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Abstract

We apply a genetic algorithm combined with a direct optimization
method to problems of the Calculus of Variations in one dimension
that exhibit the Lavrentiev phenomena. The genetic algorithm is
used as a predictor of the direct method. In this way we take ad-
vantage of the localization property of the genetic algorithm together
with the fast local convergence of the direct method. The numerical
results show that this combination produces very effective and robust
methods for computing singular minimizers.
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1 Introduction

The basic problem of the Calculus of Variations in one dimension can be
stated as finding a function u : [a,b] — R belonging to a certain class A of
functions satisfying certain boundary conditions such that the integral
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is minimized. The problem of minimizing (1) is called regular if the integrand
f(x,u,z) is C* and f,, > 0 for each (x,u). Minimizers of (1) can be singular
in the sense that they may be discontinuous or have unbounded derivatives
at some points. For these problems one could further have:

1. The Lavrentiev phenomena ([11], [6])

AﬁWlll?Of;(a,b) I(u) > 1121f I(u)

2. If (u;) is a sequence in W*°(a, b) that converges almost everywhere to
the minimizer u* of (1), then I(u;) — oo as j — oo.

Here and henceforth LP(a,b) denotes the space of functions whose p-th power
is integrable on (a,b) in the sense of Lebesgue, and W'?(a,b) denotes the
Sobolev space of functions u that have a distributional derivative u/, both
of which belong to LP(a,b). (See [1]). Examples of singular minimizers are
given in [4], [5], [8]. The above two conditions suggest that usual finite
element methods to solve (1) may fail both in approximating v* and I(u*)
in the general case in which the location and type of singularity is unknown.
A method based on a decoupling technique was introduced in [3] and [15]
that circumvents both of these two problems. In this method the decoupled
integral

~

(u,0) = /abf(x,u(x),v(x)) dz (2)

is introduced where u belongs to W'!(a,b) plus some boundary conditions
and v belongs to L*(a,b). The problem now is to minimize (2) subject to the
condition

[ @)~ @) dr < e 3)

For an appropriate finite element discretization of (2) and (3) with discretiza-
tion parameter ”h”, it is shown in [3] that for a sequence (hj,¢;) — (0,0)
both of the problems cited above can be overcome. However this convergence
result does not specify how the sequence {(h;,€;)} can be chosen. In practice
one has to add to these two parameters a penalization parameter correspond-
ing to (3) and a discretization parameter for the integrals in (2) and (3) which
makes the method impractical particularly in higher dimensions. A related
method that works as well with a modification of the functional (1) is the
so-called element removal method introduced by [12], [13]. In this method



the regions of large function values or derivatives are omitted in a certain
sense from the integrand in (1).

Direct minimization methods for (1) based on quadrature rules can over-
come the Lavrentiev phenomenon and energy approximation problems cited
above. In [16] a method based on a Richardson extrapolation formula and a
generalized mid-point rule is used to compute singular minimizers of certain
problems in one and two dimensions. There is no guarantee however that
such methods will work for general problems as the discretizations are tai-
lored suited to the problems and convergence depends strongly on the initial
guess for the iterations.

In any case, decoupled or direct method, the computations are sensitive to
the initial point and can get trapped in local minima of the functional. This is
where genetic algorithms can be useful. Genetic algorithms are methods that
simulate a process of survival of the fitness for optimizing a given function.
Some "fitness” value is assigned to every element in a group or population
of possible optima and processes of natural selection and mutation are im-
plemented to generate a new population of hopefully better individuals. The
process is repeated and convergence to a solution is guaranteed under certain
conditions. (See [17]). The important characteristic of the genetic algorithm
is that because of its random nature, the method searches a much larger
region of the space than a typical deterministic or direct method. Thus they
do not get trapped into local minima very often and consequently can locate
global optima fairly well. Also it has been observed that for large optimiza-
tion problems, the execution time for genetic algorithms grow linearly with
the size of the problem compared with the standard minimization methods
that grow quadratic in time. In this paper we apply a genetic algorithm
combined with a direct method to problems of the form (1) that exhibit the
Lavrentiev phenomena. The genetic algorithm is used as a predictor of the
direct method. In this way we take advantage of the localization property of
the genetic algorithm together with the fast local convergence of the direct
method. The numerical results show that this combination produces very
effective and robust methods for computing singular minimizers. The bib-
liography on genetic algorithms is extensive but we refer the reader to [14]
and the references there in.

