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ON THE CONVERGENCE OF A REGULARIZATION SCHEME FOR
APPROXIMATING CAVITATION SOLUTIONS WITH

PRESCRIBED CAVITY VOLUME∗

PABLO V. NEGRÓN-MARRERO† AND JEYABAL SIVALOGANATHAN‡

Abstract. Let Ω ∈ Rn, n = 2, 3, be the region occupied by a hyperelastic body in its reference
configuration. Let E(·) be the stored energy functional, and let x0 be a flaw point in Ω (i.e., a
point of possible discontinuity for admissible deformations of the body). For V > 0 fixed, let uV
be a minimizer of E(·) among the set of discontinuous deformations u constrained to form a hole of
prescribed volume V at x0 and satisfying the homogeneous boundary data u(x) = Ax for x ∈ ∂Ω. In
this paper we describe a regularization scheme for the computation of both uV and E(uV ) and study
its convergence properties. In particular, we show that as the regularization parameter goes to zero,
(a subsequence) of the regularized constrained minimizers converge weakly in W 1,p(Ω \Bδ(x0)) to a
minimizer uV for any δ > 0. We obtain various sensitivity results for the dependence of the energies
and Lagrange multipliers of the regularized constrained minimizers on the boundary data A and on
the volume parameter V . We show that both the regularized constrained minimizers and uV satisfy
suitable weak versions of the corresponding Euler–Lagrange equations. In addition we describe the
main features of a numerical scheme for approximating uV and E(uV ) and give numerical examples
for the case of a stored energy function of an elastic fluid and in the case of the incompressible limit.
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1. Introduction. In this paper we consider the problem of numerically comput-
ing a special type of minimizers within the context of a variational theory of nonlinear
elasticity that allows for cavitation. The particular problem we study is that in which
the minimizer of the stored energy functional belongs to a set of discontinuous defor-
mations that satisfy homogeneous boundary data and that produce a (not necessarily
spherical) hole within the deformed body of prescribed volume V . The proposed nu-
merical scheme essentially consists of approximating the original constrained problem
by a sequence of regularized constrained problems over punctured domains, where the
punctures are taken around possible flaw points within the body. If ε represents the
diameter of the punctures in the regularized domains, we show the convergence of the
numerical approximations to that of the original problem as ε↘ 0.

The problem considered in this paper, though related, differs significantly from
that of “standard” cavitation (see [1], [15]) in which just the homogeneous boundary
data, u(x) = Ax for x ∈ ∂Ω, is specified. Depending on the matrix A, the global
minimizer may be discontinuous producing a hole or cavitation inside the body of
volume that depends among other things on the norm of A. The numerical aspects
of cavitation have been studied among others by [10], [11], [16], [8], [12], and [13].
A fundamental problem in studies of cavitation is to analytically or computationally
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120 PABLO V. NEGRÓN-MARRERO AND JEYABAL SIVALOGANATHAN

characterize the boundary data A for which cavitation occurs. In [18] the authors
introduced the concept of the volume derivative (cf. (40)) as a tool for characterizing
these boundary displacements. The problem considered in this paper is central for
the definition and computation of the volume derivative.

Each of the regularized constrained problems over punctured domains mentioned
previously is approximated by a sequence of regularized (unconstrained) but penal-
ized problems. For a quadratic penalty, the convergence of the minimizers in this
inner iteration can be easily established (cf. [18]). In this paper, instead of just
using a penalty parameter to deal with the volume constraint in the regularized prob-
lems, we employ a penalty-multiplier technique, also called augmented Lagrangians
(cf. [14]), that leads to a more stable numerical scheme for computing such minimiz-
ers. Under the standard assumption that the sequence of the generated multipliers
remains bounded (cf. [3]), we then show that the minimizers of the regularized (un-
constrained) penalized problems, with their corresponding sequence of multipliers,
have subsequences converging to a minimizer and to a multiplier, respectively, of the
corresponding regularized constrained problem.

To introduce the results in the paper, consider a nonlinear hyperelastic body
occupying the bounded region Ω ⊂ Rn in its reference state. A deformation of the
body is a mapping u : Ω→ Rn satisfying the local invertibility condition

det∇u(x) > 0 a.e. x ∈ Ω.

