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1. Introduction

We will study problems of the following general form:

BB:G,0),u(G →ℜ×=λ (1.1)

where B is some Banach space. An example of this type of problem are the equations
describing the deformations (in-extensible and obeying Hook’s Law) fixed on the ends
(see Antman (1980)):

1s0,0)s(sin)s( <<=θλ+θ ′′ (1.2a)

)1(0)0( θ==θ (1.2b,c)

In this case one can use Green’s functions to show that (1.2) is equivalent to (1.1) where
G an integral operator and ]1,0[CB = .

Usually to solve (1.1) numerically, after some appropriate discretization (e.g., a finite
deference approximation in (1.2)), one obtains the following special case of (1.1):

nn:F,0),x(F ℜ→ℜ×ℜ=λ (1.3)

i.e., nB ℜ= . In this paper we study conditions for the existence of solution curves )(x λ
of (1.3) and when they cease to exist, and describe limit and bifurcation points.

2. Regular Points

A point ),x( 00 λ  is a regular point of F in (1.3) if

0),x(FDdet,0),x(F 00x00 ≠λ=λ (2.1)

Under these conditions the Implicit Function Theorem implies that there exists 0>δ  and
a smooth function n

00 ),(:x ℜ→δ+λδ−λ  such that
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),(,0)),(x(F 00 δ+λδ−λ∈λ=λλ (2.2a)

00 x)(x =λ (2.2b)

0)),(x(FD)(x)),(x(FDx =λλ+λ′λλ λ (2.2c)

Thus in a neighborhood of a regular point, the solutions of (1.3) consist of smooth curves
parameterized by λ . The equation (2.2c) can be used to compute )(x ⋅  numerically. In

particular, if we know )t(x 0  where ),(t 000 δ+λδ−λ∈ , then we can approximate

)ht(x 0 +  where ),(ht 000 δ+λδ−λ∈+  using the following iterations:

0)t),t(x(FD)t(x)t),t(x(FD 00000x =+′ λ (2.3a)

)t(xh)t(x)ht(x 000
)0( ′+=+ (2.3b)

�,2,1,0k,0)ht),ht(x(F

))ht(x)ht(x)(ht),ht(x(FD

00
)k(

0
)k(

0
)1k(

00
)k(

x

==+++

+−+++ +

(3.3c)

That is, we use (2.2c) to make a prediction of )ht(x 0 +  by Euler’s Method (2.3a,b) and

then we correct using Newton’s Method on the x variables only applied to (1.3) in
equation (3.3c). (See Figure 1). This method is effective  as long as λ  can be used as the
continuation parameter in (1.3), i.e., whenever (2.1) is satisfied (see Rheinboldt (1986)).
We now study the case when (2.1) is not satisfied.

Figure 1: Schematic diagram of a predictor-corrector continuation method.
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3. Singular Points

In this section we used the so called Liapunov-Schmidt method to reduce problem (1.3) to
a single equation in two variables when (2.1) is not satisfied.

We say that the point ),x( 00 λ  is a (simple) singular point of F if

0),x(FDdet,0),x(F 00x00 =λ=λ (3.1a,b)

1n),x(FDrank 00x −=λ (3.1c)

Henceforth we employ the notation ),x(FDFD 00x
0

x λ= , etc.. From (3.3c) it follows that

there exists a unique (up to a minus sign) nℜ∈φ  such that

1,}{spanFDker 0
x =φφ= (3.2)

Also there exists a unique n* ℜ∈φ  such that

1,,}{span)FD(ker **t0
x =〉φφ〈φ= (3.3a,b)

since t0
x

0
x )FD(rankFDrank = . (We will show below that indeed *φ  can be chosen to

satisfy (3.3b)). By the Fredholm Alternative Theorem we have that

}0x,:x{))FD((ker)FD(R *nt0
x

0
x =〉φ〈ℜ∈== ⊥ (3.4)

where }x:Ax{)A(R nℜ∈=  is the range of A. We also have that

}0v,:v{)FD(R)FD(ker *0
x

0
x

n =〉φ〈+αφ=⊕=ℜ (3.5)

This follows form 1)FDker(dim 0
x = , 1n)FD(Rdim 0

x −=  and the following Lemma.

Lemma (3.1): }0{)FD(R)FD(ker 0
x

0
x =∩

Proof: It is enough to show that )FD(R 0
x∉φ . Let 0

xFDA =  and assume that )A(R∈φ .
Hence there exists 0z ≠  such that φ=Az . Note that z and φ  must linearly independent

because if 0aza 21 =φ+ , then φ==φ+=φ+= 112121 aAzaAaAza)aza(A0 , which

implies that 0a1 = . But then 0a2 =φ , which implies 0a2 = . Now define

}0uA,0uA1p:u{spanX 1pp ≠=∋≥∃= −
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Note that XAX ⊆  because if Xu ∈ , then 0uA,0uA 1pp ≠= −  for some 1p ≥ . Let

Auw = . If 0w = , then XAu ∈ . On the other hand if 0w ≠ , since 0wAp = , there
must be an r, pr1 ≤≤  such that 0wA,0wA 1rr ≠= − , i.e., Xw ∈ . Note also that if

uAu λ=  with Xu ∈ , we must have that 0=λ , i.e., 
X

A  has zero as its only eigenvalue.

