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Abstract

We consider the problem of finding curves of minimum time of descent, joining
two given points over a given frictionless surface and under the influence of gravity.
We discuss the existence and minimality of extremals for the corresponding time
functional, and find explicit solutions in certain special cases, including a closed
form solution for the problem on an inclined plane. A discussion of numerical
methods for computing these minimizers is given with several numerical examples
for which explicit solutions are not known.
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1 Introduction

The brachistochrone problem consists of finding the curve, joining two (non–vertical)
given points, along which a bead of given mass falls without friction and under the
influence of gravity, in the minimum time. This problem was first posed by Johann
Bernoulli in 1696 and solved that same year by Newton, Leibniz, the Bernoulli brothers
Johann and Jacob, and de L’Hôpital. The solution of the brachistochrone problem was
pivotal to the development of the now very important branch of analysis called the
calculus of variations. Since then variations of the brachistochrone problem, some of
them including friction or variable force fields, have been presented in many books and
papers (see e.g. [1], [3], [8], [11], [13], [14], [16], and [18]).

In this paper we discuss a variation of this problem that is hardly ever considered,
namely the problem of finding curves of minimum time of descent over a given frictionless
surface and under the influence of gravity. In [8] the problem over parametrized surfaces
is considered but for orthogonal parametrizations. Since for a general surface, these
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orthogonal parametrizations are only possible locally, the explicit solutions given in [8]
in terms of certain integrals, are only local. In this paper we do not assume that the
parametrization of the surface is orthogonal. However as it turns out the existence of
extremals and their minimality can only be guaranteed locally. We mention here as
well the work in [19] where the surface instead of been described parametrically, it is
constructed or approximated using splines applied to USGS elevation data.

By using conservation of energy, we do a derivation of the time integral functional
describing the total time of descent along a given curve over a surface. We consider
parametrized surfaces which are the image of a function Φ : D → R

3 where D ⊂ R
2.

Curves over the surface are thus given by a composition ofΦ together with a curve ψ over
D. From the time functional we can formally derive the Euler–Lagrange equations for ψ.
These equations together with the requirement that the curve over the original surface
joins two given points on the surface, yields a nonlinear boundary value problem (BVP)
characterizing the extremals for the time integral functional. However, the resulting
differential equation does not satisfy any of the standard requirements (c.f. [12]) for the
existence of solutions of this BVP. Nonetheless we can invoke a result from Picard [17]
to get that our BVP has a solution which is unique provided that the two points that
the curve is to connect, are “sufficiently” close. It is interesting to note that our problem
reduces to the one for geodesics when the constant for the acceleration due to gravity is
set to zero. However, even for the geodesic problem, the results about the existence of
extremals are still local.

Our problem (and the one for geodesics as well) is what is called a “parameter form
problem” of the calculus of variations (cf. [7, Chap. 2, Sec. 10]). Exploiting this
structure and with a local result for extremals like the one described in the previous
paragraph, Bliss [2] shows how to construct an exact field for a parameter form problem,
and that at least locally, the extremals are weak minimizers (in the C1 norm) of the
original functional. This result holds as a special case for our problem as well.

This paper is mostly expository. Our main contribution is to put together on a single
reference different results concerning the existence and minimality of extremals, explicit
solutions in special cases, and a discussion of numerical methods for computing the desired
minimizers. Numerical schemes for the calculations of the minimizing extremals in this
problem are usually overlooked. This is not a trivial matter, requiring the combination
of several numerical techniques for the efficient calculation of these minimizers.

2 Motion over a surface

Consider a surface S ⊂ R
3 with parametrization Φ : D → R

3 given by

(x, y, z) = Φ(u, v) = (x̂(u, v), ŷ(u, v), ẑ(u, v))T (u, v) ∈ D, (1)

where D ⊂ R
2 is open and Φ ∈ C2. We assume that there is a constant gravitational

field pointing in the negative z direction, with a constant g of acceleration.
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Given a curve ψ on D, where

ψ(τ) = (û(τ), v̂(τ))T , τ ∈ [τ1, τ2],

a curve σ over S is thus given by

σ(τ) = Φ(ψ(τ)) = Φ(û(τ), v̂(τ)), τ ∈ [τ1, τ2].

From this we get that
σ′(τ) = DΦ(ψ(τ))ψ′(τ),

where DΦ(u, v) = [Φu(u, v),Φv(u, v)]. The element of arc length over σ is thus given by

ds = ‖σ′(τ)‖ dτ = ‖DΦ(ψ(τ))ψ′(τ)‖ dτ.

We let v(τ) be the speed of a particle moving over the surface at the point σ(τ).
Conservation of energy now implies that

1

2
mv(τ)2 +mgẑ(ψ(τ)) =

1

2
mv20 +mgza,

where v0 is the initial speed and za the initial height. Thus

v(τ) =
√

α0 − 2gẑ(ψ(τ)), (2)

with α0 = v20 + 2gza. It follows now that the total time of descend of a particle of mass
m along the curve σ over S is given by

T [ψ] =

∫ τ2

τ1

‖DΦ(ψ(τ))ψ′(τ)‖
√

α0 − 2gẑ(ψ(τ))
dτ. (3)

We seek to minimize T [·] over the set of admissible1 curves ψ given by

A =
{

ψ ∈ C1[τ1, τ2] : ψ(τ) ∈ D ∀τ ∈ [τ1, τ2], Φ(ψ(τ1)) = a, Φ(ψ(τ2)) = b,

α0 − 2gẑ(ψ(τ)) > 0 ∀τ ∈ [τ1, τ2], ψ
′(τ) 6= 0 ∀τ ∈ [τ1, τ2]

}

, (4)

where a,b ∈ S. It follows from the results in [4] or [7], that the value of the time integral
(3) is independent of the parametrization of the curve ψ. That is, if ψ is re-parametrized
via a one to one and onto re-parametrization, the value of T [ψ] does not change.