The energy stored in the deformed body under a deformation u is given by

E(u) =

∫
Ω

W (∇u(x)) dx,(1)

where W : Mn×n
+ → R is the stored energy function of the material and Mn×n

+ denotes
the set of n × n matrices with positive determinant. For a fixed matrix A ∈ Mn×n

+ ,
we consider deformations satisfying the displacement boundary condition:

u(x) = Ax for x ∈ ∂Ω.(2)

We fix a “flaw” point x0 ∈ Ω and take the admissible set of deformations to be

AA =
{
u ∈W 1,p(Ω) | ∃ α ≥ 0 such that Det∇u = det∇u Ln + αδx0 ,(3)

det∇u > 0 a.e., u(x) = Ax on ∂Ω, u satisfies INV on Ω
}
.

Here Det∇u denotes the distributional determinant of u, defined by

< Det∇u, φ >= − 1

n

∫
Ω

∇φ · (adj∇u)udx ∀ φ ∈ C∞0 (Ω),(4)

Ln denotes n-dimensional Lebesgue measure, p > n − 1, δx0 denotes the Dirac mea-
sure supported at x0 ∈ Ω, and INV denotes the condition1 relating to invertibility
introduced in Definition 3.2 of [15]. Results in [21] give conditions on the stored en-
ergy function W under which a minimizer for (1) exists on the set AA. The results
of Henao and Mora-Corral [6] give conditions under which a minimizer also exists in

1For technical reasons, the deformation u has to be extended to a larger domain, while still
satisfying INV on the extended domain, for example, by setting it equal to Ax outside Ω (see [21] for
further details). Henceforth we shall assume that all deformations have been extended accordingly
without introducing any extra notation.
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A REGULARIZATION SCHEME FOR CONSTRAINTED CAVITATION 121

the case p = n− 1, and their work in [7] includes justification of the interpretation of
α in (3) as the volume of the hole formed by the deformation. Hence if u ∈ AA and
α > 0, then the deformation u produces a hole of volume α in the deformed body.

The requirement that deformations produce a hole of volume V in the deformed
body is equivalent to the integral constraint :

c(u) ≡
∫

Ω

det∇udx− (detA) |Ω|+ V = 0.(5)

(Here |Ω| is the volume of Ω and 0 < V < (detA) |Ω|.) Thus the volume constrained
problem that we consider in this paper is given by{

minu∈AA
E(u),

subject to c(u) = 0.
(6)

For any ε > 0 sufficiently small, let

Ωε = Ω \ Bε(x0).

(Here and henceforth, we use the notation Bε(x0) for the open ball of radius ε centered
at x0.) The regularized constrained minimization problem is given by{

minu∈AεA Eε(u),
subject to cε(u) = 0,

(7)

where

Eε(u) =

∫
Ωε

W (∇u(x)) dx, cε(u) =

∫
Ωε

det∇udx− (detA) |Ω|+ V,

and

AεA = {u ∈W 1,p(Ωε) |Det∇u = (det∇u)Ln, det∇u > 0 a.e.,

u(x) = Ax on ∂Ω, u satisfies INV}.

Note that deformations u ∈ AεA are “regular” in the sense that the singular part (with
respect to Lebesgue measure) of the distribution Det∇u is zero. We set A0

A = AA

and c0 = c and define the sets

CεA ≡ {u ∈ AεA | cε(u) = 0} .

Thus (7) is now equivalent to minu∈CεA Eε(u).

Remark 1. The hypotheses and results of [21] are easily adapted to prove that a
(not necessarily unique) minimizer uV,ε of Eε on CεA exists for each ε ≥ 0 and V > 0
small enough.

To compute approximations of the constrained problem (7), we use a penalty-
multiplier method in which the energy functional in (7) is replaced by

Eε,µ,η(u) = Eε(u) + µ cε(u) +
1

2
η cε(u)2.(8)
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122 PABLO V. NEGRÓN-MARRERO AND JEYABAL SIVALOGANATHAN

Here η is a “large” positive parameter and µ ∈ R. Thus we replace the regularized
constrained problem (7) with the regularized “unconstrained” problem

inf
u∈AεA

Eε,µ,η(u).(9)

In Proposition 2 we prove the existence of a minimizer uV,ε,µ,η for (9). Then in
Theorem 3 and for ε, V > 0 fixed, we show how to construct sequences {µj}, {ηj} and
give conditions under which

{
uV,ε,µj ,ηj

}
converges weakly in W 1,p(Ωε) to a solution

uV,ε of (7) and with cε(uV,ε,µj ,ηj ) → 0. In Theorem 6 we establish a result on the
weak form of the Euler–Lagrange equations for the minimizer uV,ε. This result is then
used to study the sensitivity of the minimum energy Eε(uV,ε) and its corresponding
Lagrange multiplier, with respect to variations in the boundary data A and the volume
V (Theorem 8).