Since 0=λ  is a simple eigenvalue of A (by (3.1)), then the characteristic polynomial of
A restricted to X must be λ±=λ)(p . It follows that 1Xdim = . But z and φ  both belong
to X and are linearly independent. Thus we have a contradiction to )A(R∈φ .  //

This lemma implies that *φ  can always be chosen such that (3.3b) is satisfied. In fact if

0,* =〉φφ〈 , then φ  would have to belong to )A(R  of the lemma and we saw that this is
impossible.

Since }0{)FD(R)FD(ker 0
x

0
x =∩ , we have that

)FD(R

0
x 0

x

FDL ≡  is nonsingular (3.6)

If ),x( λ  is a solution of (1.3) we can write

ℜ∈εε+λ=λ ,0 (3.7a)

)FD(Rv,,vxx 0
x0 ∈ℜ∈α+αφ+= (3.7b)

We now define the projection )FD(R:Q 0
x

n →ℜ  by

v)v(Q =+αφ (3.8)

It follows now that (1.3) is equivalent to

0),vx(QF)v,,( 00 =ε+λ+αφ+≡εαΦ (3.9a)

0),vx(F)QI( 00 =ε+λ+αφ+− (3.9b)

Note that

LFQD)0,0,0(D,0)0,0,0( 0
xv ==Φ=Φ (3.10a,b)

Since L is nonsingular, we can invoke the Implicit Function Theorem to get that there
exist 0, 00 >εα , a function )FD(R],[],[:v 0

x0000 →εε−×αα−  such that

],[],[),(,0)),(v,,( 0000 εε−×αα−∈εα=εαεαΦ (3.11a)
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0)0,0(v = (3.11b)

Since QI −  projects onto }{spanFDker 0
x φ= , equation (3.9b) reduces to

0)),,(vx(F,),(f 00
* =〉ε+λεα+αφ+φ〈≡εα (3.12)

which is called the bifurcation equation. The process just described to reduce (1.3) to
(3.12) is called the Liapunov-Schmidt method.

Note that in (3.12) we have that

0)0,0(f = (3.13a)

〉+
ε∂

∂φ〈=
ε∂

∂〉
α∂

∂+φφ〈=
α∂

∂
λFD

v
FD,

f
,)

v
(FD,

f
x

*
x

* (3.13b,c)

〉
α∂

∂+
α∂

∂+φ
α∂

∂+φφ〈=
α∂
∂

2

2

xxx
*

2

2 v
FD)

v
)(

v
(FD,

f
(3.13d)

〉
ε∂α∂

∂+
α∂

∂+φ+
ε∂

∂φ〈=
ε∂α∂

∂
λ

v
FD)

v
)(FD

v
FD(,

f 2

xxxx
*

2

(3.13e)

〉+
ε∂

∂+
ε∂

∂+
ε∂

∂φ〈=
ε∂

∂
λλλ FD

v
FD

v
)FD

v
FD(,

f
2

2

xxxx
*

2

2

(3.13f)

From (3.9a) we get that

0FQD
v

FQD,0)
v

(FQD xx =+
ε∂

∂=
α∂

∂+φ λ (3.14a,b)

If we set )0,0(),( =εα  in (3.14) and use that 0FD 0
x =φ , and that 0

xFQD  is nonsingular,
we get that

01 FQDL)0,0(
v

,0)0,0(
v

λ
−−=

ε∂
∂=

α∂
∂

(3.15a,b)

Now since 0zFD, 0
x

* =〉φ〈  for any nz ℜ∈ , it follows from (3.15) that (3.13b-f) reduce to

〉φ〈=
ε∂

∂=
α∂

∂
λ

0* FD,)0,0(
f

,0)0,0(
f

(3.16a,b)
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〉φφφ〈=
α∂
∂ 0

xx
*

2

2

FD,)0,0(
f

(3.16c)

〉φ+
ε∂

∂φ〈=
ε∂α∂

∂
λ )FD)0,0(

v
FD(,)0,0(

f 0
x

0
xx

*
2

(3.16d)

〉+
ε∂

∂+
ε∂

∂φ〈=
ε∂

∂
λλλ

00
x

0
xx

*
2

2

FD)0,0(
v

)FD)0,0(
v

FD(,
f

(3.16e)

