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Abstract 

 
A composite material consists of a mixture of a base material called the matrix, with grains of other materials called 

the inclusions. These materials are very common in engineering applications like the construction industry. 

Composite materials have also been used for the production of capacitors with different military applications, yet the 

role of the composite in the efficiency of such device is not well understood. Modeling composite materials is 

difficult due to the random nature of such mixtures. However if some controls are established during the production 

process, it is reasonable to assume homogeneity and isotropy. Models for composite materials have been proposed 

in the literature, for example by Hill (1972), and can be either random or periodic. The main goal of the present 

work is to study numerical methods based on the finite element method to determine the mechanical properties of 

periodic composite materials. We present some preliminary computations for a model of a composite material based 

on the equations of nonlinear elasticity. The constitutive equations that we used are those usually employed to model 

rubbery materials. We study a composite of two materials: a matrix with inclusions of a given (nonlinear) material, 

and determine numerically how the stress distribution depends on the different constitutive and geometric 

parameters. 
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1. Introduction: 

 
A composite material consists of a mixture of a base material called the matrix, with grains of other materials called 

the inclusions. These materials are very common in engineering applications like the construction industry. 

Composite materials have also been used for the production of capacitors with different type of military 

applications. The mathematical modeling of composite materials is difficult due to the random nature of such 

mixtures. If some controls are established during the production process, the resulting mixtures are essentially 

homogeneous and isotropic in the sense that their mechanical behavior is unchanged under rigid rotations. Typical 

models of composite materials fall within two categories: either random or periodic in the sense that some basic 

matrix-inclusion arrangement repeats periodically. In this paper some numerical schemes are developed that are 

suitable to study homogenous, isotropic, and periodic composite materials. The literature for composite materials is 

extensive but we refer to 
5
 for the elements of the theory, and to 

8,
 
2
 for methods for estimating the overall properties 

of the mixture. 

   The main goal of the present work is to study numerical methods based on the finite element method 
6, 9

 to 

determine the mechanical properties of periodic composite materials. Our model of a composite material is based on 

the equations of nonlinear elasticity (see e,g,
1
). The constitutive equations that we used are those usually employed 

in the engineering literature to model rubbery materials
7
. We study a composite of two materials: a matrix with 

inclusions of a given (nonlinear) material, and determine numerically how the computed deformations depend on 

different constitutive and geometric parameters. In particular we concentrate on the computation of jump 

discontinuities on the deformation gradient across the internal material interfaces. To compute these jumps it is 



necessary to work in suitable finite element spaces. We use the so called Crouzeix-Raviart elements
3
 which are 

continuous only at the barycenters of faces in the FEM triangulation. 

 

Notation: For any set 
nℜ⊂Ω  and integer 0≥k , we denote by ( )ΩkC  the set of all the functions ℜ→Ω:u  

for which all of its partial derivatives up to order k  are continuous over Ω . For ∞<≤ p1 , let 
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The set )(, ΩpkW  consists of functions )(Ω∈ pLu  with its (distributional) partial derivatives up to order k  also 

belonging to )(ΩpL . )(,1

0 Ωp
W  is the subspace of functions of )(,1 ΩpW  that are zero (in the sense of trace) on 

Ω∂ . 

 

2. The model problem: 
 

The region occupied by the body in its reference configuration is denoted by .2ℜ⊂Ω  Let 
2: ℜ→Ωf  denote a 

deformation of the body and let its deformation gradient be 
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For smooth deformations, the requirement that f(x) is locally invertible and preserves orientation takes the form 

 

      det ∇f(x) > 0, x ∈ Ω.       (1) 

 

Let ℜ→×Ω +
LinW :  be the stored energy function of the material of the body where M

2×2
 denotes the space 

of real 2 ×  2 matrices and }0det :  { 22 >∈= ×+ FF MLin . The total energy stored in the body due to the 

deformation f is given by 
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The derivatives 
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are the usual (Piola-Kirchhoff) stress and elasticity tensors, respectively.  