In section 3 we prove several key results that will be used as the basis for a
numerical scheme for computing a minimizer uV of (6). First in Theorem 11 we
show that for a sequence {εj} converging to zero, a subsequence of the corresponding
regularized constrained minimizers

{
uV,εj

}
converges weakly inW 1,p(Ωδ) to a solution

uV of (6) for any δ > 0. The main difficulty in this proof is to show that the limiting
function uV is a solution of (6), in particular that it satisfies the integral volume
constraint in (6). Two other important results in section 3 are, firstly, on the weak
form of the Euler–Lagrange equations satisfied by the minimizer uV (Theorem 13)
and, secondly, a result on the convergence as V ↘ 0 of the Lagrange multiplier µV
corresponding to the volume constraint on uV , to the volume derivative (see Theorem
14). We should mention that apart from the extra complications of dealing with the
volume constraint, a major technical difficulty in this section is due to the fact that
the domains of the functions in the sequences appearing in most of the calculations
are changing around the possible flaw point x0 with the sequential index. This adds a
considerable level of complication to obtain the various estimates needed to establish
certain limits of weakly converging sequences.

A simple class of polyconvex isotropic stored energy functions to which the results
in this paper can be applied is given by

W (F) =
κ

p
|F|p + h(detF),(10)

where |F| =
√
F · F, κ > 0, p ∈ (n− 1, n), and h : (0,∞)→ (0,∞) is such that

h is a C2 convex function and(11a)

h(δ)→∞ and
h(δ)

δ
→∞ as δ → 0,∞, respectively.(11b)

However, we note that the results of this paper are readily extended to apply to more
general polyconvex stored energy functions under varied hypotheses.

In section 4 we describe the main features of a numerical scheme for approximating
solutions of the problem (6). Then we use this scheme in a numerical example for the
case of an elastic fluid (corresponding to κ = 0 in (10)). For this class of materials
and for a spherical domain, an exact solution of (6) is known, and we can thus
check the various convergence results in the paper in this case. We also report some
simulations for the so-called incompressible limit case. Here, we add a term of the
form k(detF − 1)2 to (10) (with κ > 0), where k > 0 is a given constant and,
although the solutions of the intermediate problems with k given are not known
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A REGULARIZATION SCHEME FOR CONSTRAINTED CAVITATION 123

explicitly, the limiting case (k → ∞) corresponds to an incompressible material for
which the solution is known explicitly. Thus, in this case, we can test the robustness
of the scheme by computing the solutions of several intermediate volume constrained
problems (with V fixed but k varying) and test for convergence of the computed
solutions to the limiting incompressible solution as k gets large.

2. A penalty-multiplier method for the solution of the regularized
constrained problems. In this section we study the approximation of minimiz-
ers of the constrained minimization problem (7) by minimizers of the unconstrained
minimization problems (9) for some sequences {µj}, {ηj}. We assume that the stored
energy function W (F) satisfies the following:

H1 (polyconvexity). There exists G : (Mn×n
+ )n−1 × (0,∞) → R continuous and

convex such that

W (F) =

{
G(F,detF), n = 2,

G(F, adjF,detF), n = 3.

H2 (growth). There exist p ∈ (n− 1, n), c1 > 0, and a C2 function h such that

W (F) ≥ c1|F|p + h(detF) for F ∈Mn×n
+ ,

where the function h satisfies conditions (11).
We begin by showing the existence of minimizers for problem (9). Note that because
of the boundary and INV conditions for functions u ∈ AεA, we have that

−(detA) |Ω|+ V ≤ cε(u) ≤
∫

Ωε

det∇u(x) dx ≤ (detA) |Ω|(12)

by the nonnegativity of the determinant, and so cε(u) is (uniformly) bounded on AεA.