1The set of admissible functions could be defined for functions with piecewise continuous first deriva-
tive. However as we will see in Proposition 3.3, the extremals of the functional (3) must have continuous
first derivatives.
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3 Existence and minimizing properties of extremals

If we let

f(y, z) =
‖DΦ(y)z‖

√

α0 − 2gẑ(y)
, y, z ∈ Ω, (5)

where
Ω =

{

(y, z) ∈ D × R
2 : α0 − 2gẑ(y) > 0, z 6= 0

}

, (6)

then

fz(y, z) =
DΦ(y)TDΦ(y)z

‖DΦ(y)z‖
√

α0 − 2gẑ(y)
, (7)

fy(y, z) = g
‖DΦ(y)z‖

(α0 − 2gẑ(y))
3

2

~∇ẑ(y) + (zzT ) : (DΦ(y)TD2Φ(y))

‖DΦ(y)z‖
√

α0 − 2gẑ(y)
, (8)

where

(zzT ) : (DΦ(y)TD2Φ(y)) = [zT (DΦ(y)TDΦu(y))z, z
T (DΦ(y)TDΦv(y))z]

T .

The Euler–Lagrange equations for the functional T [·] are now given by

d

dτ
[fz(ψ(τ),ψ

′(τ))] = fy(ψ(τ),ψ
′(τ)), (9)

or in expanded form:

d

dτ

[

B(ψ(τ))ψ′(τ)

Λ1(ψ(τ),ψ
′(τ))Λ2(ψ(τ))

]

= g
Λ1(ψ(τ),ψ

′(τ))

Λ3
2(ψ(τ))

~∇ẑ(ψ(τ))

+
(ψ′(τ)ψ′(τ)T ) : (DΦ(ψ(τ))TD2Φ(ψ(τ)))

Λ1(ψ(τ),ψ
′(τ))Λ2(ψ(τ))

, (10)

where

B(ψ(τ)) = DΦ(ψ(τ))TDΦ(ψ(τ)),

Λ1(ψ(τ),ψ
′(τ)) = ‖DΦ(ψ(τ))ψ′(τ)‖ =

√

ψ′(τ)TB(ψ(τ))ψ′(τ),

Λ2(ψ(τ)) =
√

α0 − 2gẑ(ψ(τ)).

Note that B is the metric tensor of the surface S.
We now study the matrix fzz, the hessian matriz of f with respect to the z variable.

Proposition 3.1. Let DΦ(y) be of full rank for all y ∈ D. Then for all (y, z) ∈ Ω, the
matrix fzz(y, z) is positive semi–definite with null space span {z}. Moreover, the matrix

M(y, z) =

(

fzz(y, z) z

zT 0

)

.

is nonsingular.
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Proof : Setting A = DΦ(y) and B = ATA, is easy to get that

fzz(y, z) =
1

‖Az‖3
√

α0 − 2gẑ(y)

[

‖Az‖2B − BzzTB
]

.

Let
〈p,w〉B = pTBw.

Since B is positive definite, this an inner product in R
2 with induced norm ‖p‖B =

√

〈p,p〉B. Noting that ‖Az‖ = ‖z‖B, we get that

wTfzz(y, z)w =
1

‖Az‖3
√

α0 − 2gẑ(y)

[

‖z‖2B ‖w‖2B − 〈z,w〉2B
]

.

But by the Cauchy–Schwartz inequality,

‖z‖2B ‖w‖2B − 〈z,w〉2B ≥ 0,

with equality if and only if w and z are proportional. Hence fzz(y, z) is positive semi–
definite with N(fzz(y, z)) = span {z}.

To show that M(y, z) is nonsingular, assume that

M(y, z)

(

w

α

)

=

(

0

0

)

.

Then
fzz(y, z)w + αz = 0, zTw = 0.

The first of these two equations implies that αz ∈ Range(fzz(y, z)) = span {z}⊥. Thus
zT (αz) = 0, which implies that α = 0. But then fzz(y, z)w = 0, which implies w ∈
N(fzz(y, z)) = span {z}, that is w = βz. Now since zTw = 0, we get β = 0, and thus
that w = 0. Hence M(y, z) is nonsingular.

Remark 3.2. It follows from Proposition 3.1 that if p ∈ Range(fzz(y, z)), then the
system

M(y, z)

(

w

γ

)

=

(

p

0

)

,

has a unique solution (w, γ) with γ = 0 and w satisfying

fzz(y, z)w = p, zTw = 0.

