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Abstract

In this paper we discuss a pre�conditioned spectral�collocation method for the

computation of minimizers of the calculus of variations in the context of two di�

mensional elasticity� The spectral collocation method is used in conjunction with

a Richardson extrapolation iteration� We compare the performance of the pre�

conditioned method with the one without pre�conditioning�
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� Introduction

The phenomena of void formation on bodies in tension have been observed among oth�
ers by ���	 Ball ��� showed in the context of nonlinear elasticity� that void formation or

cavitation
 can decreased the �potential� energy of a body in tension when the tension
is suciently large	 The numerical aspects of cavitation and other singular minimizers
in elasticity are very delicate	 It has been observed that because of the so called Lavren�
tiev phenomena ���� that the usual �nite element methods can fail to compute both the
minimizer and the minimum energy	 A numerical method for overcoming the Lavrentiev
phenomenon has been proposed in ��� and ���	 This method uses a decoupling on the
deformation gradient that works quite well for one dimensional problems� but for higher
dimensional problems� after discretization� yields a large scale constrained optimization
problem	 To handle numerically this problem e�ectively one would need to use for in�
stance multigrid methods and exploit the sparsity of the resulting discrete equations	
Instead of taking this approach in this work we proceed by discretizing the energy func�
tional using a spectral method ��nite di�erences in the radial direction and a truncated
Fourier series for the angular variable�	

Our approach here is similar to that of ���� but we present some preliminary results
for a preconditioning method that renders a scheme with a rate of convergence essentially
independent of the mesh size	 We employ a formulation of the problem using the invari�
ants of the Cauchy�Green deformation tensor �cf	 ��	�����	��� instead of the principal
stretches �the square root of the eigenvalues of the Cauchy�Green tensor� as done in ����	
This renders a system of partial di�erential equations� the Euler�Lagrange equations�
without the singularity when the two principal stretches are equal and as a consequence
leads to a more stable numerical scheme	 We still have a singularity at the center of the
body due to the use of polar coordinates	

The structure of the paper will be as follows	 In Section � we discuss a numerical
method for �nding local minima of our discrete problems	 The method we use is an
iterative scheme based on a second order Richardson extrapolation technique �see ����	
In Section � we describe a two dimensional model for nonlinear elasticity and de�ne a class
of stored energy functions which allows for cavitation according to the results in ���	 In
Section � we discuss the discretization of the two dimensional energy functional of Section
�	 We describe the spectral collocation method which is used in conjunction with the
Richardson extrapolation iteration	 In Section � we describe a preconditioning method
for the scheme of Section � and �nally in Section �� we compare the pre�conditioned
method with the one without pre�conditioning	

� An Accelerated Steepest Descent Method

In this section we describe an accelerated steepest descent method based on a second
order Richardson extrapolation formula	 We consider the problem of minimizing the
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functional

I�u� �

Z
�

f�x�ru�x�� dx� ��	��

where u belongs to some space of smooth functions and is subjected� for simplicity� to
Dirichlet boundary conditions	 The steepest descent method for minimizing ��	�� would
then take the form

uk�� � uk � �L�uk� � k � �� �� �� � � � �

��	��

u� given�

where � � �� and L��� is the �rst variation of I� i	e	� L�u� � � are the Euler�Lagrange
equations of ��	��	

Let Lh� for a given mesh size h� denote a discretization of L �by �nite di�erences say�	
Let uh denote a mesh function and in ��	�� write �t � �	 Then ��	�� becomes

uk��h � ukh
�t

� Lh�u
k� � k � �� �� �� � � � �

��	��

u�h given	

Thus the iteration step �k
 can be viewed as a discretization of an arti�cial time variable
�t
 and ��	�� is the discretization of the parabolic equation wt � L�w�	 The Courant�
Friedrichs�Lewy stability condition for ��	�� requires in general that �t � O�h��� which
makes the convergence in ��	�� slow when h is small	 To overcome this problem one
considers instead the hyperbolic equation

