Nonlinear Problems Depending on a Parameter: Continuation Methods, Limit Points, Simple Bifurcation

By
Pablo V. Negrón-Marrero, University of Puerto Rico
Department of Mathematics, Humacao, PR 00791-4300

1. Introduction

We will study problems of the following general form:

$$
\begin{equation*}
\mathrm{G}(\mathrm{u}, \lambda)=0 \quad, \quad \mathrm{G}: \mathrm{B} \times \mathfrak{R} \rightarrow \mathrm{B} \tag{1.1}
\end{equation*}
$$

where B is some Banach space. An example of this type of problem are the equations describing the deformations (in-extensible and obeying Hook's Law) fixed on the ends (see Antman (1980)):

$$
\begin{gather*}
\theta^{\prime \prime}(s)+\lambda \sin \theta(s)=0 \quad, \quad 0<s<1 \tag{1.2a}\\
\theta(0)=0=\theta(1) \tag{1.2~b,c}
\end{gather*}
$$

In this case one can use Green's functions to show that (1.2) is equivalent to (1.1) where G an integral operator and $\mathrm{B}=\mathrm{C}[0,1]$.

Usually to solve (1.1) numerically, after some appropriate discretization (e.g., a finite deference approximation in (1.2)), one obtains the following special case of (1.1):

$$
\begin{equation*}
\mathrm{F}(\mathrm{x}, \lambda)=0 \quad, \quad \mathrm{~F}: \mathfrak{R}^{\mathrm{n}} \times \Re \rightarrow \Re^{\mathrm{n}} \tag{1.3}
\end{equation*}
$$

i.e., $B=\Re^{n}$. In this paper we study conditions for the existence of solution curves $x(\lambda)$ of (1.3) and when they cease to exist, and describe limit and bifurcation points.

2. Regular Points

A point $\left(\mathrm{x}_{0}, \lambda_{0}\right)$ is a regular point of F in (1.3) if

$$
\begin{equation*}
\mathrm{F}\left(\mathrm{x}_{0}, \lambda_{0}\right)=0 \quad, \quad \operatorname{det} \mathrm{D}_{\mathrm{x}} \mathrm{~F}\left(\mathrm{x}_{0}, \lambda_{0}\right) \neq 0 \tag{2.1}
\end{equation*}
$$

Under these conditions the Implicit Function Theorem implies that there exists $\delta>0$ and a smooth function $\mathrm{x}:\left(\lambda_{0}-\delta, \lambda_{0}+\delta\right) \rightarrow \mathfrak{K}^{\mathrm{n}}$ such that

$$
\begin{gather*}
\mathrm{F}(\mathrm{x}(\lambda), \lambda)=0, \quad \lambda \in\left(\lambda_{0}-\delta, \lambda_{0}+\delta\right) \tag{2.2a}\\
\mathrm{x}\left(\lambda_{0}\right)=\mathrm{x}_{0} \tag{2.2b}\\
\mathrm{D}_{\mathrm{x}} \mathrm{~F}(\mathrm{x}(\lambda), \lambda) \mathrm{x}^{\prime}(\lambda)+\mathrm{D}_{\lambda} \mathrm{F}(\mathrm{x}(\lambda), \lambda)=0 \tag{2.2c}
\end{gather*}
$$

Thus in a neighborhood of a regular point, the solutions of (1.3) consist of smooth curves parameterized by λ. The equation (2.2c) can be used to compute $\mathrm{x}(\cdot)$ numerically. In particular, if we know $x\left(t_{0}\right)$ where $t_{0} \in\left(\lambda_{0}-\delta, \lambda_{0}+\delta\right)$, then we can approximate $\mathrm{x}\left(\mathrm{t}_{0}+\mathrm{h}\right)$ where $\mathrm{t}_{0}+\mathrm{h} \in\left(\lambda_{0}-\delta, \lambda_{0}+\delta\right)$ using the following iterations:

$$
\begin{gather*}
D_{x} F\left(x\left(t_{0}\right), t_{0}\right) x^{\prime}\left(t_{0}\right)+D_{\lambda} F\left(x\left(t_{0}\right), t_{0}\right)=0 \tag{2.3a}\\
x^{(0)}\left(t_{0}+h\right)=x\left(t_{0}\right)+{h x^{\prime}}^{\prime}\left(t_{0}\right) \tag{2.3b}\\
D_{x} F\left(x^{(k)}\left(t_{0}+h\right), t_{0}+h\right)\left(x^{(k+1)}\left(t_{0}+h\right)-x^{(k)}\left(t_{0}+h\right)\right) \tag{3.3c}\\
+F\left(x^{(k)}\left(t_{0}+h\right), t_{0}+h\right)=0 \quad, \quad k=0,1,2, \ldots
\end{gather*}
$$

That is, we use (2.2c) to make a prediction of $x\left(t_{0}+h\right)$ by Euler's Method (2.3a,b) and then we correct using Newton's Method on the x variables only applied to (1.3) in equation (3.3c). (See Figure 1). This method is effective as long as λ can be used as the continuation parameter in (1.3), i.e., whenever (2.1) is satisfied (see Rheinboldt (1986)). We now study the case when (2.1) is not satisfied.

Figure 1: Schematic diagram of a predictor-corrector continuation method.