In Section 2 we describe some model problems of the form (1) that exhibit
the Lavrentiev phenomena and that we will solve numerically. On Section
3 we describe the discretizations of the model problems and Section 4 is
devoted to describing the genetic algorithm and the operators used. Finally



we give in Section 5 some numerical results and conclusions.

2 Model Problems

We present in this section some examples of problems of the form (1) that
exhibit the Lavrentiev phenomenon and that we will use to test our numerical
schemes. For the proofs of all the results on this section as well as other
examples we refer to [2], [4], [5], and [8].

Consider the problem of minimizing the functional

1w = (@) — 2)2 (2)° da (@)

for functions u € W'!(0, 1) and satisfying the boundary conditions u(0) = 0,
u(1) = 1. Since the integrand is always non-negative the function u*(z) = z'/3
is the minimizer which has an unbounded derivative at = 0. Furthermore

it can be shown that
I(u") < WII,P(EJ)I(u) (5)
for any r > 3/2.

For our second example, we consider the radially symmetric deformations
of a unit disk in the plane composed of an isotropic, homogenouos, and
hyperelastic material. The disk is subjected to a uniform displacement of A
units of its outer boundary. If we let p(s) denote the radius in the deformed
configuration of the circle with radius s in the undeformed configuration,
then the equilibrium configuration of the disk is given as the minimum of the
following functional:

1) = [ s (56,2 as 0

among functions p in
Ax={peWh(0,1) | p(0) >0, p(1) =X, p(s)>0ae } (7)

Here ® (v, v9) represents the stored energy function of an isotropic, homoge-
neouos and hyperelastic material and is given by

(I)(Ul, 7)2) = A(U? + U?) + 0(0102)7 + D(1)1U2)_6 (8)



and all the coefficients and variables in the exponents are nonnegative except
for  which is usually taken greater or equal to one. The different terms in (8)
satisfy the requirement that infinite expansions or compressions of fibers, or
surface elements within the material, must be accompanied by an infinite
energy. The conditions p(0) > 0 and p'(s) > 0 in the set Ay correspond to
the requirement that an element of positive area can not be reduced to zero
during the deformation. In [2] it is shown that (6) has a minimum p € A,
for any A > 0. Furthermore, for @ < 2 and A sufficiently large, the minimizer
satisfies p(0) > 0 and (Lavrentiev phenomena)

infI(p) < inf  I(p) 9)
Ax ANAWST(0,1)

for any r > 2 where
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The condition p(0) > 0 is called cavitation and implies that a hole opens at
the center of the disk.

ds < 0o } (10)

3 Discretizations
For the model problem (4) let
zp=1ih , 0<i<n , h=1/n (11)
and u; denotes an approximation of u(z;). We write
up = (ug, 1, .-, uy) , up=0, u, =1 (12)

Then we discretize (4) as follows:

n—1 1
n(up) =h Z [ uf —x;)? + (uly, — xiH)Z] (6u;)® (13)
where S
Su; = -4 0<i<n-—1 (14)

h Y
Note that I, is a function of n — 1 variables that we minimize numerically.
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For the model problem (6) we let
si=ih , 0<i<n , h=1/n (15)

and p; denotes an approximation of p(s;). We use the notations

Sit1/2 = BT il +28i+1 , 2= <5Pz', 7?: i 5::) (16)
where 0 <7 <n —1. With
Ph = (P0s P11 Pn) 5 Pn=A (17)
we discretize (6) by
T(on) = 1Y sis1p @2 (13)

i=0
which now is a function of n variables that we minimize numerically.

