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1 Introduction

The problem of determining the con�guration of a rope or string under di�erent types of

inicial conditions is an old one. Since the 1700 related problems were considered by great

mathematicians like Euler [3]. If we establish an analogy between a rope and a column,

we can pose other interesting problems. For example, the one of �nding the shape of a

column that maximizes its height under a given axial load ([1], [2], [4]).

The problem of determining the initial con�guration of the rope that minimizes its

elongation while hanging by its own weight and an applied external load, while keeping

either the total mass or total volume �xed, was considered in [6] for a linear constitutive

equation and the nonlinear case in [5]. We call this the direct problem, that is, given

a mass density function �(�), �nd the transversal area function A(�) that minimizes the

elongation of the rope under the stated conditions. The Euler{Lagrange equations for this

problem are given by nonlinear boundary value problem for the function A(�) depending

parametrically on the mass density �(�). This problem was fully solved in [5] for the case

of �xed total mass and via degree theoretic techniques for the �xed total volume case.

In this paper we study what we called the inverse problem. In this problem we consider

the Euler{Lagrange equations for the direct problem but assuming that the function A(�)

is given, and then determine �(�). That is, given A(�), �nd the mass density function �(�)

such that the Euler{Lagrange equations for the direct problem are satis�ed. In this paper

we construct a numerical scheme to approximate the solution of the inverse problem for

nonlinearly elastic nonhomogeneous materials.
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In Section (2) we give a derivation of the equations of equilibrium for the deformations

of the rope, while in Section (3) we derive the equations describing the inverse problem.

Sections (4) and (5) are devoted to the description of the numerical scheme and results.

2 The Equations of Equilibrium

2.1 Geometry of Deformation

We consider a rope or string which in its reference con�guration occupies the region 


in R
3 . We let (x; y; z) represent cartesian coordinates in 
 and assume that [0; L] =

fx : (x; y; z) 2 
g where the positive x axis is downward in the vertical direction. For

any x 2 [0; L] we de�ne the cross{section of 
 at x by:


x = f(y; z) : (x; y; z) 2 
g ; (1)

and let A(x) be the area of 
x. We assume that the cross{sectional area function A(�)

is positive and continuous on [0; L]. We consider a one{dimensional deformation of 


given by:

p(x; y; z) = (u(x); y; z): (2)

for some C1 function u(�). The requirement that an (in�nitesimal) volume in the reference

con�guration can not be reduced to zero by the deformation p, implies that

u
0(x) > 0 ; 8 x 2 [0; L]: (3)

2.2 Mechanical Response

For any x 2 [0; L] we denote by n(x) the force exerted by the material on [0; x] on that

on [x; L] in a deformed con�guration. We assume that the material of the rope has mass

density per unit volume at x given by �(x), where �(�) is a given positive continuously

di�erentiable function. Hence the weight of the [x; L] section of the rope is given by:

g

Z
L

x

�(�x)A(�x) d�x; (4)

where g denotes the acceleration of gravity. Assuming that a forceW is applied at x = L,

the total force exerted on the section [x; L] is:

W + g

Z
L

x

�(�x)A(�x) d�x: (5)

For equilibrium, the forces must balance at each x 2 [0; L], i.e.,

n(x) = W + g

Z
L

x

�(�x)A(�x) d�x: (6)
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We say that the material of the rope is elastic and nonhomogeneous if for some function
~N(�; �) we have that

n(x) = ~N(u0(x); x): (7)

The usual way to account for the lack of homogeneity is by taking

~N(u0(x); x) = A(x)N̂(u0(x)); (8)

where N̂ : (0;1)! R satis�es:

A1. N̂(�) is a strictly increasing smooth function;

A2. N̂(�)!1 as � !1;

A3. N̂(�)! �1 as � ! 0+.

From properties (A1){(A3) it follows that N̂ : (0;1)! R has a smooth inverse �̂ : R !

(0;1). We further assume that

A4. N 7! N
2
�̂N (N) is strictly increasing on [0;1);

A5. N2
�̂N(N)!1 as N !1.

If we combine (6), (7), and (8) we get that

N̂(u0(x)) = A(x)�1

�
W + g

Z
L

x

�(�x)A(�x) d�x

�
: (9)

Since the top of the rope is attached to a wall we have that

u(0) = 0: (10)

We consider in this paper one type of additional constraints, namely, that the total mass

of the rope is a given constant M :

Z
L

0

�(x)A(x) dx = M: (11)

Note that we can write (9) as:

u
0(x) = �̂

�
A(x)�1

�
W + g

Z
L

x

�(�x)A(�x) d�x

��
: (12)

Integrating now over [0; L] and using (10), we get the following expression for the total

elongation of the rope:

u(L) =

Z
L

0

�̂

�
A(x)�1

�
W + g

Z
L

x

�(�x)A(�x) d�x

��
dx: (13)
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The direct problem then is, given �(�), to �nd a function A(�) that minimizes the above

expression for u(L) subject to the constraint (11).

Let

B(x) =

Z
L

x

�(�x)A(�x) d�x: (14)

Hence B0(x) = ��(x)A(x) and we can write (13) as

u(L) =

Z
L

0

�̂

�
�
�(x)(W + gB(x))

B0(x)

�
dx: (15)

Note that B(L) = 0 and (11) is equivalent to

B(0) =M: (16)

Thus our problem now is to �nd a function B(�) that minimizes (15) subject to B(L) = 0

and (16).