In the special case in which

ℜ∈λ=λ ,0),0(F (3.17)

we get that 0)0,0(v =ε∂∂  and the following further simplifications:

0)0,0(
f

,0)0,0(
f

2

2

=
ε∂

∂=
ε∂

∂
(3.18a,b)

〉φφ〈=
ε∂α∂

∂
λ

0
x

*
2

FD,)0,0(
f

(3.18c)

4. Regular Limit Points

We assume that 0FD, 0* ≠〉φ〈 λ , i.e., that

)FD(RFD 0
x

0 ∉λ (4.1)

It follows now from (3.13a), (3.16a,b) and the Implicit Function Theorem that there
exists 00 α≤α  and a function ℜ→αα−ε ],[: 00  such that

0,0))(,(f α≤α=αεα (4.2a)

0)0( =ε (4.2b)

Combining (3.11), (4.1) and (3.7) we get that

000 ,))()),(,(vx( α≤ααε+λαεα+αφ+ (4.3)

represents a curve of solutions to (1.3) parameterized by α . If we differentiate (4.2a)
twice with respect to α , we get that
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0))(,(
f

)())(,(
f =αεα

ε∂
∂αε′+αεα

α∂
∂

(4.4a)

0))(,(
f

)())(,(
f

)(

))(,(
f

)(2))(,(
f

2

2
2

2

2

2

=αεα
ε∂

∂αε′+αεα
ε∂

∂αε ′′

+αεα
α∂ε∂

∂αε′+αεα
α∂
∂

(4.4b)

It follows now from (3.16) and (4.1) that

〉φ〈
〉φφφ〈

−=ε ′′=ε′
λ

0*

0
xx

*

FD,

FD,
)0(,0)0( (4.5a,b)

When  0)0( >ε ′′  or 0)0( <ε ′′  the point ),x( 00 λ  is called a regular limit point of (1.3)

with respect to the variable λ . These cases are illustrated in Figure 2 below. The case
0)0( =ε ′′  requires higher order terms in the Taylor expansion of )(⋅ε  to determine the

shape of the solution curve nearby ),x( 00 λ .

Figure 2: Shape of the solution curve of (1.3) near a regular limit point.

The results of this section are not surprising since conditions (3.1c) and (4.1) imply that
)FD,FD(DF 00

x
0

λ=  has full rank. Thus the case discussed in this section is as in

Section 2 but using a component of ),x( λ  different from λ  as the continuation
parameter.

Numerically limit points are computed by a procedure similar to the one used for regular
points. Equation (1.3) is augmented with another equation of the following form
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1
ds

d

ds

dx
22

=⎟
⎠
⎞⎜

⎝
⎛ λ+⎟

⎠
⎞⎜

⎝
⎛ (4.6)

where “s” is the arc length parameter for the solution curve. Some variants of (4.6) based
on an approximate arc length are used. If we differentiate 0))s(),s(x(F =λ  with respect
to “s”, we get that

0))s(),s(x(
ds

d
FD

ds

dx
))s(),s(x(FDx =λλ+λ λ (4.7)

Now (4.6), (4.7) can be used to compute )dsd,dsdx( λ  which can be used in the
predictor step, etc.. A more convenient selection than (4.6) is

0000
t

0 ss))s()s()(s(
ds

d
))s(x)s(x()s(

ds

dx −=λ−λλ+− (4.8)

where )s(xx 00 =  and )s( 00 λ=λ . One can show that (4.6), (4.7) or (4.7) and the

derivative with respect to “s” of (4.8) have a unique solution in the cases of regular points
or limit points. (See Keller (1977), Rheinboldt (1986)).

5. Simple Bifurcation Points

Suppose now that 0FD, 0* =〉φ〈 λ , i.e.,

)FD(RFD 0
x

0 ∈λ (5.1)

It follows from (3.13a) and (3.16a,b) that

0)0,0(
f

)0,0(
f

)0,0(f =
ε∂

∂=
α∂

∂= (5.2)

We will show that in this case ),x( 00 λ  is a bifurcation point of (1.3), i.e., in a

neighborhood of ),x( 00 λ  the solutions of (1.3) can be described by two smooth curves

intersecting at ),x( 00 λ .