4 A Genetic Algorithm

In this section we describe some aspects of the genetic algorithm. For further
details on genetic algorithms and related topics see [7], [9], [10], and [14].

Genetic algorithms are methods that simulate a process of survival of the
fitness or natural selection for optimizing a given function. A fitness function
is used to assign a "fitness” value to every element in a group or population
of possible optima. The processes of natural selection and mutation are
implemented using certain operators so as to generate a new population of
hopefully better individuals. The process is repeated and convergence to a
solution is guaranteed under certain conditions. The important characteristic
of the genetic algorithm is that because of its random nature, the method
searches a much larger region of the space than a typical deterministic or
direct method. Thus they do not get trapped into local minima very often
and consequently can locate global optima fairly well. The basic steps of a
genetic algorithm can be described as follows:

1. (Initialization) Generate a usually random initial population of N in-
dividuals and assign to each a fitness value.

2. (Selection) From the given population select those individuals that are
most fitted and that will be represented in the next generation.



3. (Reproduction) A portion of the population reproduces to generate
offsprings of the most fitted individuals.

4. (Mutation) A portion of the population undergoes a process of muta-
tion to generate potentially new individuals.

5. (Evaluate) Assign fitness values to the new population and repeat from
step (2).

We now describe in some details each of these basic steps but first we
mention that we use a floating point implementation of the genetic algorithm
in which each individual is represented by a vector of n — 1 floating point
numbers where n is specified in (11) or (14). The use of a floating-point
alphabet makes for a more natural representation of the individuals in our
population and reduces the size of the search space. We mention however
that most of the theoretical analysis for genetic algorithms is for the binary
alphabet.

4.1 Initialization

For the initial population we used a randomly generated N x (n — 1) matrix
where N represents the population size and n — 1 the number of variables
in (13) or (16). The rows of this matrix are called individuals or chromosomes
and n — 1 is the chromosome length.

4.2 Selection

In the selection process individuals are selected for the next generation ac-
cording to their fitness. A spinning roulette mechanism is simulated in the
following manner. Let fit;, 1 < i < N be the fitness values for all the pop-
ulation individuals and let fit,,; = E;yzl fit; be the total fitness. Then for
a randomly generated number r, the i-th individual is passed to the next

generation if
i1 i

> ity < r ity <) fit; (19)
i=1 j=1
This process is repeated N times. Note that several copies of a given individ-
ual can ”survive” to the next generation this of course been more probable
for the most fitted individuals.



4.3 Reproduction

After the selection process is completed, a fraction of the selected individuals
are chosen for mating or crossover. The process is called arithmetic crossover
and can be described as follows. For a given number p,, between zero and
one, the mating rate, a fraction p,, of the population is randomly selected for
mating. Given two individuals u, v for mating, a new pair @, ¢ is generated
as follows:

t=ru+(1—rjv , o=(_1-rjut+rv (20)

where r is a randomly generated number between zero and one.

4.4 Mutation

The mechanism of mutation is used in the genetic algorithm to introduce
variability. The selection process described in Subsection (4.2) above has the
tendency of stabilizing the population. That is, after several iterations, the
selection process by itself tends to produce similar individuals, which may
or may not represent global minima. The mutation process then is used
to break this early convergence of the method by randomly inserting new
individuals into the population. In particular we used what is called non-
uniform mutation. Given a number p between zero and one, the mutation
rate, a fraction u of the total of N(n — 1) ”bits” in the population is selected
for mutation. If the variable x € [a,b] is chosen for mutation, then a new
value 7 is generated according to:

. Jrx+OO-2)f, , T <05
x_{x—i-(x—a)fg , 11>05 (21)
where r{, 7, are randomly generated numbers between zero and one, and
. .t . 2
f,=1—rifract ipact = (1 _ e ) (22)
1ter, oz

and iter,, iter,,,, are the current iteration index and maximum number of
iterations respectively. Since f; is small as iter. increases, the mutation
mechanism disminishes as the iteration counter increases.