Thus w ∈ Range(fzz(y, z)) = span {z}⊥. If we let z = (z1, z2)
T , then Range(fzz(y, z)) =

span
{

z⊥
}

where z⊥ = (z2,−z1)T . Moreover z⊥ is an eigenvector of fzz(y, z) correspond-
ing to the eigenvalue fz1z1(y, z) + fz2z2(y, z) > 0. Hence

w =
p

fz1z1(y, z) + fz2z2(y, z)
.
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We record here, for future reference, the expressions for the second order partial
derivatives of the function f . With A = DΦ(y) and B = ATA we have:

fzlzp =
1

Λ3
1Λ2

[

Λ2
1Blp − (Bljzj)(Bpjzj)

]

, (11a)

fzlyp =
1

Λ3
1Λ

3
2

[

Λ2
1Λ

2
2

∂Blj

∂yp
zj + gΛ2

1(Bljzj)
∂ẑ

∂yp
− 1

2
Λ2

2(Bljzj)

(

∂Bij

∂yp
zizj

)]

, (11b)

where

Λ1 = Λ1(y, z) = ‖Az‖ =
√
zTBz,

Λ2 = Λ2(y) =
√

α0 − 2gẑ(y).

We note that since Bij = AkiAkj, then

∂Bij

∂yp
= Aki

∂Akj

∂yp
+
∂Aki

∂yp
Akj =

[

(DΦ)TDΦp + (DΦp)
TDΦ

]

ij
,

where Φp =
∂Φ
∂yp

.

It follows from (11a) that

fz1z1
z22

=
fz2z2
z21

= −fz1z2
z1z2

= f1,

where f1 = f1(y, z) is given by:

f1 =
detB

Λ3
1Λ2

.

Using this we get that the differential equation (9) (or (14a)) is equivalent to the following
scalar equation:

(ψ′′

1ψ
′

2 − ψ′′

2ψ
′

1)f1 = fz2y1 − fz1y2 . (12)

Moreover, since f1 > 0 over the set Ω (cf. (6)), we get from [4, Page 126] the following
result establishing that extremals of (3) can not have jump discontinuities in their first
derivative.

Proposition 3.3. Let DΦ(y) be of full rank for all y ∈ D. Then if (c1, c2) ∈ Ω, any
solution ψ of (9) such that (ψ(τ1),ψ

′(τ1)) = (c1, c2) for some τ1, has ψ
′ continuous for

as long as (ψ(τ),ψ′(τ)) remains in Ω.

From (5) and (7) we get that:

fz(y, z) · z = f(y, z).

Upon differentiating this with respect to y and omitting arguments, we get

[Dy(fz)]
Tz = fy, (13)

where Dy(fz) = (fziyj ). Using this we can now show the following:
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Proposition 3.4. Suppose that ψ is a C2 solution of the Euler–Lagrange equation (9).
Then under the condition that ψ′ ·ψ′′ = 0, we have that

ψ′′(τ) =

[

fz2y1 − fz1y2
fz1z1 + fz2z2

]

(ψ′

2(τ),−ψ′

1(τ))
T ,

where the arguments of the derivatives of f are (ψ(τ),ψ′(τ)). In particular for any

(c1, c2) ∈ Ω, this equation has a solution satisfying ψ(0) = c1, ψ
′(0) = c2 which is

unique and exists on a maximal interval J such that (ψ(τ),ψ′(τ)) ∈ Ω for all τ ∈ J .

Proof : Since ψ is C2, it follows upon expanding (9) and using (13), that

Dy(fz)ψ
′(τ) + fzzψ

′′(τ) = [Dy(fz)]
Tψ′(τ),

which upon rearrangement leads to

fzzψ
′′(τ) = ([Dy(fz)]

T −Dy(fz))ψ
′(τ).

But
([Dy(fz)]

T − Dy(fz))ψ
′(τ) = (fz2y1 − fz1y2) (ψ

′

2(τ),−ψ′

1(τ))
T .

The result now follows from Proposition 3.1 and Remark 3.2. The last part of the
statement follows from the standard existence and uniqueness theorem for initial value
problems.

This result by itself does not guarantee the existence of extremals for our problem
satisfying the boundary conditions in A (cf. (4)). However we can use a result of Picard
[17] and its modification by Bliss [2] to parameter form problems of the calculus of
variations, to get that if b is sufficiently close to a, this boundary value problem has a
unique solution. In the statement of the following theorem, the parameter τ is taken to
be that of arc length along the curve ψ(·).

Theorem 3.5. Let Φ ∈ C2(D) be 1–1 and with DΦ(y) of full rank for all y ∈ D. Then

if b is sufficiently close to a, there exists τ ∗ > 0 such that the boundary value problem

ψ′′(τ) =

[

fz2y1 − fz1y2
fz1z1 + fz2z2

]

(ψ′
2(τ),−ψ′

1(τ))
T , (14a)

Φ(ψ(0)) = a, Φ(ψ(τ ∗)) = b, (14b)

has a solution which is unique and such that ‖ψ′(τ)‖ = 1 and (ψ(τ),ψ′(τ)) ∈ Ω for

0 ≤ τ ≤ τ ∗.