wtt � �wt � L�w� in �� ��	��

The Courant�Friedrichs�Lewy stability condition for ��	�� requires that �t � O�h� which
makes the convergence in �t
 faster than in ��	��	 We can now discretize ��	�� as

uk��h � �ukh � uk��h

��t��
� �

uk��h � ukh
�t

� Lh�u
k
h� � k � �� �� � � � �

��	��

u�h� u
�
h given�

which is referred to as the second order Richardson method	

� A Two Dimensional Model for Nonlinear Elasticity

We consider a body which in its reference con�guration occupies the unit disk � in R� 	
Let p � � � R

� denote a deformation of the body	 Let F �x� be the ��� matrix of partial
derivatives of p at x	 The requirement that p��� preserves orientation takes the form

detF �x� � � � x � �� ��	��
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Let W � M���
� � R be the stored energy function of the material of the body	 The total

stored energy on the body due to the deformation p is given by

I�p� �

Z
�

W �F �x�� dx� ��	��

If � is subject to a deformation g on the boundary� i	e	�

p�x� � g�x� � x � ��� ��	��

then the equilibrium con�guration satisfying ��	��� minimizes ��	�� among all functions
satisfying ��	�� and belonging to some appropriate Sobolev space	

A physically reasonable model for W for an isotropic material is as follows	 Let
C � F tF be the Cauchy�Green deformation tensor and �i��C�� i��C�� be the principal
invariants of C� i	e�

i��C� � traceC � i��C� � detC� ��	��

We take

W �F � �
�

�
��i��C�� i��C�� � F �M���

� � ��	��

where

��i�� i�� � Ai
���
� �B

�
i�
i�

����

� Ci
���
� �Di

����
� � ��	��

and A�B�C�D � � and �� 	� 
� � � �	 Let �r� �� be polar coordinates for � and
�R�r� �����r� ��� the polar coordinates for p���	 An elementary computation now shows
that the principal invariants �i��C�� i��C�� are given by

traceC � R�
r �

R�
�

r�
�

�
��

r �
��

�

r�

�
R� � detC �

R�

r�
���Rr � �rR��

� � ��	��

� A Spectral Collocation Method

Consider the problem of minimizing ��	�� subject to ��	��� ��	��� ��	��� ��	��� and ��	��	
In this section we discuss how the method of Section ��� is used to solve numerically this
problem	 The Euler�Lagrange equations for ��	��� ��	�� are given by

�
�

�r

�
r��Rr � ��

R�

r
���Rr � �rR����

�

�
�

��

�
��

R�

r
� ��

R�

r
���Rr ��rR���r

�
��	��

� r��R

�
��

r �
��

�

r�

�
� ��

R

r
���Rr ��rR��

� � ��
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�

�r

�
r��R

��r � ��

R�

r
���Rr ��rR��R�

�

�
�

��

�
��

R�

r
�� � ��

R�

r
���Rr � �rR��Rr

�
� �� ��	��

where the arguments of �� � ���i�� etc	� are �i��C�� i��C��	 For the boundary condition
��	��� we take

R��� �� � ���� � ���� �� � g��� � � � ��� ���� ��	��

where ����� g���� � are periodic functions� e	g	� ���� � constant� g��� � �	 We consider
also the problem in which ��	�a� is the only one speci�ed	 This corresponds to a slip

boundary condition at the edge s � �	 The natural boundary conditions for ��	�� and
��	�� are given by

lim
r����

�

�
r��Rr � ��

R�

r
���Rr � �rR����

�
� �� ��	��

lim
r����

�

�
r��R

��r � ��

R�

r
���Rr ��rR��R�

�
� �� ��	��

These equations represent the free�boundary condition that determines the shape of the
possible inner cavity at the center of the plate	 When ��	�a� is the only one speci�ed� we
have instead of ��	�b� the condition�

r��R
��r � ��

R�

r
���Rr ��rR��R�

�����
r��

� �� ��	��

which states that on the outer boundary the tangential component of the stress is zero	
We also have the periodicity conditions