The fitness function for our discretized model problems (13) and (16) is

given by
A 1

flup) = T4 I (un) (23)
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so that for f we have now a maximization problem. Finally we mention
that in the actual implementation we used also an elitist strategy in which
the best individual of the previous generation is kept. If the best individual
of the current generation were worse, then the best member of the previous
generation would replace the worst member of the current population.

5 Numerical Results and Conclusions

We describe now the results of applying the genetic algorithm in combina-
tion with a direct method to the model problems of Section 2. The direct
optimization method we use is based on a Richardson extrapolation and is
described in [16]. The actual implementation of the genetic algorithm in-
cludes after the initialization step a stage in which a simulated annealing
method is applied to the randomly generated initial population thus produc-
ing a better initial population for the genetic algorithm. We refer to [14] for
details on the simulated annealing method.

The results we present are the best of ten independent runs of the pro-
gram. The population size was set at 40 with a maximum number of 2000
iterations. The mating rate was set at 0.25 and the mutation rate at 0.01.
The chromosome length is 19 or 20, which corresponds to n = 20 in (11)
or (15) respectively. All computations were carried on a Gateway PC with a
266Mhz Pentium II processor.

For the model problem (4) and its discretization (13) the results are shown
in Table 1. The minimum value in this table corresponds to the value of
Iy, (up) in (13). Note that the code successfully computes the global minimum
of zero.

‘ H Genetic Algorithm ‘ Direct Method ‘

Execution Time (min) 14.5387 2.5475
Minimum Value 0.095266 1.6284e-016

Table 1: Numerical results for the model problem (4)

The results of Figure 1 show the average fitness (function values here are
for (23)) as a function of the iteration for the genetic algorithm. The actual
population fitnesses behave in a similar fashion but with a high variability
during the first iterations and a small one for the later ones.
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In Figure 2 we show the solutions computed by the genetic algorithm,
the direct method and the exact solution which is known for this problem.
We can see that the direct method computes the exact solution essentially to
the machine precision. It is important to observe that the genetic algorithm
approximates fairly well the minimizer in the region where the derivative is
very large thus capturing the singular behavior of the solution.

The Lavrentiev phenomenon for the discretized problem becomes the case
of a function with one local minima with a value strictly greater than the
global minimum. On one of the ten runs of our code, the combined method
converged to a local optima of (13) which represents an approximation of a
smooth solution of (4) with a minimum energy of approximately 0.03489. In
Figure 3 we show this solution as the Final Approximate Solution.

For the model problem (6) and its discretization (18) the results are shown
in Table 2. The qualitative performance of the genetic algorithm is similar
to that for the first test problem as can be seen from Figure 4. The con-
dition p'(s) > 0 in (7) was not included explicitly in the genetic algorithm
thus reducing the overhead time but resulting perhaps in a not so optimal
solution. In fact in Figure 5 we can see that the solution computed by the
GA in this case is not stricly increasing. The condition of strictly increas-
ing however was included in the direct method as the overhead required was
minimal. In Figure 5 we show both the solution computed by the GA and
the direct method together with the graph of the deformation corresponding
to a uniform expansion of the disk.

‘ H Genetic Algorithm ‘ Direct Method ‘

Execution Time (min) 9.828 2.8698
Minimum Value 2.7502 2.4662

Table 2: Numerical results for the model problem (6)
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Figure 1: Average fitness as a funtion of the iterations for the GA in prob-
lem (4).
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Figure 2: Computed vs exact solution for problem (4).
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Figure 3: Computed vs exact solution for problem (4).
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Figure 4: Average fitness as a funtion of the iterations for the GA for prob-
lem (6).
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Figure 5: Computed vs exact solution for problem
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