Suppose ))t(),t(( εα  is a solution curve of (3.12) such that 0)0()0( =ε=α . If we
differentiate twice 0))t(),t((f =εα , we get that

0)t())t(),t((
f

)t())t(),t((
f =ε′εα

ε∂
∂+α′εα

α∂
∂

(5.3a)
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0))t(),t((
f

)t())t(),t((
f

)t())t(),t((
f

)t(

))t(),t((
f

)t()t(2)t())t(),t((
f

2

2
2

2
2

2

2

=εα
ε∂

∂ε′+εα
ε∂

∂ε ′′+εα
α∂

∂α ′′

+εα
α∂ε∂

∂α′ε′+α′εα
α∂
∂

(5.3b)

It follows from (5.2) that at 0t =  (5.3a) is satisfied for any ))0(),0(( ε′α′  and equation
(5.3b) reduces to

0)0,0(
f

)0()0,0(
f

)0()0(2)0()0,0(
f

2

2
2

2
2

2

2

=
ε∂

∂ε′+
α∂ε∂

∂α′ε′+α′
α∂
∂

(5.4)

In general this quadratic equation has two linearly independent solutions that represent
possible tangents at )0,0(  of solution curves of (3.12). We assume that

0)0,0(
f

)0,0(
f

)0,0(
f

2

2

2

222

>
ε∂

∂
α∂
∂−⎟⎟⎠

⎞
⎜⎜⎝

⎛
ε∂α∂

∂
(5.5)

This is called the transversality condition and as we will show it guarantees bifurcation
from ),x( 00 λ . If 0)0,0(f 22 ≠α∂∂ , equation (5.4) can be written as

0)]0(m)0()][0(m)0()[0,0(
f

212

2

=ε′−α′ε′−α′
α∂
∂

(5.6)

where 21 m,m  are the roots of the quadratic

0CmB2mA 0020 =++ (5.7a)

where

)0,0(
f

C,)0,0(
f

B,)0,0(
f

A
2

2
0

2
0

2

2
0

ε∂
∂=

α∂ε∂
∂=

α∂
∂= (5.7b)

Note that (5.5) implies that 21 m,m  are real and different. Moreover since

)0(dtd/)0(dtd)0(dd εα=εα , we get from (5.6) that

21 m,m)0(
d

d =
ε
α

(5.8)

Hence )(om)( i ε+ε=εα , 2,1i = . Is reasonable then to look for a function )(w ε  such

that )(w)( εε=εα , im)0(w = , 2,1i = . We now show that such a function exists. Define
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⎪⎩

⎪
⎨
⎧

=ε++

≠εεε
ε=ε

0,CwB2wA(

0,),w(f
1

),w(G
0020

2
1

(5.9)

One can show now that 1CG ∈ . Note that 0),w(G =ε , 0≠ε  if and only if 0),w(f =εε .
Also

2,1i,0)0,m(G i == (5.10)

and

0020

0
i

0

i
02

i
0

0h

ii

0h
i

CA)B(

BmA

))hm(B2)hm(A(
h2

1
lim

h

)0,m(G)0,hm(G
lim)0,m(

w

G

−±=

+=

+++=

−+
=

∂
∂

→

→

(5.11)

which is nonzero for 2,1i =  by (5.5) and (5.7b). It follows now from the Implicit

Function Theorem that there exist 00 >ε  and functions ℜ→εε− ],[:w 00i , 2,1i =  such

that

0i ,0)),(w(G ε≤ε=εε (5.12a)

2,1i,m)0(w ii == (5.12b)

It follows then that

0i ,0)),((f ε≤ε=εεα (5.13a)

2,1i,m)0(w,)(w)( iiii ==εε=εα (5.13b)

Schematically the situation is as in Figure 2. A similar analysis can be done for the case
0)0,0(f 22 =α∂∂ . From (3.7), (3..11), and (5.13) it follows that the solution curves of

(1.3) are given by

2,1i,,)),),(w(v)(wx( 00ii0 =ε≤εε+λεεε+φεε+ (5.14)
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Figure 2: Schematic situation near a simple bifurcation point.

The numerical computation of the solution curves (5.14) is usually as follows. Typically,
one is computing one of the two curves, called the primary curve, and the points of
bifurcation of the second curve are detected using the function

),x(FDdet),x(g x λ=λ (5.15)

More specifically, if ))(),(x( ελε  denotes the primary curve and ),x())0(),0(x( ** λ=λ  is
a simple bifurcation point, then

))(),(x(g)(h ελε=ε (5.16)

changes sign at 0=ε . In this a bifurcation point can be detected and can be further
computed using a root finding algorithm applied to (5.16) (see Kubicek and Marek
(1983)). We can use now equations (5.7), (5.8) to compute the tangent of the bifurcating
curve at ),x( ** λ . This tangent can be use now in the predictor part of the continuation
method which could then continue following the bifurcating curve. This general scheme
requires second derivative of f in (3.12) which in turn requires second derivatives of the
function F in (1.3). Usually F comes from a discretization of a problem like (1.1) (e.g.
(1.2)) which makes the dimension n in (1.3) large thus making the computation of
derivatives of F an expensive computational task. Other algorithms are based on
perturbation methods or difference quotients to approximate derivatives of F. (See Keller
(1977), Keller and Langford (1972), and Rheinboldt (1978)).
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