3. Singular Points

In this section we used the so called Liapunov-Schmidt method to reduce problem (1.3) to a single equation in two variables when (2.1) is not satisfied.

We say that the point $\left(\mathrm{x}_{0}, \lambda_{0}\right)$ is a (simple) singular point of F if

$$
\begin{gather*}
\mathrm{F}\left(\mathrm{x}_{0}, \lambda_{0}\right)=0 \quad, \quad \operatorname{det} \mathrm{D}_{\mathrm{x}} \mathrm{~F}\left(\mathrm{x}_{0}, \lambda_{0}\right)=0 \tag{3.1a,b}\\
\operatorname{rank} \mathrm{D}_{\mathrm{x}} \mathrm{~F}\left(\mathrm{x}_{0}, \lambda_{0}\right)=\mathrm{n}-1 \tag{3.1c}
\end{gather*}
$$

Henceforth we employ the notation $D_{x} F^{0}=D_{x} F\left(x_{0}, \lambda_{0}\right)$, etc.. From (3.3c) it follows that there exists a unique (up to a minus sign) $\phi \in \mathfrak{R}^{\mathrm{n}}$ such that

$$
\begin{equation*}
\operatorname{ker} \mathrm{D}_{\mathrm{x}} \mathrm{~F}^{0}=\operatorname{span}\{\phi\} \quad, \quad\|\phi\|=1 \tag{3.2}
\end{equation*}
$$

Also there exists a unique $\phi^{*} \in \mathfrak{R}^{\mathrm{n}}$ such that

$$
\begin{equation*}
\operatorname{ker}\left(D_{x} F^{0}\right)^{t}=\operatorname{span}\left\{\phi^{*}\right\} \quad, \quad\left\langle\phi^{*}, \phi\right\rangle=1 \tag{3.3a,b}
\end{equation*}
$$

since rank $D_{x} F^{0}=\operatorname{rank}\left(D_{x} F^{0}\right)^{t}$. (We will show below that indeed ϕ^{*} can be chosen to satisfy (3.3b)). By the Fredholm Alternative Theorem we have that

$$
\begin{equation*}
R\left(D_{x} F^{0}\right)=\left(\operatorname{ker}\left(D_{x} F^{0}\right)^{t}\right)^{\perp}=\left\{x \in \mathfrak{R}^{n}:\left\langle\phi^{*}, x\right\rangle=0\right\} \tag{3.4}
\end{equation*}
$$

where $R(A)=\left\{A x: x \in \mathfrak{R}^{n}\right\}$ is the range of A. We also have that

$$
\begin{equation*}
\mathfrak{R}^{\mathrm{n}}=\operatorname{ker}\left(\mathrm{D}_{\mathrm{x}} \mathrm{~F}^{0}\right) \oplus \mathrm{R}\left(\mathrm{D}_{\mathrm{x}} \mathrm{~F}^{0}\right)=\left\{\alpha \phi+\mathrm{v}:\left\langle\phi^{*}, \mathrm{v}\right\rangle=0\right\} \tag{3.5}
\end{equation*}
$$

This follows form $\operatorname{dim} \operatorname{ker}\left(D_{x} F^{0}\right)=1, \operatorname{dim} R\left(D_{x} F^{0}\right)=n-1$ and the following Lemma.
Lemma (3.1): $\left(\operatorname{ker} D_{x} F^{0}\right) \cap R\left(D_{x} F^{0}\right)=\{0\}$
Proof: It is enough to show that $\phi \notin \mathrm{R}\left(\mathrm{D}_{\mathrm{x}} \mathrm{F}^{0}\right)$. Let $\mathrm{A}=\mathrm{D}_{\mathrm{x}} \mathrm{F}^{0}$ and assume that $\phi \in \mathrm{R}(\mathrm{A})$. Hence there exists $\mathrm{z} \neq 0$ such that $\mathrm{Az}=\phi$. Note that z and ϕ must linearly independent because if $a_{1} z+a_{2} \phi=0$, then $0=A\left(a_{1} z+a_{2} \phi\right)=a_{1} A z+a_{2} A \phi=a_{1} A z=a_{1} \phi$, which implies that $\mathrm{a}_{1}=0$. But then $\mathrm{a}_{2} \phi=0$, which implies $\mathrm{a}_{2}=0$. Now define

$$
\mathrm{X}=\operatorname{span}\left\{\mathrm{u}: \exists \mathrm{p} \geq 1 \ni \mathrm{~A}^{\mathrm{p}} \mathrm{u}=0, \mathrm{~A}^{\mathrm{p}-1} \mathrm{u} \neq 0\right\}
$$

Note that $A X \subseteq X$ because if $u \in X$, then $A^{p} u=0, A^{p-1} u \neq 0$ for some $p \geq 1$. Let $w=A u$. If $w=0$, then $A u \in X$. On the other hand if $w \neq 0$, since $A^{p} w=0$, there must be an $r, 1 \leq r \leq p$ such that $A^{r} w=0, A^{r-1} w \neq 0$, i.e., $w \in X$. Note also that if $\mathrm{Au}=\lambda \mathrm{u}$ with $\mathrm{u} \in \mathrm{X}$, we must have that $\lambda=0$, i.e., $\left.\mathrm{A}\right|_{\mathrm{X}}$ has zero as its only eigenvalue. Since $\lambda=0$ is a simple eigenvalue of A (by (3.1)), then the characteristic polynomial of A restricted to X must be $p(\lambda)= \pm \lambda$. It follows that $\operatorname{dim} X=1$. But z and ϕ both belong to X and are linearly independent. Thus we have a contradiction to $\phi \in R(A)$. //

This lemma implies that ϕ^{*} can always be chosen such that (3.3b) is satisfied. In fact if $\left\langle\phi^{*}, \phi\right\rangle=0$, then ϕ would have to belong to $R(A)$ of the lemma and we saw that this is impossible.