3 The Inverse Problem

The Euler{Lagrange equations for the problem of minimizing u(L) are given by:

d

dx

�
�(x)(W + gB(x))

B0(x)2
�̂N

�
�
�(x)(W + gB(x))

B0(x)

��

+
g�(x)

B0(x)
�̂N

�
�
�(x)(W + gB(x))

B0(x)

�
= 0 ; 0 < x < L; (17a)

B(0) =M ; B(L) = 0 : (17b)

If we let

H(x) = �
�(x)(W + gB(x))

B0(x)
; (18)

then it is shown in [5] that (17a) is equivalent to

d

dx

�
H(x)2 �̂N(H(x))

�
�
�
0(x)

�(x)
H(x)2 �̂N(H(x)) = 0: (19)

This equation can be easily integrated now to get that

H(x)2 �̂N (H(x)) = c�(x); (20)
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for some constant c. The left hand side of this equation can be written as h(H(x)) where

h(N) = N
2
�̂N(N). Thus (20) is equivalent to

W + gB(x)

B0(x)
= �

1

�(x)
h
�1(c�(x)); (21)

where h�1 is the inverse function of h which exists under hypotheses (A4){(A5). Using

(14) and di�erentiating both sides of (21) we get that

�g�(x)A(x) =
d

dx

�
A(x)h�1(c�(x))

�
; 0 < x < L: (22)

This is the equation that we solve numerically for �(�) given A(�).

4 The Numerical Scheme

Our problem is to solve the ordinary di�erential equation (22) for the function �(�). This

task gets complicated because we have no initial condition and by the presence of the

constant c. Note that (20) evaluated x = 0, with our de�nition of h(�) gives that

�(0) =
1

c
h(H(0)) =

1

c

�
W + gM

A(0)

�2

�̂N

�
W + gM

A(0)

�
: (23)

Also, evaluating (20) at x = L and solving for c, we get that

c =
h(H(L))

�(L)
=

1

�(L)

�
W

A(L)

�2

�̂N

�
W

A(L)

�
: (24)

Using these expressions we can de�ne a �xed point iteration to solve (22) which basically

starts with an approximation to c, solves the initial value problem (22) and (23), and

then updates c via (24). More formally we a sequence (�i; ci) by the following �xed point

iteration:

1. Initialize c0 and set i = 0.

2. Solve the initial value problem (22) and (23) using the value of ci to get an approx-

imation �i.

3. Set

ci+1 =
h(H(L))

�i(L)
:

4. Set i i + 1 and repeat steps (2) and (3) until jci+1 � cij is small enough.

If we denote by �(�; c) the solution of the initial value problem (22) and (23), then by

virtue of (24) the above algorithm represents a �xed point iteration for the equation:

c =
h(H(L))

�(L; c)
: (25)
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5 Numerical Examples

In order to carry speci�c numerical computations we need to specify the constitutive

function N̂(�). This function has to satisfy conditions (A1){(A5) and in general one has

to compute numerically the functions �̂(�) and h
�1(�). To keep the presentation simple

we choose functions of the form:

N̂(�) = E�
�
; (26)

where �;E > 0. One can show [5] that this function satis�es (A1){(A5) except for (A3).

It follows now that

�̂(N) =

�
N

E

�1=�

; (27a)

h
�1(N) = Kt

�=(1+�)
; K = �

�=(1+�)
E

1=(1+�)
: (27b)

Substituting (27b) into (22) and simplifying, we get that

�

1 + �
�
0(x) = �

A
0(x)

A(x)
�(x)�

g

Kc�=(1+�)
�(x)(2+�)=(1+�): (28)

This is a Bernoulli type equation which together with the initial condition (23) can be

solved to get the function �(�; c) introduced at the end of Section (4). One can then

assemble equation (25) to solve for c. Instead of using this approach, we employ the

numerical scheme described in Section (4) because is more suitable to implement it with

numerical computer packages like MATLAB and can be used for more general functions

than (26). For the computations below we used the values for the parameters:

� = 3 ; W = 0:1 ; g = 9:8 ; M = 0:03 ; E = 1:0 ; L = 1:0;

the units of which are in the metric system.

5.1 Known Mass Density Function

We consider �rst a case in which the mass density is known. In particular we assume that

the function �(�) is a constant which we continue to denote by �. In [5] it is shown that in

this case, the minimum elongation of the rope is obtained with the following transversal

area function:

A(x) =
W

g�L
ln

�
1 +

gM

W

��
1 +

gM

W

�1�x=L

: (29)

We tested the numerical scheme of Section (4) by solving (28) with A(�) given by (29)

with � = 0:1. The idea was to see if the method gives back a constant mass density

function with prescribed value. This is indeed the case as the results in Figure (1) show.
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5.2 Transversal Area Function Constant

We consider now the case in which A(x) = constant. In this case (28) is actually separable

and one can easily see that �(�) must be a decreasing function of x. However the process

of solving (28), (23) to assemble (25), to then solve for c, is still too cumbersome and we

prefer to use the proposed numerical scheme. We show the results in Figure (2) for the

case A(x) = 0:1 although the results are independent of A in this case. Note that the

computed �(�) is indeed decreasing.

5.3 Transversal Area Function with Interior Maximum

We consider now the case in which the transversal area function is given by:

A(x) = 0:1e�10(x�L

2
)
2

: (30)

The numerically computed �(�) is shown in Figure (3)> Note that this particular example

shows that in general �(�) need not be monotone. In particular low dense sections of the

rope of minimum elongation correspond in general with thicker areas of the rope.
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Figure 1: On the left, the function (29) which corresponds to a constant mass density

function. On the right the mass density function computed by the numerical scheme

with (29) as input.
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Figure 2: On the left a constant cross sectional area function. On the right the mass

density function computed by the numerical scheme with A(�) constant.
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Figure 3: On the left, the function (29) which corresponds to a constant mass density

function. On the right the mass density function computed by the numerical scheme

with (29) as input.
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