We can now use the results in [2] together with Theorem 3.5 to show that one can
construct an exact field of extremals for the functional (3) and that at least locally, the
extremal in Theorem 3.5 is a weak minimizer (in the C1 norm) for (3) over A whenever
b is sufficiently close to a.
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Remark 3.6. Another consequence of Proposition 3.1 is that the system (9), or equiv-
alently (10), reduces to a single scalar equation (cf. equation (12)). Thus an additional
condition is required to determine the solution extremal. That is precisely what is done
in Theorem 3.5 where the extremal is parametrized by arc length which imposes the con-
dition that ψ′ ·ψ′ = 1. More generally, one could impose the condition that ψ′ ·ψ′ = c
along the curve, for some positive constant c. The parameter c plays a particular role in
the numerical schemes for computing extremals that we discuss in Section 5.

4 Special cases

We now consider several special cases of parameterized surfaces, some of which first
integrals of (10) can be obtained by inspection.

4.1 Surface of revolution

We consider first the case of a surface of revolution where the axis of rotation is the z
axis. Such a surface can be parametrized, with av, bv ∈ R ∪ {−∞,∞} and av < bv, by
Φ : [0, 2π)× (av, bv) → R

3 where:

Φ(u, v) = [p(v) cos(u), p(v) sin(u), q(v)]T , (15)

where p and q are smooth functions with p positive. It follows now, omitting arguments,
that

DΦTDΦ =

[

p(v)2 0
0 (p′(v))2 + (q′(v))2

]

,

DΦTDΦu =

[

0 p(v)p′(v)
−p(v)p′(v) 0

]

,

DΦTDΦv =

[

p(v)p′(v) 0
0 p′′(v)p′(v) + q′′(v)q′(v)

]

.

It follows now that (15) represents a set orthogonal coordinates over the surface S, and
that equations (10) have as a first integral that

p(v̂(τ))2û′(τ) = c1Λ1(τ)Λ2(τ), (16)

for some constant c1 and with

Λ1(τ) =
√

p(v̂(τ))2û′(τ)2 + (p′(v̂(τ))2 + q′(v̂(τ))2)v̂′(τ)2, (17a)

Λ2(τ) =
√

α0 − 2gq(v̂(τ)). (17b)

From Proposition 3.3 we get that the constant c1 must have the same value all along the
solution curve. Note that c1 = 0 if and only if û′(τ) = 0 for all τ , and sign(û′) = sign(c1)
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when c1 6= 0. If c1 6= 0, then (16) gives a differential equation for v̂ as a function of u,
which in principle could be solved either explicitly or numerically, up to the determination
of the constant c1 and another constant of integration. When c1 = 0, since û′(τ) = 0 for
all τ , we have that both of the given points a and b on the surface, must belong to the
same meridional section. In this case as well, it is easy to check that the second equation
in (9) is automatically satisfied for any function v̂, and thus imposes no condition. This
is because the system (9) is always under–determined (cf. Proposition 3.1) and thus
requires an extra equation or condition. This extra condition can be chosen (cf. Remark
3.6) as ψ′ · ψ′ = const. Using this we get that if c1 = 0, then we must have û = const
and v̂′ = const.

4.1.1 A sphere

We now consider the case of a sphere of radius a with centre at the origin, without the
poles. Thus we take in (15)

p(v) = a cos(v), q(v) = a sin(v), (av, bv) =
(

−π
2
,
π

2

)

. (18)

It follows now that (16) and (17) reduce respectively to

a2 cos2(v̂(τ))û′(τ) = c1Λ1(τ)Λ2(τ). (19)

and

Λ1(τ) = a
√

cos2(v̂(τ))û′(τ)2 + v̂′(τ)2,

Λ2(τ) =
√

α0 − 2ag sin(v̂(τ)).

Assuming c1 6= 0, we must have that û′(τ) 6= 0 for all τ . Thus v̂(·) can be expressed as
a function of û. In this case and writing u instead of û, we get after squaring both sides
of (19) that:

v̂′(u)2 = cos2(v̂)

[

a2 cos2(v̂)− c21Λ
2
2(v̂)

c21Λ
2
2(v̂)

]

, (20)

where the prime denotes now derivative with respect to u and

Λ2(v) =
√

α0 − 2ag sin(v).

After taking square roots on both sides of (20) and separating variables, we are led to
the following expression:

u = ±
∫

sec(v̂)

[

c21Λ
2
2(v̂)

a2 cos2(v̂)− c21Λ
2
2(v̂)

]
1

2

dv̂ + c2. (21)

The constants c1 and c2, in principle, could be determined now from the condition that
the curve over the sphere joins the given points a and b. However, formula (21) is of
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Figure 1: Several brachistochrone curves over a sphere.

little use in numerical calculations because the sign in this formula can change along the
curve, at points unknown before hand. Still the formula could be useful in those cases in
which the integral can be computed explicitly.

In Figure 1 we show a numerical simulation (see Section 5) of various brachistochrone
curves (in red) over a sphere of radius a = 4, with g = 9.8 and v0 = 0.1 (MKS system).
The initial point (in blue) for all curves is Φ(0, π

3
), where Φ is given as in (18), and the

final points (in green) are Φ(π
2
, v) with v = −π

3
,−0.5, 0, 0.5, π

3
. The corresponding values

for the constant c1 in (19) as well as the minimum times of descent and arc length for
each curve, are given in the following table:

v c1 time of descent length of curve
−π

3
0.16969 1.7357 10.0002

−0.5 0.33303 1.6963 8.7419
0 0.47778 1.6508 7.262
0.5 0.63612 1.63 5.7427
π
3

0.80386 2.1586 4.8678

Note that the time of descent for the brachistochrone with v = π
3
is the largest even

though it is the shortest curve. This due to the fact that this curve, been close to
horizontal, then the effect due to the acceleration of gravity is less significant on the
motion.