Since $\left(\operatorname{ker}_{\mathrm{x}} \mathrm{F}^{0}\right) \cap R\left(\mathrm{D}_{\mathrm{x}} \mathrm{F}^{0}\right)=\{0\}$, we have that

$$
\begin{equation*}
\left.\mathrm{L} \equiv \mathrm{D}_{\mathrm{x}} \mathrm{~F}^{0}\right|_{\mathrm{R}\left(\mathrm{D}_{\mathrm{x}} \mathrm{~F}^{0}\right)} \text { is nonsingular } \tag{3.6}
\end{equation*}
$$

If (x, λ) is a solution of (1.3) we can write

$$
\begin{gather*}
\lambda=\lambda_{0}+\varepsilon \quad, \quad \varepsilon \in \mathfrak{R} \tag{3.7a}\\
x=\mathrm{x}_{0}+\alpha \phi+\mathrm{v}, \quad \alpha \in \mathfrak{R}, \mathrm{v} \in \mathrm{R}\left(\mathrm{D}_{\mathrm{x}} \mathrm{~F}^{0}\right) \tag{3.7b}
\end{gather*}
$$

We now define the projection $\mathrm{Q}: \mathfrak{R}^{\mathrm{n}} \rightarrow \mathrm{R}\left(\mathrm{D}_{\mathrm{x}} \mathrm{F}^{0}\right)$ by

$$
\begin{equation*}
Q(\alpha \phi+v)=v \tag{3.8}
\end{equation*}
$$

It follows now that (1.3) is equivalent to

$$
\begin{gather*}
\Phi(\alpha, \varepsilon, \mathrm{v}) \equiv \mathrm{QF}\left(\mathrm{x}_{0}+\alpha \phi+\mathrm{v}, \lambda_{0}+\varepsilon\right)=0 \tag{3.9a}\\
(\mathrm{I}-\mathrm{Q}) \mathrm{F}\left(\mathrm{x}_{0}+\alpha \phi+\mathrm{v}, \lambda_{0}+\varepsilon\right)=0 \tag{3.9b}
\end{gather*}
$$

Note that

$$
\begin{equation*}
\Phi(0,0,0)=0 \quad, \quad \mathrm{D}_{\mathrm{v}} \Phi(0,0,0)=\mathrm{QD}_{\mathrm{x}} \mathrm{~F}^{0}=\mathrm{L} \tag{3.10a,b}
\end{equation*}
$$

Since L is nonsingular, we can invoke the Implicit Function Theorem to get that there exist $\alpha_{0}, \varepsilon_{0}>0$, a function $v:\left[-\alpha_{0}, \alpha_{0}\right] \times\left[-\varepsilon_{0}, \varepsilon_{0}\right] \rightarrow R\left(D_{x} F^{0}\right)$ such that

$$
\begin{equation*}
\Phi(\alpha, \varepsilon, \mathrm{v}(\alpha, \varepsilon))=0 \quad, \quad(\alpha, \varepsilon) \in\left[-\alpha_{0}, \alpha_{0}\right] \times\left[-\varepsilon_{0}, \varepsilon_{0}\right] \tag{3.11a}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{v}(0,0)=0 \tag{3.11b}
\end{equation*}
$$

Since $\mathrm{I}-\mathrm{Q}$ projects onto $\operatorname{ker} \mathrm{D}_{\mathrm{x}} \mathrm{F}^{0}=\operatorname{span}\{\phi\}$, equation (3.9b) reduces to

$$
\begin{equation*}
\mathrm{f}(\alpha, \varepsilon) \equiv\left\langle\phi^{*}, \mathrm{~F}\left(\mathrm{x}_{0}+\alpha \phi+\mathrm{v}(\alpha, \varepsilon), \lambda_{0}+\varepsilon\right)\right\rangle=0 \tag{3.12}
\end{equation*}
$$

which is called the bifurcation equation. The process just described to reduce (1.3) to (3.12) is called the Liapunov-Schmidt method.

