct
optimization method we use is based on a Richardson extrapolation and is
described in ����� The actual implementation of the genetic algorithm in�
cludes after the initialization step a stage in which a simulated annealing
method is applied to the randomly generated initial population thus produc�
ing a better initial population for the genetic algorithm� We refer to ���� for
details on the simulated annealing method�

The results we present are the best of ten independent runs of the pro�
gram� The population size was set at � with a maximum number of �
iterations� The mating rate was set at ��� and the mutation rate at ���
The chromosome length is �� or �� which corresponds to n � � in 	��

or 	��
 respectively� All computations were carried on a Gateway PC with a
���Mhz Pentium II processor�

For the model problem 	�
 and its discretization 	��
 the results are shown
in Table �� The minimum value in this table corresponds to the value of
Ih	uh
 in 	��
� Note that the code successfully computes the global minimum
of zero�

Genetic Algorithm Direct Method

Execution Time 	min
 ������� ������
Minimum Value ������ ������e���

Table �� Numerical results for the model problem 	�


The results of Figure � show the average �tness 	function values here are
for 	��

 as a function of the iteration for the genetic algorithm� The actual
population �tnesses behave in a similar fashion but with a high variability
during the �rst iterations and a small one for the later ones�
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In Figure � we show the solutions computed by the genetic algorithm�
the direct method and the exact solution which is known for this problem�
We can see that the direct method computes the exact solution essentially to
the machine precision� It is important to observe that the genetic algorithm
approximates fairly well the minimizer in the region where the derivative is
very large thus capturing the singular behavior of the solution�

The Lavrentiev phenomenon for the discretized problem becomes the case
of a function with one local minima with a value strictly greater than the
global minimum� On one of the ten runs of our code� the combined method
converged to a local optima of 	��
 which represents an approximation of a
smooth solution of 	�
 with a minimum energy of approximately ������ In
Figure � we show this solution as the Final Approximate Solution�

For the model problem 	�
 and its discretization 	��
 the results are shown
in Table �� The qualitative performance of the genetic algorithm is similar
to that for the �rst test problem as can be seen from Figure �� The con�
dition ��	s
 �  in 	�
 was not included explicitly in the genetic algorithm
thus reducing the overhead time but resulting perhaps in a not so optimal
solution� In fact in Figure � we can see that the solution computed by the
GA in this case is not stricly increasing� The condition of strictly increas�
ing however was included in the direct method as the overhead required was
minimal� In Figure � we show both the solution computed by the GA and
the direct method together with the graph of the deformation corresponding
to a uniform expansion of the disk�

Genetic Algorithm Direct Method

Execution Time 	min
 ����� ������
Minimum Value ����� ������

Table �� Numerical results for the model problem 	�
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