For the case of geodesics on the sphere where g = 0, the integral in (21) can be
computed explicitly yielding that

u = ± sin−1(β tan(v̂)) + c2, (22)

where

β =
K√

1−K2
, K =

|c1| v0
a

.
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4.1.2 Right circular cylinders

For any a > 0, we take now in (15)

p(v) = a, q(v) = v, (av, bv) = (−∞,∞). (23)

Equations (16) and (17) reduce now to

a2û′(τ) = c1Λ1(τ)Λ2(v̂(τ)), (24)

for some constant c1, and where

Λ1(τ) =
√

a2(û′(τ))2 + (v̂′(τ))2, Λ2(v̂(τ)) =
√

α0 − 2gv̂(τ)).

Provided c1 6= 0 this leads to the separable differential equation

dv̂

du
= ±a

[

a2 − c21Λ
2
2(v̂)

c21Λ
2
2(v̂)

]
1

2

,

which has general solution

u = ± a

2gc21

[

1

a2

√

c21Λ
2
2(v̂)(a

2 − c21Λ
2
2(v̂)) + sin−1

(

1

a

√

a2 − c21Λ
2
2(v̂)

)]

+ c2.

Introducing the parameter θ such that

dv̂

du
= a tan θ,

we get that

û(θ) = ± a

4gc21
[2θ + sin 2θ] + c2, v̂(θ) =

1

2gc21
[c21α0 − a2 cos2 θ].

It is interesting to note that these equations represent a cycloid in the uv plane, while
the time integral minimizing curve is given by

σ(θ) = (a cos û(θ), a sin û(θ), v̂(θ))T .

4.1.3 One–sheet circular hyperboloid

For a > 0 and c > 0, we take in (15)

p(v) = a cosh(v), q(v) = c sinh(v), (av, bv) = (−∞,∞). (25)

In this case, equations (16) and (17) reduce now to

a2 cosh2(v̂)û′(τ) = c1Λ1(τ)Λ2(v̂(τ)), (26)
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for some constant c1, and where

Λ1(τ) =

√

a2 cosh2(v̂)(û′(τ))2 + (a2 sinh2(v̂) + c2 cosh2(v̂))(v̂′(τ))2,

Λ2(v̂(τ)) =
√

α0 − 2gc sinh(v̂(τ)).

Provided c1 6= 0 this leads to the separable differential equation

dv̂

dû
= ±

[

a2 cosh2(v̂)

a2 sinh2(v̂) + c2 cosh2(v̂)

a2 cosh2(v̂)− c21Λ
2
2(v̂)

c21Λ
2
2(v̂)

]

1

2

.

This equation is not integrable in closed form even in the special case in which a = c and
g = 0! In Example 5.1 we present some numerical simulations for this surface.

4.2 An explicit surface

Let ẑ : D → R, where D ⊂ R
2 is open, be a C2 function. We consider the surface S

parametrized by:
Φ(u, v) = (u, v, ẑ(u, v))T , (u, v) ∈ D. (27)

We have now (omitting arguments) that

B = DΦTDΦ =

[

1 + ẑ2u ẑuẑv
ẑuẑv 1 + ẑ2v

]

,

DΦTDΦu =

[

ẑuẑuu ẑuẑuv
ẑvẑuu ẑv ẑuv

]

, DΦTDΦv =

[

ẑuẑuv ẑuẑvv
ẑvẑuv ẑvẑvv

]

.

We record here for latter reference the coefficient of the right hand side of (14a). Using
(5) and (11), a lengthy but otherwise elementary computation yields that in this case,

fz2y1 − fz1y2
fz1z1 + fz2z2

=
(ẑuu(û

′)2 + 2ẑuvû
′v̂′ + ẑvv(v̂

′)2)Λ2
2(τ)− gΛ2

1(τ)

Λ2
2(τ)(1 + ẑ2u + ẑ2v)((û

′)2 + (v̂′)2)
(ẑvû

′ − ẑuv̂
′), (28)

where

Λ1(τ) =
√

(1 + ẑ2u)(û
′)2 + 2ẑuẑvû′v̂′ + (1 + ẑ2v)(v̂

′)2,

Λ2(τ) =
√

α0 − gẑ(û, v̂).

Note that the numerator of the fraction on the right hand side of (28) is the quadratic
form of the matrix Λ2

2Hẑ(û, v̂)− gB(û, v̂) where Hẑ is the hessian matrix of ẑ.
In general is not obvious how to get first integrals of (10) in this case. We now

consider two special cases in which this can be done.
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4.2.1 Generalized cylinders

We consider the case in which ẑ in (27) depends only on u. It is easy to check that in
this case equation (10) yields the first integral:

v̂′(τ) = c1Λ1(τ)Λ2(û(τ)), (29)

where

Λ1(τ) =
√

(1 + ẑ2u)(û
′(τ))2 + (v̂′(τ))2, Λ2(û(τ)) =

√

α0 − 2gẑ(û(τ)).

