
Proceedings of The National Conference
On Undergraduate Research (NCUR) 2011

Ithaca College, Ithaca, New York
March 31-April 2, 2011

Pursuit Problems: Generalizations and Numerical Simulations

Greichaly Cabrera

Department of Mathematics
University of Puerto Rico at Humacao

Humacao, PR 00791-4300

Faculty Advisor: Pablo V. Negrón-Marrero

Abstract

A pursuit problem consists of studying the path followed by an aggressor (the pursuer) to catch a prey. This
problem dates back to Zeno's solution of the classic Achilles and the Tortoise problem, Leonardo Da Vinci
and Pierre Bouguer (1732). The term “pursuit curve” was introduced by George Boole in his Treatise on
differential equations of 1859. The usual mathematical model in a pursuit problem is that of a differential
equation that describes the relative velocity between the pursuer and prey and in which the speed of the
pursuer is proportional to that of the prey. Besides the direct applications to biology, this problem is also
important in ballistics and aviation.
 In the classical pursuit problem, the prey follows a given known path and the problem is to
determine the path followed by the pursuer. Normally the approach in textbooks and papers is to find exact
solutions of the model equations which can only be obtained for fairly simple prey path curves. For more
complex situations, numerical methods are the only practical alternative to approximate the solution.
 A more realistic situation in a pursuit problem is that in which the prey follows a possibly random
path. Another interesting situation is the one in which the pursuer chases more than one prey and has to
make “decisions” on the fly onto which prey to follow. In this paper we propose models for both of these
situations and perform numerical simulations to study the possible resulting trajectories followed by the
pursuer.

1. Introduction

 When a dog chases a cat or a rocket is sent to the moon, we are dealing with pursue problems. In the first
case, the pursuer or the aggressor is the dog and the cat is the prey, while on the former, is the rocket that
“chases” the moon. The pursuit problem consists of finding the path followed by the pursuer to catch the
prey. This problem dates back to Zeno and Da Vinci, with the first mathematical treatment by Pierre
Bouguer in his paper “Lines of Pursuit” (1732). In the classical model, the speed of the aggressor is
proportional to that of the prey. Besides the direct applications of pursuit models to biology, this problem is
also important in ballistics and aviation. The literature on the classical pursue problem is extensive. We
refer to1,2,4 for more detailed treatments and further references, and to3 for other types of pursuit models
called motion camouflage.

 In this paper we study several generalizations of the classical pursue problem, with an emphasis on
computer simulations. In particular, we consider the following three variations of the classical problem:

i) First we consider the situation in which the pursuer chases more than one prey and has to make

“decisions” on the fly onto which prey to follow.
ii) Next we consider the case in which the proportionally constant between the speed of the pursuer and

that of the prey, is not constant but a specified time dependent function. This could be thought as to be
modeling the “fitness” of the pursuer.

iii) Finally we consider the case in which the prey follows a possibly random path or Brownian motion,
also called a Wiener process. We include a mechanism into the model to make the path of the prey
more variable or random as the pursuer gets closer.

The numerical simulations for models (i) and (ii) are done via standard ode’s packages like those in
MATLAB™. However these packages can not be used to solve stochastic differential equations (SDE) like
in case (iii) above. Thus for the simulations in the third model we employ the SDE toolbox for MATLAB
developed by U. Pucchini5.

2. Classical pursuit model

In the classical pursuit problem, the aggressor moves directly toward the prey at each time t. We let

() ()()tqtptR ,)(= denote the position of the prey at time t, and by () ()()tytxtF ,)(= that of the pursuer. For
ease of exposition we are assuming the motion is in two dimensions but the discussion easily generalizes to
higher dimensions. In the classical pursuit problem there are two basic assumptions:

i) The speed of the pursuer is proportional to that of the prey. This implies that whenever the prey runs

faster, slower or stops, so does the aggressor.
ii) The velocity of the aggressor is always directed towards the position of the prey.

The first of these assumptions can be written as:

 ,)(')(' tRktF = (1)

for some positive constant . The second assumption above can be written as: k

 .
)()(
)()(

)(
)(

tFtR
tFtR

tF
tF

−
−

=
′
′

 (2)

If we combine equations (1) and (2), we get the basic equation relating the positions of the pursuer and the
prey:

 .
)()(
)()()(')('

tFtR
tFtRtRktF

−
−

= (3)

Assuming the prey’s path is known, this differential equation together with some initial condition,
determines the path of the pursuer. In component form, Equation (3) can be written as:

)(tR
)(tF

 .
))()(())()((

)(')('))()((
)(',

))()(())()((

)(')('))()((
)('

22

22

22

22

tytqtxtp

tqtptytq
kty

tytqtxtp

tqtptxtp
ktx

−+−

+−
=

−+−

+−
= (4)

 We present two simulations for the classical pursuit problem using MATLAB’s predefined function
ode45 to solve equations (4). In one case (Figure 1) the prey follows a zigzagging path given by

, and in the other case (Figure 2) it follows a hyperbolic path given by () () () ttqttp =−= ,sin
() () () ()ttqttp sinh,cosh =−= . In the first case we set the constant k to 1.1, and for the hyperbolic path it

was taken to be 1.5. The starting point for the pursuer in both cases was (5,0). We show in Figures 1 and 2
the results for both simulations. In each figure, the red curve represents the path followed by the prey while
the blue one is that of the pursuer. In both cases the chase stopped when the distance between pursuer and
prey was less than 0.001.