Proposition 2. For any µ ∈ R, η > 0, there exists a minimizer uV,ε,µ,η ∈ AεA of
Eε,µ,η(u) on AεA. Moreover, for any δ > 0, the parameter η can be chosen sufficiently
large such that the minimizer uV,ε,µ,η satisfies that |cε(uV,ε,µ,η)| < δ.

Proof. Since the homogeneous deformation u = Ax lies in AεA,

g∗ := inf
u∈AεA

Eε,µ,η(u) <∞.

By the nonnegativity of W and since η > 0, we obtain Eε,µ,η(u) ≥ µcε(u) for all
u ∈ AεA. By the uniform boundedness of cε(u) mentioned above, it follows that
g∗ 6= −∞.

Let now {uk} in AεA be an infimizing sequence, i.e., Eε,µ,η(uk) → g∗. Since
{µcε(uk)} is bounded, we can find an L > 0 such that µcε(uk) ≥ −L for all k. Thus,
for k sufficiently large, we obtain∫

Ωε

W (∇uk(x)) dx− L ≤ g∗ + 1.

It follows now from the growth hypotheses H1–H2 that there exists a subsequence{
ukj
}

which converges weakly in W 1,p(Ωε) to a function u∗ and that
{

det∇ukj
}

converges weakly in L1(Ωε) to a function θ. Since p ∈ (n− 1, n), it follows from [15,
Theorem 4.2] that u∗ satisfies condition INV, θ = det∇u∗, and det∇u∗ > 0 a.e.
Thus u∗ ∈ AεA.
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Upon adapting the lower semicontinuity results in [21], it follows that Eε,µ,η is
sequentially weakly lower semicontinuous. Thus we have that

Eε,µ,η(u∗) ≤ lim inf
j→∞

Eε,µ,η(ukj ) = g∗,

i.e., that uV,ε,µ,η ≡ u∗ ∈ AεA is a minimizer.
For the last part of the proposition, we argue by contradiction. Suppose that for

some δ0 there exists a sequence ηj →∞ such that the corresponding minimizers {uj}
satisfy |cε(uj)| ≥ δ0 for all j. Note that for all j,

Eε,µ,ηj (uj) ≤ f∗ε ,(13)

where f∗ε is the minimum value in (7) (cf. Remark 1). Since {µcε(uj)} is bounded,
we can find L > 0 such that, µcε(uj) ≥ −L for all j. Hence

f∗ε ≥ µcε(uj) +
1

2
ηjcε(uj)

2 ≥ −L+
1

2
ηjδ

2
0 →∞,

which leads to a contradiction, completing the proof.

We now show how to construct sequences {µj} and {ηj} and give hypotheses
under which the computed minimizers in (9) converge to a solution of (7).

Theorem 3. Let the stored energy function W satisfy the conditions H1–H2. Let
γ ∈ (0, 1), β > 1, η1 > 0, µ1 ∈ R, and u0 ∈ AεA be given. Let the sequences {µj},
{ηj}, and {uj} be given by

Eε,µj ,ηj (uj) = min
u∈AεA

Eε,µj ,ηj (u),(14a)

µj+1 = µj + ηjcε(uj),(14b)

ηj+1 =

{
ηj if |cε(uj)| ≤ γ |cε(uj−1)| ,
βηj otherwise.

(14c)

Assume that {µj} is bounded. Then cε(uj) → 0, and {uj} has a subsequence {ujk}
that converges weakly in W 1,p(Ωε) to a minimizer uε of problem (7) and with

Eε(uε) = lim inf
k

Eε,µjk ,ηjk (ujk).(15)

Proof. By Proposition 2, a function uj ∈ AεA satisfying (14a) exists for each j.
From (13) we get that

Eε,µj ,ηj (uj) ≤ f∗ε ∀ j.