If c1 = 0 then v̂ must be constant and there are extremals if and only if the points a,b in
the boundary conditions have the same v coordinate. In the case c1 6= 0, then v̂′(τ) 6= 0,
and after squaring we can write (29) as

[

1− c21Λ
2
2(û(τ))

]

(v̂′(τ))2 = c21Λ
2
2(û(τ))(1 + ẑ2u)(û

′(τ))2.

Thus provided that c21Λ
2
2(û(τ)) < 1, we can take v̂ as the parameter, and writing v instead

of v̂ we get from the equation above that

dû

dv
= ±

[

1− c21Λ
2
2(û)

c21Λ
2
2(û)(1 + ẑ2u)

]
1

2

.

Since ẑu is only a function of u, this is a separable equation with general solution

v = ±
∫

[

c21Λ
2
2(û)(1 + ẑ2u)

1− c21Λ
2
2(û)

]
1

2

dû+ c2, (30)

where the constants c1 and c2 are chosen to match the boundary conditions.

4.2.2 Non vertical planes

As a further special case of (27), we take the surface to be a non vertical plane which
without lost of generality we can take it to be given by the equation z = ẑ(u) = au and
D = R

2. Equation (30) now simplifies to

v = ±
√
1 + a2

∫
[

c21Λ
2
2(û)

1− c21Λ
2
2(û)

]
1

2

dû+ c2,

where Λ2(u) =
√
α0 − 2agu. This integral can be computed explicitly yielding that

v = ±
√
1 + a2

2agc21

[

√

c21Λ
2
2(û)(1− c21Λ

2
2(û)) + sin−1

(

√

1− c21Λ
2
2(û)

)]

+ c2.

If we introduce the parameter θ by the requirement that

dû

dv
=

1√
1 + a2

tan θ,

13



then it follows from (29) that

c21Λ
2
2(û) = cos2 θ, 1− c21Λ

2
2(û) = sin2 θ,

and that

û(θ) =
1

2agc21
[c21α0 − cos2 θ], v̂(θ) = ±

√
1 + a2

4agc21
[2θ + sin 2θ] + c2.

These equations are the ones for a cycloid on the uv plane. In this case, they represent
the projection on the xy plane of the time integral minimizing curve given by

σ(θ) = Φ(ψ(θ)) = (û(θ), v̂(θ), aû(θ))T .

4.3 Vertical plane

This case is that of the classical brachistochrone problem. Without loss of generality we
parametrized a vertical plane by:

Φ(u, v) = (0, u, v)T , (u, v) ∈ R
2.

Thus in this case we have that

B = DΦTDΦ =

[

1 0
0 1

]

,

DΦTDΦu =

[

0 0
0 0

]

, DΦTDΦv =

[

0 0
0 0

]

.

It is easy to check that in this case equation (10) yields the first integral:

û′(τ) = c1Λ1(τ)Λ2(v̂(τ)), (31)

where
Λ1(τ) =

√

(û′(τ))2 + (v̂′(τ))2, Λ2(v̂(τ)) =
√

α0 − 2gv̂(τ).

Provided that c1 6= 0 we have now that

dv̂

du
= ±

[

1− c21Λ
2
2(v̂)

c21Λ
2
2(v̂)

]
1

2

.

The general solution of this equation is given by

u = ± 1

2gc21

[

√

c21Λ
2
2(v̂)(1− c21Λ

2
2(v̂)) + sin−1

(

√

1− c21Λ
2
2(v̂)

)]

+ c2.

If we introduce the parameter θ by the requirement that

dv̂

du
= tan θ,

then it follows that

û(θ) = ± 1

4gc21
[2θ + sin 2θ] + c2, v̂(θ) =

1

2gc21
[c21α0 − cos2 θ].

These equations correspond to those of a cycloid on the yz plane.
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5 Numerical results

In this section we describe the numerical scheme that we use for computing approxima-
tions of the minimizers of the time integral (3). The procedure consists of two stages:
first we do a direct minimization of a suitable discretization of (3), and then use the
computed approximate minimizer as a starting point in a shooting method to solve (14).
Thus, the direct minimization works as a predictor step while the shooting method takes
the role of a corrector step.

Minimization of the time integral: the predictor step

We assume that the parametrization is chosen so that [τ1, τ2] = [0, 1]. Let h = 1/n,
n ≥ 1, and define

τj = jh, 0 ≤ j ≤ n, τj− 1

2

=
τj−1 + τj

2
=

(

j − 1

2

)

h, 1 ≤ j ≤ n.

We let ψ(τ) = (û(τ), v̂(τ))T and denote by ψj = (uj, vj)
T an approximation of ψ(τj) =

(û(τj), v̂(τj))
T , 0 ≤ j ≤ n. The discretized curve is given by the matrix:

ψh = (ψ0,ψ1, . . . ,ψn) ∈ R
2×(n+1). (32)

Using the boundary conditions in (4) we set

ψ0 = α ≡ (û(0), v̂(0))T , ψn = β ≡ (û(1), v̂(1))T ,

where Φ(û(0), v̂(0)) = a and Φ(û(1), v̂(1)) = b.
We introduce the approximations:

ψ(τj− 1

2

) ≈
ψj−1 +ψj

2
= ψj− 1

2

, (33a)

ψ′(τj− 1

2

) ≈
ψj −ψj−1

h
= δψj− 1

2

. (33b)

The mid–point rule for approximating integrals applied to (3) and (5), gives that

T [ψ] ≈ h

n
∑

j=1

f
(

ψ(τj− 1

2

),ψ′(τj− 1

2

)
)

.