R�Rr� R���� ���r��� are periodic in �� ��	��

For any integers n�m � �� let

h �
�

n
� ri � ih � � � i � n� ��	��

k �
��

m
� �j � jk � � � j � m� ��	��

ri���� �
ri�� � ri

�
� � � i � n� �� ��	���

For any function u of �r� ��� we let uij denote an approximation of u�ri� �j�	 We now
approximate ur�ri����� �j� by

ur�ri����� �j� 	 �uij �
ui���j � uij

h
� � � i � n � � � j � m� ��	���
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For the derivatives in the � direction we use a truncated Fourier series	 More speci�cally�
let fuijg� � � i � n� � � j � m be a mesh function de�ned over ��	���	�� and let

uij �
X
j�j�N

a��ri�e
	��j � � � i � n � � � j � m� ��	���

be its discrete Fourier representation ��� � ���	 We now compute

u��ij �
X
j�j�N

��a��ri�e
	��j � � � i � n � � � j � m� ��	���

Numerically� to compute ��	���� one �rst computes the fa�g in ��	��� using an FFT
routine� then compute the f��a�g� and �nally use an inverse FFT routine to get the
mesh representation of u�	 Expressions like u��i�����j now have the following meaning�

u��i�����j �
�

�
�u��i���j � u��ij� � � � i � n � � � j � m� ��	���

where u��i���j and u��ij come from ��	���	 With the formulas ��	���� ��	���� and ��	��� we
discretize ��	��� ��	�� by

Ih�Rh��h� � hk
n��X
i��

m��X
j��

ri�����
i�����j� ��	���

where
�i�����j � ��i

i�����j
� � i

i�����j
� �� ��	���

i
i�����j
� � �R�

ij �

�
R�

��i���j �R�
��ij

�r�i����

�
�

�
���

ij �

�
��

��i���j ���
��ij

�r�i����

��
R�

i�����j� ��	���

i
i�����j
� �

�
Ri�����j

ri����

�� �
���i�����j�Rij � ��ijR��i�����j

��
� ��	���

� � i � n � � � j � m and Rh � fRijg� �h � f�ijg	The combination of ��	����
��	���� ��	��� with the method of Section �� applied to ��	��� and ��	����	��� is called a
spectral�collocation method �see ���� ���� and ���	�

� A Pre�Conditioning Scheme

De�ne LR� L� as the left sides of ��	��� ��	�� respectively	 Then the �rst variation of
��	�� is given by

�I�p� � ��R� ��� �

Z
�

�LR�R � L���� dr d�� ��	��
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Let  LR�  L� be negative de�nite approximations of �LR� �L�� which are easily invertible	
Consider the equations

 LR � �R � LR �  L� � �� � L�� ��	��

Upon substitution of ��	�� into ��	�� we get that

�I�p� � ��R� ��� �

Z
�

	
�R� LR � �R� � ��� L� � ���



dr d�� ��	��

which is less than zero because  LR�  L� are negative de�nite	 For any function f���� we
use the notation

hf���i �
�

��

Z
�


�

f��� d� 	
�

m

m��X
j��

f��j�� ��	��

To construct  LR�  L�� we let

a�r� �

�
r�� � ��

R�

r
��

�

�
� ��	��

b�r� �
�

r


�� � ��R

���
r

�
� ��	��

c�r� �

�
r��

�
��

r �
�

r�
��

�

�
�

��

r
���Rr � �rR��

�

�
� ��	��

d�r� �

��
r�� �

��

r
R�

�

�
R�

�
� ��	��

e�r� �
�

r

�
�� � ��R

�
r

�
R�
�
� ��	��

�cf	 ��	���	 We de�ne

 LR �
�

�r

�
a�r�

�

�r

�
� b�r�

��

���
� c�r�� ��	���

 L� �
�

�r

�
d�r�

�

�r

�
� e�r�

��

���
� ��	���

To solve the �rst equation in ��	��� we write

�R �
X
j�j�N

v��r�e
	�� � LR �

X
j�j�N

g��r�e
	��� ��	���

Upon substituting ��	��� in ��	�� and equating the coecients of e	�� we get the following
equations for the Fourier coecients of �R�

d

dr

�
a�r�

d

dr
v��r�

�
� �c�r� � ��b�r��v��r� � g��r� � � � r � �� ��	���
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v���� � � � v���� � j�j � N� ��	���

If we let v��i denote an approximation of v��ri� and g��i denote an approximation of
g��ri�� then we can approximate ��	������	��� by

ai����v��i�� � �ai���� � ai���� � h��ci � ��bi��v��i � ai����v��i�� � h�g��i� ��	���

v��� � � � v��n � � � i � n� � � j�j � N� ��	���

We now have to solve N tridiagonal systems each of which can be solved in time propor�
tional to n	 In this way we get an approximation of �R� and we can repeat this process
with the second equation in ��	��� to approximate ��	 We now use these preconditioned
�R� �� in ��	�� instead of Lh	

� Numerical Results and Conclusions

We tested the preconditioned spectral�collocation method described on Sections ���� and
� on a test problem for the model of Section �	 We used n � �� and m � �� in the
calculations and the parameters in ��	�� are set to A � B � C � D � ���� � � 	 � 
 �
� � ���	 For our test runs� we used as initial con�guration for the numerical schemes�
functions of the form�

R��r� �� � u� � ��� � u���� � d� cos n�� � d� sinn���r
b ��	��

� �d� cosn�� � d	 sinn	��r��� r��

���r� �� � �� ��	��

where u� represents the radius of the initial inner cavity �always circular in this case�
and �� is proportional to the outer displacement which need not be circular	 It follows
from ��	�����	�� that the functions in ��	�� are given by ���� � R���� �� and g��� � �	
In Figure ��� we show the initial con�guration used in ��	�� which corresponds to ��	���
��	�� with u� � ���� �� � ���� d� � d� � d� � d	 � ���� n� � n� � n� � n	 � �	
This con�guration has discrete energy �cf	 ��	���� of �����	 In Figure ��� we show the
�nal con�guration computed by the pre�conditioned method which has discrete energy
of �����	

In Figure ��� we compare the performance of the preconditioned method with that
without preconditioning	 The vertical axis is the discrete L� norm of the error as mea�
sured by the �rst variation of ��	���	 �This �rst variation corresponds to a discretization
of the Euler�Lagrange equations ��	�����	��	� The horizontal axis is just the index k in
��	��	 We can appreciate the superior performance of the preconditioned method in this
problem achieving an error of the order of ����� in approximately ����� iterations	 We
can see a similar behavior in Figure ��� for the boundary iteration where now the verti�
cal axis is the maximum norm of the boundary error as measured by the corresponding
discretizations of ��	���	��	 The computations corresponding to the preconditioning rep�
resented an overhead in the execution time per iteration of approximately �! over the
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no�preconditioning in this problem	 Note however that according to Figures ��� and
���� the preconditioned scheme achieves the same performance as the no�preconditioned
scheme at approximately ���� iterations which represents an improvement in performance
of about ��!	

Figures ����� show di�erent runs of the preconditioned method for n � ��� ��� and ��	
The vertical axis is as in Figure ���	 Since �t � O�h�� by the Courant�Friedrichs�Lewy
stability condition� the horizontal axis in Figure ��� is k�t� where k is as in ��	��� to take
into account the factors of two in �t as we double n	 The results in Figure ��� show that
for this particular problem the convergence rate is essentially independent of the mesh
size	 In Figure ��� we show the same runs but with k as in ��	�� on the horizontal axis	
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to the time iterations for di�erent values of n	
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