Note that in (3.12) we have that

$$
\begin{gather*}
\mathrm{f}(0,0)=0 \tag{3.13a}\\
\frac{\partial \mathrm{f}}{\partial \alpha}=\left\langle\phi^{*}, \mathrm{D}_{\mathrm{x}} \mathrm{~F}\left(\phi+\frac{\partial \mathrm{v}}{\partial \alpha}\right)\right\rangle \quad, \quad \frac{\partial \mathrm{f}}{\partial \varepsilon}=\left\langle\phi^{*}, \mathrm{D}_{\mathrm{x}} \mathrm{~F} \frac{\partial \mathrm{v}}{\partial \varepsilon}+\mathrm{D}_{\lambda} \mathrm{F}\right\rangle \tag{3.13b,c}\\
\frac{\partial^{2} \mathrm{f}}{\partial \alpha^{2}}=\left\langle\phi^{*}, \mathrm{D}_{\mathrm{xx}} \mathrm{~F}\left(\phi+\frac{\partial \mathrm{v}}{\partial \alpha}\right)\left(\phi+\frac{\partial \mathrm{v}}{\partial \alpha}\right)+\mathrm{D}_{\mathrm{x}} \mathrm{~F} \frac{\partial^{2} \mathrm{v}}{\partial \alpha^{2}}\right\rangle \tag{3.13d}\\
\frac{\partial^{2} \mathrm{f}}{\partial \alpha \partial \varepsilon}=\left\langle\phi^{*},\left(\mathrm{D}_{\mathrm{xx}} \mathrm{~F} \frac{\partial \mathrm{v}}{\partial \varepsilon}+\mathrm{D}_{\mathrm{x} \mathrm{\lambda}} \mathrm{~F}\right)\left(\phi+\frac{\partial \mathrm{v}}{\partial \alpha}\right)+\mathrm{D}_{\mathrm{x}} \mathrm{~F} \frac{\partial^{2} \mathrm{v}}{\partial \alpha \partial \varepsilon}\right\rangle \tag{3.13e}\\
\frac{\partial^{2} \mathrm{f}}{\partial \varepsilon^{2}}=\left\langle\phi^{*},\left(\mathrm{D}_{\mathrm{xx}} \mathrm{~F} \frac{\partial \mathrm{v}}{\partial \varepsilon}+\mathrm{D}_{\mathrm{x} \lambda} \mathrm{~F}\right) \frac{\partial \mathrm{v}}{\partial \varepsilon}+\mathrm{D}_{\mathrm{x}} \mathrm{~F} \frac{\partial^{2} \mathrm{v}}{\partial \varepsilon^{2}}+\mathrm{D}_{\lambda \lambda} \mathrm{F}\right\rangle \tag{3.13f}
\end{gather*}
$$

From (3.9a) we get that

$$
\begin{equation*}
\mathrm{QD}_{\mathrm{x}} \mathrm{~F}\left(\phi+\frac{\partial \mathrm{v}}{\partial \alpha}\right)=0 \quad, \quad \mathrm{QD}_{\mathrm{x}} \mathrm{~F} \frac{\partial \mathrm{v}}{\partial \varepsilon}+\mathrm{QD}_{\lambda} \mathrm{F}=0 \tag{3.14a,b}
\end{equation*}
$$

If we set $(\alpha, \varepsilon)=(0,0)$ in (3.14) and use that $\mathrm{D}_{\mathrm{x}} \mathrm{F}^{0} \phi=0$, and that $\mathrm{QD}_{\mathrm{x}} \mathrm{F}^{0}$ is nonsingular, we get that

$$
\begin{equation*}
\frac{\partial \mathrm{v}}{\partial \alpha}(0,0)=0 \quad, \quad \frac{\partial \mathrm{v}}{\partial \varepsilon}(0,0)=-\mathrm{L}^{-1} \mathrm{QD}_{\lambda} \mathrm{F}^{0} \tag{3.15a,b}
\end{equation*}
$$

Now since $\left\langle\phi^{*}, D_{x} F^{0} z\right\rangle=0$ for any $z \in \mathfrak{R}^{n}$, it follows from (3.15) that (3.13b-f) reduce to

$$
\begin{equation*}
\frac{\partial \mathrm{f}}{\partial \alpha}(0,0)=0 \quad, \quad \frac{\partial \mathrm{f}}{\partial \varepsilon}(0,0)=\left\langle\phi^{*}, \mathrm{D}_{\lambda} \mathrm{F}^{0}\right\rangle \tag{3.16a,b}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial^{2} f}{\partial \alpha^{2}}(0,0)=\left\langle\phi^{*}, D_{x x} F^{0} \phi \phi\right\rangle \tag{3.16c}\\
\frac{\partial^{2} f}{\partial \alpha \partial \varepsilon}(0,0)=\left\langle\phi^{*},\left(D_{x x} F^{0} \frac{\partial v}{\partial \varepsilon}(0,0)+D_{x \lambda} F^{0}\right) \phi\right\rangle \tag{3.16d}\\
\frac{\partial^{2} f}{\partial \varepsilon^{2}}=\left\langle\phi^{*},\left(D_{x x} F^{0} \frac{\partial v}{\partial \varepsilon}(0,0)+D_{x \lambda} F^{0}\right) \frac{\partial v}{\partial \varepsilon}(0,0)+D_{\lambda \lambda} F^{0}\right\rangle \tag{3.16e}
\end{gather*}
$$

In the special case in which

$$
\begin{equation*}
\mathrm{F}(0, \lambda)=0 \quad, \quad \lambda \in \mathfrak{R} \tag{3.17}
\end{equation*}
$$

we get that $\partial v / \partial \varepsilon(0,0)=0$ and the following further simplifications:

$$
\begin{gather*}
\frac{\partial \mathrm{f}}{\partial \varepsilon}(0,0)=0 \quad, \quad \frac{\partial^{2} \mathrm{f}}{\partial \varepsilon^{2}}(0,0)=0 \tag{3.18a,b}\\
\frac{\partial^{2} \mathrm{f}}{\partial \alpha \partial \varepsilon}(0,0)=\left\langle\phi^{*}, D_{x \lambda} \mathrm{~F}^{0} \phi\right\rangle \tag{3.18c}
\end{gather*}
$$