Using the approximations (33) we get the discretized time integral :

Th[ψ
h] = h

n
∑

j=1

f
(

ψj− 1

2

, δψj− 1

2

)

. (34)

Note that Th[ψ
h] is a function of (ψ1,ψ2, . . . ,ψn−1).
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The condition ψ′ · ψ′′ = 0 present in Proposition 3.4 and Theorem 3.5 implies that
ψ′ · ψ′ = c for some positive constant c. The constant c is unknown and characterizes
the parametrization of the curve ψ. By allowing this constant to be unknown is that we
can take the interval for the parametrization to be [0, 1]. The constraint ψ′ · ψ′ = c is
equivalent to

∫ 1

0

(ψ′(τ) ·ψ′(τ)− c)
2
dτ = 0.

Motivated by this we can state our discretized problem as:

min
Ah,c

Th[ψ
h],

where

Ah,c =

{

(ψ1,ψ2, . . . ,ψn−1) ∈ R
2×(n−1) : α0 − 2gẑ(ψj− 1

2

) > 0, 1 ≤ j ≤ n,

ψj ∈ D, 1 ≤ j ≤ n− 1, h

n
∑

j=1

(

∥

∥

∥
δψj− 1

2

∥

∥

∥

2

− c

)2

= 0

}

.

We use a penalty method to approximate solutions of this problem. That is, for µ > 0
sufficiently large, we define

F (ψ1,ψ2, . . . ,ψn−1, c) = Th[ψ
h] +

1

2
µh

n
∑

j=1

(

∥

∥

∥
δψj− 1

2

∥

∥

∥

2

− c

)2

. (35)

We now solve
min
Ah

F (ψ1,ψ2, . . . ,ψn−1, c),

with

Ah =

{

(ψ1,ψ2, . . . ,ψn−1, c) ∈ R
2×(n−1) × (0,∞) :

α0 − 2gẑ(ψj− 1

2

) > 0, 1 ≤ j ≤ n, ψj ∈ D, 1 ≤ j ≤ n− 1

}

.

Approximate solutions of this problem are computed using a gradient flow iteration (cf.
[15]) on the ψj ’s variables, together with a simple steepest descent iteration on c. To
implement these we need the partial derivatives of F . Since for a given j, 1 ≤ j ≤ n− 1,
only the j–th and (j+1)–th terms in (34) and (35) depend on ψj, the partial derivatives
with respect to the ψj’s are given by:

∂F

∂ψj

= −
[

f
j+ 1

2

z − f
j− 1

2

z

]

+
h

2

[

f
j− 1

2

y + f
j+ 1

2

y

]

(36)

−2µ

[(

∥

∥

∥
δψj+ 1

2

∥

∥

∥

2

− c

)

δψj+ 1

2

−
(

∥

∥

∥
δψj− 1

2

∥

∥

∥

2

− c

)

δψj− 1

2

]

, (37)
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for 1 ≤ j ≤ n− 1, where f
j− 1

2

z = fz

(

ψj− 1

2

, δψj− 1

2

)

, etc., and fz, fy are given by (7) and

(8) respectively. Also

∂F

∂c
= −µh

n
∑

j=1

(

∥

∥

∥
δψj− 1

2

∥

∥

∥

2

− c

)

. (38)

In our calculations we kept the penalization parameter fixed but it could be updated
by some of the usual penalization techniques (cf. [6]).

The shooting method: the corrector step

We let G(y, z) represent the right hand side function in (14a). For any given vector v

we let ψ(·;v) be the unique solution of the initial value problem

ψ′′(τ) = G(ψ(τ),ψ′(τ)), τ > 0 (39a)

ψ(0) = α, ψ′(0) = v. (39b)

Assuming that ψ(·;v) exists over [0, 1], we seek a vector v∗ such that ψ(1;v∗) = β. If
we let

g(v) = ψ(1;v)− β,
then we are looking for a solution of the 2 × 2 nonlinear system of equations g(v) = 0.
We compute approximate solutions of this system using Newton’s method. If we Let

W(τ ;v) =
∂

∂v
ψ(τ ;v),

then we get, after differentiating in (39) with respect to v and omitting the dependence
on v, that

W′′(τ) = Gy(ψ(τ),ψ
′(τ))W(τ) +Gz(ψ(τ),ψ

′(τ))W′(τ), τ > 0 (40a)

W(0) = O, W′(0) = I, (40b)

where O and I are the zero and identity 2 × 2 matrices respectively. Newton’s method
for the solution of g(v) = 0 is now given by the iteration:

vj+1 = vj −W(1;vj)
−1g(vj), j = 0, 1, . . . ,

with v0 given by the approximate derivative at τ = 0 of the computed approximate
minimizer in the predictor step.