Figure 1. Simulation of a classical pursuit problem in which
the prey follows a zigzagging path and k=1.1.

Figure 2. Simulation of a classical pursuit problem in which
the prey follows a hyperbolic path and k=1.5.

3. Variations of the classical pursuit model

3.1 model of two preys

In the classical pursuit model we considered the simplest situation in which there is a single prey and a
single aggressor. In real situations, like when one animal (the pursuer) is chasing a herd, the pursuer is
chasing more than one prey and thus has to make “decisions” as to which prey to follow. For ease of
exposition, we assume there are only two preys but the proposed decision mechanism can be applied to any
number of preys. The criteria we propose to decide which prey will be followed is that of the minimum of
the distances to the preys at any given time t. That is, the pursuer will follow whichever prey he determines
to be closest. Thus we define the index by:)(tI

 { }() ,)()(,)()(min)(21 tFtRtFtRindtI −−= (5)

where denotes the path of the i-th prey,))(),(()(tqtptR iii = 2,1=i . The index is used to modify
the classical equation (3) as follows:

)(tI

 ()
.

)()(
)()(

)('
)(

)(
)(tFtR

tFtR
RktF

tI

tI
tI −

−
′= (6)

 For the first simulation in this case we used similar looking zigzagging paths for both
given by:

)(),(21 tRtR

 ()[].,sin-3)(,
2

t0.7,
2

t0.7sin-2-)(21 tttRtR =⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ +=

ππ

Note that the path for which corresponds to the one on the right in Figure 3, starts closer to the pursuer

but the prey corresponding to moves faster than the one on the left. With k=0.85 in the equations above
and the pursuer starting at , we get that during the first part of the chase, the pursuer follows the
prey on the right path, but then switches somewhere in the middle of the chase to the prey on the path to the

2R

2R
(0,-4)

left, because at that instant the prey on the left was closest. After that, the prey on path continues to get
farther and the chase continues with the prey on the left until it is caught.

2R

 On the second simulation we have two preys moving in circular paths given by:

 [] [] ,)sin(),cos(1.1)(,)2sin(),2cos(1.1)(21 ππ +++=+−= tttRtttR

which represent circles with center at (-1.1,0) and (1.1,0) respectively, with the prey corresponding to the
path moving twice as fast as the other prey. Also note that 1R)0,1.0()0(),0,1.0()0(21 =−= RR ,
which are the two points where the circles are closest to each other. With 8.0=k is equation (6) , we
show in Figure 4 the corresponding trajectories of the pursuer and prey. In this case we get, what appears to
be from the numerics, a bi-stable orbit for the pursuer, as it chases each prey for sometime, and then
switches back to the other, and so on. A video animation of this simulation can be downloaded from
http://mate.uprh.edu/~pnm/vdo/dos_conejos.mp4.

Figure 3. Chase of two prays illustrating the effect of the
“decision” mechanism (5)

Figure 4: Chase of two preys in which the pursuer follows a
possibly periodic trajectory.

3.2 model with a “fitness function” for the pursuer

 This model gives us a more realistic view of the pursuit problem by including an additional component
that gives more information about the pursuer. Thus we assume that the speed of the pursuer, instead of
been proportional to that of the prey, it is given by a time dependent nonnegative function times the

speed of the prey. We call the fitness function of the pursuer. It is reasonable to assume that

()tG
()tG ()tG is

a decreasing function of time so as to model that the pursuer gets tired as the chase progresses. In this
model we modify the basic equation (3) as follows:

 .
)()(
)()()()()('

tFtR
tFtRtRtGtF

−
−′= (7)

For the simulations we used the following function for ()tG :

 (8) ,)()(221 kekktG t +−= −α

http://mate.uprh.edu/%7Epnm/vdo/dos_conejos.mp4

where 0,, 21 >αkk and . Here represent the initial and limiting fitness respectively. The

parameter
21 kk > 21,kk

α controls how quickly is the transition from to . In Figure 5 we show the resulting

trajectories for the case in which ,
1k 2k

5.11 =k 7.02 =k , 1.0=α and the prey follows the hyperbolic path
() () () ()ttqttp sinh,cosh =−= . In this case the pursuer catches the prey to within an error of 0.05. In

Figure 6 we show the same simulation but with 0.1=α . In this case the pursuer gets “tired” rather
quickly and can not catch the prey.

Figure 5. Simulation of a pursuit problem with fitness for the
parameters , , 5.11 =k 7.02 =k 1.0=α in equation 8.