   It is assumed that the body Ω is composed of two phases in the sense that .10 Ω∪Ω=Ω The matrix is  Ω0 and 

Ω1 is the set of inclusions. The stored energy function for the composed material is given by: 

 

      ),())(1()()(),( 1000 FxFxFx WWW χχ −+=      (4) 

 

where χ0 is the characteristic function of Ω0,  and W i  describes the mechanical properties of the material that 

composes iΩ , 1,0=i . The material of each phase is isotropic if there exist functions ℜ→∞×∞ ),0(),0(:)(iσ  

such that: 

 



      W i(F) = σ ( i) 1
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 , i = 0,1.      (5) 

 

One can show that for any F ∈ Lin
+,  H ∈ M

2×2 : 
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i = 0,1, where σ ,k

(i),  σ ,kj

( i)
 denote partial derivatives of σ (i)

 evaluated at ((1/2)F ⋅ F,det F), 

and .)(detadj 1−= FFF  It follows now from (3) and (4) that 
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   Let ∂Ω = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 ≠ ∅, so that 1210 Ω∂∪Γ∪Γ=Ω∂ . For any given f0  consider the problem of 

minimizing (2) over the set 

 

      }on,ina.e.0det:)({ 10

1,1 Γ=Ω>∇Ω∈= ffff WA . 

 

The Euler-Lagrange equations for this problem are formally given by: 

 

        0))(,(div =∇ xfxS in Ω,        (8a) 

 

      f = f0  on Γ1,       0))(,( =⋅∇ nxfxS on Γ2,      (8b) 

 

        0))](,([ =⋅∇ nxfxS on 1Ω∂ .                                                                     (8c) 

 

where n is the unit normal vector to the given boundary and 
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is the jump in ))(,( ⋅∇⋅ fS  across the matrix-inclusion interface 1Ω∂ . If f∇  is continuous across 1Ω∂ , which 

would happen if the matrix and inclusion materials are equal, then this jump is clearly zero. However, for different 

matrix-inclusion materials, f∇  can be discontinuous across 1Ω∂ , with the zero jump boundary condition (8c) still 

holding. Note that (8c) is just a consequence of the fact that at a minimum configuration of (2), the internal forces 

within the body must be in equilibrium. 

 

 

 

 



3. The finite element method and the Newton iteration: 
 

This section contains the specifics of a finite element method (FEM) to approximate solutions of the problem (8). As 

this problem is nonlinear, the FEM formulation leads to a nonlinear set of equations, which are solved, using the 

Newton iteration. The Newton iteration solves at each step a linear problem using the FEM.  

   Let }{ kTT =  be a triangulation or mesh over Ω . Let }{ keE =  denote the set of all edges of the triangles in T . 

The space of all piecewise affine functions relative to the partition T  is defined by: 
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Let ncN  be the set of barycenters of edges, that is 

 

      .:d
1













∈= ∫ Ees
e

N
e

nc x  

 

The first-order Crouzeix–Raviart finite element space )(CR T  is given now by 

 

      { }ncNTPT ∈∈= xvv eachatcontinuousis:)()(CR 1 .  

 

For any given )(CR T∈f , we define the linear functional: 
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Where 

 

      }on:)(CR{ 1Γ=∈= 0vv TH .        (10) 

 

The FEM formulation of the problem (8) is to find )(CR T∈f  satisfying 0ff =  on 1Γ  and such that 

 

      L(f)[v] = 0, ∀ v ∈ H .                                                                       (11) 

 

   A Newton type iteration to solve (11)  can be described as follows. To this end we will need the bilinear form: 
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Newton's method for the solution of (11) (or to minimize (2)) takes the form: 

1. Let 0f  be an initial approximation of the minimizer of (2). 

2. For ,...,2,1,0=n  

i. Compute Hn ∈w  such that, 

 

   .],)[(],)[( HLB nnn ∈= vvfvwf                   (13) 

 

ii. Set .)1( 1

1 n

n
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+
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3. Repeat step (2) until the norm of nw is sufficiently small. 

Here )1,0(∈ρ  is a parameter used to slowdown the method on the initial steps. 

 

4. Implementation of the Numerical Scheme and results: 
 

For the numerical simulations the package FreeFem++ 
4 

was used for the solution of the problem (13) using the 

finite element method with piecewise linear non-conforming elements
3
. The coding with FreeFem++ resembles very 

much the underline mathematics of the problem. This package includes high level constructs to define domains, 

meshes, finite element spaces, and variational forms. It includes as well basic flow controls like loops and 

conditionals. Of particular importance for our simulation is the command region which allows for identifying 

regions in the domain and the command jump to compute the jump of the deformation gradient across the internal 

interfaces of the mixture. 