4. Regular Limit Points

We assume that $\left\langle\phi^{*}, \mathrm{D}_{\lambda} \mathrm{F}^{0}\right\rangle \neq 0$, i.e., that

$$
\begin{equation*}
D_{\lambda} F^{0} \notin R\left(D_{x} F^{0}\right) \tag{4.1}
\end{equation*}
$$

It follows now from (3.13a), (3.16a,b) and the Implicit Function Theorem that there exists $\bar{\alpha}_{0} \leq \alpha_{0}$ and a function $\bar{\varepsilon}:\left[-\bar{\alpha}_{0}, \bar{\alpha}_{0}\right] \rightarrow \mathfrak{R}$ such that

$$
\begin{gather*}
\mathrm{f}(\alpha, \bar{\varepsilon}(\alpha))=0 \quad, \quad|\alpha| \leq \bar{\alpha}_{0} \tag{4.2a}\\
\bar{\varepsilon}(0)=0 \tag{4.2b}
\end{gather*}
$$

Combining (3.11), (4.1) and (3.7) we get that

$$
\begin{equation*}
\left(\mathrm{x}_{0}+\alpha \phi+\mathrm{v}(\alpha, \bar{\varepsilon}(\alpha)), \lambda_{0}+\bar{\varepsilon}(\alpha)\right) \quad, \quad|\alpha| \leq \bar{\alpha}_{0} \tag{4.3}
\end{equation*}
$$

represents a curve of solutions to (1.3) parameterized by α. If we differentiate (4.2a) twice with respect to α, we get that

$$
\begin{gather*}
\frac{\partial \mathrm{f}}{\partial \alpha}(\alpha, \bar{\varepsilon}(\alpha))+\bar{\varepsilon}^{\prime}(\alpha) \frac{\partial \mathrm{f}}{\partial \varepsilon}(\alpha, \bar{\varepsilon}(\alpha))=0 \tag{4.4a}\\
\frac{\partial^{2} \mathrm{f}}{\partial \alpha^{2}}(\alpha, \bar{\varepsilon}(\alpha))+2 \bar{\varepsilon}^{\prime}(\alpha) \frac{\partial^{2} \mathrm{f}}{\partial \varepsilon \partial \alpha}(\alpha, \bar{\varepsilon}(\alpha))+ \tag{4.4b}\\
\bar{\varepsilon}^{\prime \prime}(\alpha) \frac{\partial \mathrm{f}}{\partial \varepsilon}(\alpha, \bar{\varepsilon}(\alpha))+\bar{\varepsilon}^{\prime}(\alpha)^{2} \frac{\partial^{2} \mathrm{f}}{\partial \varepsilon^{2}}(\alpha, \bar{\varepsilon}(\alpha))=0
\end{gather*}
$$

It follows now from (3.16) and (4.1) that

$$
\begin{equation*}
\bar{\varepsilon}^{\prime}(0)=0 \quad, \quad \bar{\varepsilon}^{\prime \prime}(0)=-\frac{\left\langle\phi^{*}, D_{x x} F^{0} \phi \phi\right\rangle}{\left\langle\phi^{*}, \mathrm{D}_{\lambda} \mathrm{F}^{0}\right\rangle} \tag{4.5a,b}
\end{equation*}
$$

When $\bar{\varepsilon}^{\prime \prime}(0)>0$ or $\bar{\varepsilon}^{\prime \prime}(0)<0$ the point $\left(\mathrm{x}_{0}, \lambda_{0}\right)$ is called a regular limit point of (1.3) with respect to the variable λ. These cases are illustrated in Figure 2 below. The case $\bar{\varepsilon}^{\prime \prime}(0)=0$ requires higher order terms in the Taylor expansion of $\bar{\varepsilon}(\cdot)$ to determine the shape of the solution curve nearby $\left(\mathrm{x}_{0}, \lambda_{0}\right)$.

Figure 2: Shape of the solution curve of (1.3) near a regular limit point.

The results of this section are not surprising since conditions (3.1c) and (4.1) imply that $\mathrm{DF}^{0}=\left(\mathrm{D}_{\mathrm{x}} \mathrm{F}^{0}, \mathrm{D}_{\lambda} \mathrm{F}^{0}\right)$ has full rank. Thus the case discussed in this section is as in Section 2 but using a component of (x, λ) different from λ as the continuation parameter.