For the next set of numerical examples we used the following values for some of the
numerical parameters:

g = 9.8, v0 = 0.1, n = 100, µ = 50,

the units of g and v0 been in the MKS system. We should mention that the derivatives of
the functions f and G appearing in (37) and (40a) where computed symbolically using
MATLABTM as well as the implementation of the numerical schemes described in this
section.
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Example 5.1. We consider first the circular hyperboloid of one sheet of Subsection 4.1.3
with a = 1 and c = 2. The initial and final points over the surface are given respectively
by Ψ(0, 1.75) and Ψ(1.5, 1.75). Note that both points are at the same height. We show
in Figure 2 the computed brachistochrone (in red) and the corresponding geodesic curve
(with g = 0) (in magenta). (The initial and final points are shown in blue and green
respectively.) In the following table we show the value of the time integral (3) and the
length of each of the resulting curves (over the surface):

Curve value of time integral length of curve
brachistochrone 1.6194 5.159

geodesic 43.7404 4.374

As expected the geodesic is the shortest curve but it is travelled at a constant speed of v0
resulting in the large value of the time integral. On the other hand, the brachistochrone
is longer but the speed along the curve varies according to (2) resulting in the faster time
to cover the curve.

In Figure 3 we show the computed minimizing curve ψ(τ) = (û(τ), v̂(τ)), τ ∈ [0, 1]
on the uv plane. Figure 4 shows the norm of ψ′(τ) for τ ∈ [0, 1] consistent with the
constraint that ψ′(τ) ·ψ′(τ) = const.

Example 5.2. For our next example we consider a hyperbolic paraboloid given by the
parametrization

Ψ(u, v) = (u, v, u2 − v2)T , (u, v) ∈ R
2.

The initial and final points over the surface are given respectively by Ψ(1,−1) and
Ψ(−1,−1) again both points at the same height. We show in Figure 5 the computed
brachistochrone (in red) and the corresponding geodesic curve (with g = 0) (in magenta).
In the following table we show the value of the time integral (3) and the length of each
of the resulting curves (over the surface):

Curve value of time integral length of curve
brachistochrone 1.1311 2.6425

geodesic 23.2221 2.3222

In Figure 6 we show the computed minimizing curve ψ(τ) = (û(τ), v̂(τ)), τ ∈ [0, 1] on
the uv plane, while Figure 7 shows the norm of ψ′(τ) for τ ∈ [0, 1], again consistent with
the constraint that ψ′(τ) ·ψ′(τ) = const.

6 Final comments

The parameter g in the BVP (14) could be used as a continuation parameter to prove
existence of solutions for this problem without the “local” condition of closeness for the
two points in the surface. The most obvious choice would be to continue from g = 0
which reduces our problem to that for geodesics. However, even for the case g = 0,

18



there is no “global” result on the existence of solutions for the resulting boundary value
problem.

Instead of working with parametrized surfaces, one could work with implicit surfaces
defined by a scalar equation of x, y, z. In this case the surface S is given by

S = {(x, y, z) : H(x, y, z) = 0} , (41)

with a smooth H . The time integral is now given by:

T [σ] =

∫ τ2

τ1

‖σ′(τ)‖ dτ
√

α0 − 2gẑ(τ)
, (42)

where σ(τ) = (x̂(τ), ŷ(τ), ẑ(τ)), for τ ∈ [τ1, τ2] belongs to the (admissible) set:

B =
{

σ ∈ C1[τ1, τ2] : σ
′(τ) 6= 0, α0 − 2gẑ(τ) > 0, and H(σ(τ)) = 0 ∀τ ∈ [τ1, τ2],

σ(τ1) = a, σ(τ2) = b
}

, (43)

with a,b ∈ S. The Euler–Lagrange equations for this problem are given by

d

dτ

[

1
√

α0 − 2gẑ(τ)

σ′(τ)

‖σ′(τ)‖

]

=
g

(α0 − 2gẑ(τ))
3

2

e3 − λ(τ)~∇H(σ(τ)),

H(σ(τ)) = 0, σ(τ1) = a, σ(τ2) = b,

where e3 = (0, 0, 1)T and λ ∈ C[τ1, τ2] is the Lagrange multiplier corresponding to the
constraint of belonging to the surface S. Although the differential equation above appears
to be simpler than (10), we are looking for solutions over the surface S together with
the determination of the Lagrange multiplier λ. We refer to [5] for a treatment of the
brachistochrone problem over an implicit, including friction. Also we refer to [9], [10]
and the references there in, for further details on existence of solutions and numerical
methods for initial value problems over surfaces.
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Figure 2: Computed brachistochrone (in red) and the corresponding geodesic curve (in
magenta) over a one sheet circular hyperboloid.
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Figure 3: Computed parametrized curve ψ on the uv plane for the one sheet circular
hyperboloid.
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Figure 4: Norm of the computed ψ′(τ) for the one sheet circular hyperboloid.
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Figure 5: Computed brachistochrone (in red) and the corresponding geodesic curve (in
magenta) over a hyperbolic paraboloid.
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Figure 6: Computed parametrized curve ψ on the uv plane for the hyperbolic paraboloid.
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Figure 7: Norm of the computed ψ′(τ) for the hyperbolic paraboloid.
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