   For the stored energy function 
)(iσ  in (5), the following function was used which is a good model for rubber-like 

materials
7
: 
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where iiiii cb ,,,, γβα are nonnegative constants. From the expressions (6a) and (7a), is obtained that the reference 

configuration is stress-free, i.e., ( ) ,0IS =  if and only if 
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   For the set Ω  the unit square ]1,0[]1,0[ ×  minus a disk of radius r=0.1 with center at (0.25, 0.75) is used. For the 

boundary conditions, 2Γ  is taken to be the boundary of this disk, 1Γ  the outer boundary of the square, and 

 

      .),(),2.1,(),( 10 Γ∈= yxyxyxf        (16) 

 

(When extended to all of Ω , this function is used as well as the initial approximation in Newton’s method.) 1Ω  

consists of the union of three disks of radius r=0.1 each, with centers at (0.25, 0.25),  (0.75, 0.25), and (0.75, 0.75). It 

follows that 10 \ ΩΩ=Ω . Figure (1) shows the geometry of Ω with the inclusions given by 1Ω . The same 

figure also shows the finite element mesh generated with FreeFem++ which is the one used for the computations. 

   For the first simulation the following coefficients were used in (14): 

 

Table 1. coefficients of the matrix and inclusion for the first simulation. 

 

 

 

 

 

 

 

Note that these numbers make the material of the matrix 0Ω to be stronger or harder to deform that of the 

inclusions 1Ω . Figure (2) shows a sketch of the final computed deformation corresponding to the boundary 

condition (16). Both nxfxS ⋅∇ ))( ,(  and the jump of this quantity across 1Ω∂ , are zero over 2Γ  and 

1Ω∂ respectively to within the mesh precision. In Figure (3) a contour plot of the f∇det is shown which clearly 

i  
iα  ib  iβ  iγ  

0 1.5 0.5 2.5 2.0 

1 1.5 0.1 1.5 2.0 



shows a jump discontinuity in f∇ across 1Ω∂ . Note also that the material within the inclusions is more deformed, 

as measured by the determinant, in comparison to that outside the inclusions. This is consistent with the material of 

the matrix been stronger than that of the inclusions. 

   In the second simulation the material of the inclusions remained fixed and the one corresponding to the matrix is 

varied. The parameters for the inclusions are: 

 

Table 2. parameters for the inclusions for the second simulation. 

 

 

 

 

 

The parameters for the matrix have ,, 1010 γγαα ==  with 65.01.0 0 ≤≤ b  and 6.15.1 0 ≤≤ β .  Figure (4) 

shows a plot of the total jump across 1Ω∂  as given by the expression 
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Here ][ f∇  represents the jump in f∇ across 1Ω∂  at the given point. The “valley” in the figure corresponds to 

values of 00 , βb  for which the materials of the matrix and inclusions are very similar. From this figure it follows as 

well that the jump across 1Ω∂  increases as the difference in the mechanical behavior between the phases becomes 

more pronounced. 

 

5. Closing remarks: 
 

Using a finite element method with a Newton type iteration is possible to perform simulations of composite 

materials for a wide range of nonlinearly elastic materials and which in principle can have very general matrix-

inclusion arrangements. The use of non-conforming finite elements allowed us to detect and compute jump 

discontinuities in the deformation gradient across the material interfaces. As a future project, it is planned to use the 

techniques in this paper to study periodic composite materials, that is, where the basic matrix-inclusions 

arrangements (like the one in Figure 1) is at the nano scale and repeats periodically. 
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Figure 1. Geometry of Ω  with the inclusions given 

by 1Ω  (the three filled circles) and the finite 

element mesh. 

 

 
 

           Figure 2. Final computed deformation. 

 

 

 

 
 

 

Figure 3. Graph of f∇det  showing the jump discontinuity in f∇  across 1Ω∂ . 



 
 

Figure 4. Jump in f∇  across 1Ω∂  as a function of the parameters 00 , βb . 