Numerically limit points are computed by a procedure similar to the one used for regular points. Equation (1.3) is augmented with another equation of the following form

$$
\begin{equation*}
\left(\frac{\mathrm{dx}}{\mathrm{ds}}\right)^{2}+\left(\frac{\mathrm{d} \lambda}{\mathrm{ds}}\right)^{2}=1 \tag{4.6}
\end{equation*}
$$

where " s " is the arc length parameter for the solution curve. Some variants of (4.6) based on an approximate arc length are used. If we differentiate $\mathrm{F}(\mathrm{x}(\mathrm{s}), \lambda(\mathrm{s}))=0$ with respect to "s", we get that

$$
\begin{equation*}
\mathrm{D}_{\mathrm{x}} \mathrm{~F}(\mathrm{x}(\mathrm{~s}), \lambda(\mathrm{s})) \frac{\mathrm{dx}}{\mathrm{ds}}+\mathrm{D}_{\lambda} \mathrm{F} \frac{\mathrm{~d} \lambda}{\mathrm{ds}}(\mathrm{x}(\mathrm{~s}), \lambda(\mathrm{s}))=0 \tag{4.7}
\end{equation*}
$$

Now (4.6), (4.7) can be used to compute ($\mathrm{dx} / \mathrm{ds}, \mathrm{d} \lambda / \mathrm{ds}$) which can be used in the predictor step, etc.. A more convenient selection than (4.6) is

$$
\begin{equation*}
\frac{\mathrm{dx}}{\mathrm{ds}}\left(\mathrm{~s}_{0}\right)^{\mathrm{t}}\left(\mathrm{x}(\mathrm{~s})-\mathrm{x}\left(\mathrm{~s}_{0}\right)\right)+\frac{\mathrm{d} \lambda}{\mathrm{ds}}\left(\mathrm{~s}_{0}\right)\left(\lambda(\mathrm{s})-\lambda\left(\mathrm{s}_{0}\right)\right)=\mathrm{s}-\mathrm{s}_{0} \tag{4.8}
\end{equation*}
$$

where $\mathrm{x}_{0}=\mathrm{x}\left(\mathrm{s}_{0}\right)$ and $\lambda_{0}=\lambda\left(\mathrm{s}_{0}\right)$. One can show that (4.6), (4.7) or (4.7) and the derivative with respect to "s" of (4.8) have a unique solution in the cases of regular points or limit points. (See Keller (1977), Rheinboldt (1986)).

5. Simple Bifurcation Points

Suppose now that $\left\langle\phi^{*}, D_{\lambda} F^{0}\right\rangle=0$, i.e.,

$$
\begin{equation*}
\mathrm{D}_{\lambda} \mathrm{F}^{0} \in \mathrm{R}\left(\mathrm{D}_{\mathrm{x}} \mathrm{~F}^{0}\right) \tag{5.1}
\end{equation*}
$$

It follows from (3.13a) and (3.16a,b) that

$$
\begin{equation*}
\mathrm{f}(0,0)=\frac{\partial \mathrm{f}}{\partial \alpha}(0,0)=\frac{\partial \mathrm{f}}{\partial \varepsilon}(0,0)=0 \tag{5.2}
\end{equation*}
$$

We will show that in this case $\left(\mathrm{x}_{0}, \lambda_{0}\right)$ is a bifurcation point of (1.3), i.e., in a neighborhood of ($\mathrm{x}_{0}, \lambda_{0}$) the solutions of (1.3) can be described by two smooth curves intersecting at $\left(\mathrm{x}_{0}, \lambda_{0}\right)$.

Suppose $(\alpha(t), \varepsilon(t))$ is a solution curve of (3.12) such that $\alpha(0)=\varepsilon(0)=0$. If we differentiate twice $\mathrm{f}(\alpha(\mathrm{t}), \varepsilon(\mathrm{t}))=0$, we get that

$$
\begin{equation*}
\frac{\partial \mathrm{f}}{\partial \alpha}(\alpha(\mathrm{t}), \varepsilon(\mathrm{t})) \alpha^{\prime}(\mathrm{t})+\frac{\partial \mathrm{f}}{\partial \varepsilon}(\alpha(\mathrm{t}), \varepsilon(\mathrm{t})) \varepsilon^{\prime}(\mathrm{t})=0 \tag{5.3a}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial^{2} \mathrm{f}}{\partial \alpha^{2}}(\alpha(\mathrm{t}), \varepsilon(\mathrm{t})) \alpha^{\prime}(\mathrm{t})^{2}+2 \varepsilon^{\prime}(\mathrm{t}) \alpha^{\prime}(\mathrm{t}) \frac{\partial^{2} \mathrm{f}}{\partial \varepsilon \partial \alpha}(\alpha(\mathrm{t}), \varepsilon(\mathrm{t}))+ \tag{5.3b}\\
& \quad \alpha^{\prime \prime}(\mathrm{t}) \frac{\partial \mathrm{f}}{\partial \alpha}(\alpha(\mathrm{t}), \varepsilon(\mathrm{t}))+\varepsilon^{\prime \prime}(\mathrm{t}) \frac{\partial \mathrm{f}}{\partial \varepsilon}(\alpha(\mathrm{t}), \varepsilon(\mathrm{t}))+\varepsilon^{\prime}(\mathrm{t})^{2} \frac{\partial^{2} \mathrm{f}}{\partial \varepsilon^{2}}(\alpha(\mathrm{t}), \varepsilon(\mathrm{t}))=0
\end{align*}
$$

It follows from (5.2) that at $t=0$ (5.3a) is satisfied for any $\left(\alpha^{\prime}(0), \varepsilon^{\prime}(0)\right)$ and equation (5.3b) reduces to

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{f}}{\partial \alpha^{2}}(0,0) \alpha^{\prime}(0)^{2}+2 \varepsilon^{\prime}(0) \alpha^{\prime}(0) \frac{\partial^{2} \mathrm{f}}{\partial \varepsilon \partial \alpha}(0,0)+\varepsilon^{\prime}(0)^{2} \frac{\partial^{2} \mathrm{f}}{\partial \varepsilon^{2}}(0,0)=0 \tag{5.4}
\end{equation*}
$$