Figure 6. Simulation of a pursuit problem with fitness for the
parameters 5.11 =k , 7.02 =k , 0.1=α in equation 8.

3.3 model using stochastic differential equations

We now consider the case in which the prey follows a possibly random path. In the pursuit models
presented so far, the path of the prey (or preys)))(),(()(tqtptR = is given or specified. Even though

 is given, it can also be specified by a differential equation with an initial condition. Thus we specify
the equation for the path of the prey as the solution of a differential equation of the form:

)(tR

 (9) .)(,))(()(00 RtRtRHtR ==′

To add random effects into the model, we consider for the path of the prey the stochastic differential
equation (SDE):

 .)(,)())(),(())(()(00 RtRtWtFtRBtRHtR =′+=′ (10)

where is a 2x2 matrix and is a two dimensional Brownian motion or Wiener
process. (We refer to Evans

))(),((tFtRB)(tW
6 for more definitions and theoretical aspects of SDE’s.) The SDE pursuit

model consists of the 4x4 system given by equations (3) and (10):

⎪
⎩

⎪
⎨

⎧

−
−

=

′+=′

.
)()(
)()()(')('

,)())(),(())(()(

tFtR
tFtRtRktF

tWtFtRBtRHtR
 (11)

 For the simulations we used the following form for the matrix :))(),((tFtRB

 .
0

0
))(),((

2

1)()(
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −−

σ
σtFtRetFtRB (12)

This form for B makes the path of the prey more variable or random as the pursuer gets closer. We
mention that standard ode’s packages like those in MATLAB™ can not be used to solve stochastic
differential equations like equation (11) above. Thus for the simulations we used the SDE toolbox for
MATLAB developed by U. Pucchini5 . In the toolbox’s manual one finds more details of the numerical
methods (Euler-Maruyama and Milstein) for SDE’s. For our particular simulation, we took

 so that in (10) is given by () ()[])sin(,cos tttR =),()(qpHRH =),(),(pqqpH −= . Moreover, we take

 in (11) and 7.0=k 5.021 == σσ in (12). With the prey starting at (1,0) and the pursuer at (5,0), we
computed 20 trajectories for (11). In Figures 7 and 8 we show graphs for the components of each of the 20
trajectories computed for and respectively. We see from these graphs that they become more
random like as time progresses and the pursuer gets close to the prey, due to the mechanism embodied in
(12).

)(tR)(tF

 In Figure 9 we show in the left side the average trajectory of both the pursuer and prey, and on the right
one of the generated trajectories. We can see that even though each single trajectory is highly oscillatory
due to the random process used to generate it, the average trajectories resemble very much the trajectories
of the corresponding deterministic problem (0.021 ==σσ).

4. Conclusions

We discussed three variations or generalizations of the classical pursuit problem: the first involving two
preys, a second one involving a “fitness function” for the pursuer, and a third model using a stochastic
differential equation. Each model could be improved or make more realistic in many respects. For example,
in the model with two preys, the criteria of the “closest” might not be the realistic one: the pursuer might
consider instead the size of the prey, etc. In the model with fitness for the pursuer, one may consider
different models for the fitness function and possibly a fitness function for the prey as well. Finally in the
stochastic model one might experiment with different types of random processes and including random
terms in the pursuer equation as well. Still the proposed models, although simple in their mechanisms,
provide a good starting point for further generalizations of the classical or basic model.

5. Acknowledgements

This research has been funded in part by the NIH-RISE Program at the University of Puerto Rico at
Humacao and by the NSF–PREM Program of the University of Puerto Rico at Humacao (Grant No. DMR–
0934195). We thank Errol Montes-Pizarro of the University of Puerto Rico at Cayey who brought to our
attention some of the interesting questions about pursuit problems considered in this paper in particular the
situation with more than one prey.

6. References

1. Blanchard, P., Devaney, R. L., and Hall, G. R., Differential Equations, Brooks/Cole Publishing

Company, 1-30, 1998.
2. Davis, H. T., Introduction to Nonlinear Differential and Integral Equations, Dover, New York, 1962.
3. Glendinning, P., “The mathematics of motion camouflage”, Proceedings of the Royal Society of

London, 2003.
4. Marshall, J. A., Broucke, M. E., and Francis, B. A., “Pursuit formations of unicycles”, Automatica 42,

3-12, 2006.
5. Picchini, U., SDE toolbox: simulation and estimation of stochastic differential equations with

MATLAB, http://sdetoolbox.sourceforge.net.
6. Evans, L. C., An introduction to stochastic differential equations, Lecture Notes, Department of

Mathematics, UC Berkeley.

http://sdetoolbox.sourceforge.net/

Figure 7. Components (p,q) for the trajectories generated for the model equation (11).

Figure 8. Components (x,y) for the trajectories generated for the model equation (11).

Figure 9. Average trajectory of both the pursuer and prey (left) and a particular instance of both trajectories (right)

in the SDE model (11).