In general this quadratic equation has two linearly independent solutions that represent possible tangents at $(0,0)$ of solution curves of (3.12). We assume that

$$
\begin{equation*}
\left(\frac{\partial^{2} \mathrm{f}}{\partial \alpha \partial \varepsilon}(0,0)\right)^{2}-\frac{\partial^{2} \mathrm{f}}{\partial \alpha^{2}}(0,0) \frac{\partial^{2} \mathrm{f}}{\partial \varepsilon^{2}}(0,0)>0 \tag{5.5}
\end{equation*}
$$

This is called the transversality condition and as we will show it guarantees bifurcation from $\left(\mathrm{x}_{0}, \lambda_{0}\right)$. If $\partial^{2} \mathrm{f} / \partial \alpha^{2}(0,0) \neq 0$, equation (5.4) can be written as

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{f}}{\partial \alpha^{2}}(0,0)\left[\alpha^{\prime}(0)-\mathrm{m}_{1} \varepsilon^{\prime}(0)\right]\left[\alpha^{\prime}(0)-\mathrm{m}_{2} \varepsilon^{\prime}(0)\right]=0 \tag{5.6}
\end{equation*}
$$

where $\mathrm{m}_{1}, \mathrm{~m}_{2}$ are the roots of the quadratic

$$
\begin{equation*}
\mathrm{A}^{0} \mathrm{~m}^{2}+2 \mathrm{~B}^{0} \mathrm{~m}+\mathrm{C}^{0}=0 \tag{5.7a}
\end{equation*}
$$

where

$$
\begin{equation*}
A^{0}=\frac{\partial^{2} \mathrm{f}}{\partial \alpha^{2}}(0,0) \quad, \quad \mathrm{B}^{0}=\frac{\partial^{2} \mathrm{f}}{\partial \varepsilon \partial \alpha}(0,0) \quad, \quad \mathrm{C}^{0}=\frac{\partial^{2} \mathrm{f}}{\partial \varepsilon^{2}}(0,0) \tag{5.7b}
\end{equation*}
$$

Note that (5.5) implies that $\mathrm{m}_{1}, \mathrm{~m}_{2}$ are real and different. Moreover since $\mathrm{d} \alpha / \mathrm{d} \varepsilon(0)=\mathrm{d} \alpha / \mathrm{dt}(0) / \mathrm{d} \varepsilon / \mathrm{dt}(0)$, we get from (5.6) that

$$
\begin{equation*}
\frac{\mathrm{d} \alpha}{\mathrm{~d} \varepsilon}(0)=\mathrm{m}_{1}, \mathrm{~m}_{2} \tag{5.8}
\end{equation*}
$$

Hence $\alpha(\varepsilon)=\mathrm{m}_{\mathrm{i}} \varepsilon+\mathrm{o}(\varepsilon), \mathrm{i}=1,2$. Is reasonable then to look for a function $\mathrm{w}(\varepsilon)$ such that $\alpha(\varepsilon)=\varepsilon w(\varepsilon), \mathrm{w}(0)=\mathrm{m}_{\mathrm{i}}, \mathrm{i}=1,2$. We now show that such a function exists. Define

$$
\mathrm{G}(\mathrm{w}, \varepsilon)=\left\{\begin{array}{cc}
\frac{1}{\varepsilon} \mathrm{f}(\varepsilon \mathrm{w}, \varepsilon) & , \quad \varepsilon \neq 0 \tag{5.9}\\
\frac{1}{2}\left(\mathrm{~A}^{0} \mathrm{w}^{2}+2 \mathrm{~B}^{0} \mathrm{w}+\mathrm{C}^{0}\right. & , \quad \varepsilon=0
\end{array}\right.
$$

One can show now that $G \in C^{1}$. Note that $G(w, \varepsilon)=0, \varepsilon \neq 0$ if and only if $f(\varepsilon w, \varepsilon)=0$. Also

$$
\begin{equation*}
\mathrm{G}\left(\mathrm{~m}_{\mathrm{i}}, 0\right)=0 \quad, \quad \mathrm{i}=1,2 \tag{5.10}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\partial \mathrm{G}}{\partial \mathrm{w}}\left(\mathrm{~m}_{\mathrm{i}}, 0\right) & =\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{G}\left(\mathrm{~m}_{\mathrm{i}}+\mathrm{h}, 0\right)-\mathrm{G}\left(\mathrm{~m}_{\mathrm{i}}, 0\right)}{\mathrm{h}} \\
& =\lim _{\mathrm{h} \rightarrow 0} \frac{1}{2 \mathrm{~h}}\left(\mathrm{~A}^{0}\left(\mathrm{~m}_{\mathrm{i}}+\mathrm{h}\right)^{2}+2 \mathrm{~B}^{0}\left(\mathrm{~m}_{\mathrm{i}}+\mathrm{h}\right)\right) \tag{5.11}\\
& =\mathrm{A}^{0} \mathrm{~m}_{\mathrm{i}}+\mathrm{B}^{0} \\
& = \pm \sqrt{\left(\mathrm{B}^{0}\right)^{2}-\mathrm{A}^{0} \mathrm{C}^{0}}
\end{align*}
$$

which is nonzero for $\mathrm{i}=1,2$ by (5.5) and (5.7b). It follows now from the Implicit Function Theorem that there exist $\varepsilon_{0}>0$ and functions $\mathrm{w}_{\mathrm{i}}:\left[-\varepsilon_{0}, \varepsilon_{0}\right] \rightarrow \mathfrak{R}, \mathrm{i}=1,2$ such that

$$
\begin{gather*}
\mathrm{G}\left(\mathrm{w}_{\mathrm{i}}(\varepsilon), \varepsilon\right)=0 \quad, \quad|\varepsilon| \leq \varepsilon_{0} \tag{5.12a}\\
\mathrm{w}_{\mathrm{i}}(0)=\mathrm{m}_{\mathrm{i}} \quad, \quad \mathrm{i}=1,2 \tag{5.12b}
\end{gather*}
$$

It follows then that

$$
\begin{gather*}
\mathrm{f}\left(\alpha_{\mathrm{i}}(\varepsilon), \varepsilon\right)=0 \quad, \quad|\varepsilon| \leq \varepsilon_{0} \tag{5.13a}\\
\alpha_{\mathrm{i}}(\varepsilon)=\varepsilon \mathrm{w}_{\mathrm{i}}(\varepsilon) \quad, \quad \mathrm{w}_{\mathrm{i}}(0)=\mathrm{m}_{\mathrm{i}} \quad, \quad \mathrm{i}=1,2 \tag{5.13b}
\end{gather*}
$$

Schematically the situation is as in Figure 2. A similar analysis can be done for the case $\partial^{2} f / \partial \alpha^{2}(0,0)=0$. From (3.7), (3..11), and (5.13) it follows that the solution curves of (1.3) are given by

$$
\begin{equation*}
\left(\mathrm{x}_{0}+\varepsilon \mathrm{W}_{\mathrm{i}}(\varepsilon) \phi+\mathrm{v}\left(\varepsilon \mathrm{~W}_{\mathrm{i}}(\varepsilon), \varepsilon\right), \lambda_{0}+\varepsilon\right) \quad, \quad|\varepsilon| \leq \varepsilon_{0} \quad, \quad \mathrm{i}=1,2 \tag{5.14}
\end{equation*}
$$

Figure 2: Schematic situation near a simple bifurcation point.

The numerical computation of the solution curves (5.14) is usually as follows. Typically, one is computing one of the two curves, called the primary curve, and the points of bifurcation of the second curve are detected using the function

$$
\begin{equation*}
\mathrm{g}(\mathrm{x}, \lambda)=\operatorname{det} \mathrm{D}_{\mathrm{x}} \mathrm{~F}(\mathrm{x}, \lambda) \tag{5.15}
\end{equation*}
$$

More specifically, if $(x(\varepsilon), \lambda(\varepsilon))$ denotes the primary curve and $(x(0), \lambda(0))=\left(x^{*}, \lambda^{*}\right)$ is a simple bifurcation point, then

$$
\begin{equation*}
\mathrm{h}(\varepsilon)=\mathrm{g}(\mathrm{x}(\varepsilon), \lambda(\varepsilon)) \tag{5.16}
\end{equation*}
$$

changes sign at $\varepsilon=0$. In this a bifurcation point can be detected and can be further computed using a root finding algorithm applied to (5.16) (see Kubicek and Marek (1983)). We can use now equations (5.7), (5.8) to compute the tangent of the bifurcating curve at $\left(\mathrm{x}^{*}, \lambda^{*}\right)$. This tangent can be use now in the predictor part of the continuation method which could then continue following the bifurcating curve. This general scheme requires second derivative of f in (3.12) which in turn requires second derivatives of the function F in (1.3). Usually F comes from a discretization of a problem like (1.1) (e.g. (1.2)) which makes the dimension n in (1.3) large thus making the computation of derivatives of F an expensive computational task. Other algorithms are based on perturbation methods or difference quotients to approximate derivatives of F. (See Keller (1977), Keller and Langford (1972), and Rheinboldt (1978)).

References

[1] Antman, S.S., Geometric Aspects of Global Bifurcation in Nonlinear Elasticity, Geometric Methods of Mathematical Physics, Lecture Notes in Mathematics \#775, Springer Verlag, N.Y., 1980.
[2] Ioos, G. and Joseph, D.D., Elementary Stability and Bifurcation Theory, Springer Verlag, N.Y., 1980.
[3] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Academic Press, 1977.
[4] Keller, H.B. and Langford, W.F., Iterations, Perturbations, and Multiplicities for Nonlinear Bifurcation Problems, Arch. Rat. Mech. Anal., 48, 83-108, 1972.
[5] Kubicek, M. and Marek, M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer Verlag, N.Y., 1983.
[6] Nirenberg, L., Topics in Nonlinear Functional Analysis, Courant Institute of Math. Sc., N.Y., 1974.
[7] Rheinboldt, W.C., Numerical Methods for a Class of Finite Dimensional Bifurcation Problems, SIAM J. Num. Anal., 15, 1-11, 1978.
[8] Rheinboldt, W.C., Numerical Analysis of Parametrized Nonlinear Equations, John Wiley \& Sons, N.Y., 1986.