From this inequality and using that W is nonnegative, we get that

µjcε(uj) +
1

2
ηjcε(uj)

2 ≤ f∗ε ∀ j.(16)

Note that the sequence {ηj} is increasing. Thus in (14c) we have two possibilities:
1. The sequence {ηj} remains bounded, in which case, |cε(uj)| ≤ γ |cε(uj−1)| is

satisfied for all but finitely many indexes j. Clearly cε(uj)→ 0 in this case.
2. Otherwise (for a subsequence) ηj →∞, in which case (16) and the bounded-

ness of {µj} would imply that cε(uj)→ 0.
Thus, in both cases, we have that cε(uj)→ 0.
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If µjcε(uj) ≥ −L for all j, where L > 0, then from (13) we get that∫
Ωε

W (∇uj(x)) dx− L ≤ f∗ε .

By the arguments in the proof of Proposition 2, there exists a subsequence {ujk} which
converges weakly in W 1,p(Ωε) to a function uε and such that {det∇ujk} converges
weakly in L1(Ωε) to det∇uε, where uε satisfies condition INV and det∇uε > 0
a.e. Thus uε ∈ AεA and cε(uε) = 0. Moreover, since µjcε(uj) → 0 by the assumed
boundedness of {µj}, we have that

f∗ε ≤ Eε(uε) ≤ lim inf
k

Eε,µjk ,ηjk (ujk) ≤ f∗ε .

It follows that uε is a minimizer of (7) and that (15) holds.

Remark 4. The multiplier iteration (14b) is the most common type of iteration
used in the augmented Lagrangian scheme. The motivation for this formula comes
from the observation that the multiplier for the problem infu∈CεA Eε,µj ,0(u) is µε−µj
where µε is the Lagrange multiplier corresponding to the problem (7). On the other
hand, since Eε,µj ,ηj (·) is a quadratic penalty function for this problem, one expects
ηjcε(uj) to be close to µε−µj for ηj sufficiently large. Hence µε−µj ≈ ηjcε(uj) from
which (14b) follows. (See [9], [14, pages 451–452].)

Remark 5. The assumption of boundedness on the multiplier sequence {µj} is
typical of local convergence results for the augmented Lagrangian scheme (cf. [3,
Proposition 2]). One could in practice enforce this condition by requiring that the
iterates remain on a prescribed bounded interval. However, if this interval does not
contain the actual multiplier µε of the problem (7), then this would impede the
convergence of {µj} to µε. A better practice is just to monitor the growth of the µj
to detect some possible tendency to unboundedness.

Our next results give conditions under which the minimizer uε in (7) satisfies a
weak form of the Euler–Lagrange equations for this problem. We use the following
modified version of hypothesis H2 for the term W̃ in the stored energy function in the
next theorem:

H3 (growth). There exists a C2 function h such that

W̃ (F) ≥ h(detF) for F ∈Mn×n
+ ,

where the function h satisfies conditions (11).
In the following we relabelled the subsequence {ujk} in Theorem 3 to {uj}.

Theorem 6. Let {uj} be the sequence in Theorem 3 that converges weakly in
W 1,p(Ωε) to a solution uε of (7) and with {µj} bounded. Assume that the stored

energy function W is uniformly quasiconvex of the form γ|F|p + W̃ (F) where γ > 0
and W̃ satisfy H1 and H3. Furthermore, assume there exist constants K, ε0 > 0 such
that2 ∣∣∣∣dWdF (CF)FT

∣∣∣∣ ≤ K [W (F) + 1] ∀ F ∈ Mn×n
+(17)

2We refer to [2] for a discussion of (17) and other related constitutive hypotheses.
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whenever |C− I| < ε0. Then {µj} has a subsequence converging to µε, where3∫
Ωε

[
dW

dF
(∇uε) + µε (adj∇uε)T

]
· ∇[v(uε)] dx = 0(18)

for all v ∈ C1(Rn) with v = 0 on Rn \ E, where E = {Ax : x ∈ Ω}. Moreover if
uε ∈ C2(Ωε) ∩ C1(Ωε) with det∇uε > 0 in Ωε, then

div

[
dW

dF
(∇uε) + µε (adj∇uε)T

]
= 0 in Ωε,(19a)

uε(x) = Ax on ∂Ω,(19b) [
dW

dF
(∇uε) + µε (adj∇uε)T

]
n = 0 on ∂Bε(x0),(19c) ∫

Ωε

det∇uε dx = (detA) |Ω| − V.(19d)

Proof. To show (18), we first derive the corresponding equilibrium equation for
each uj . We use variations of uj of the form us = uj+sv(uj) where v ∈ C1(Rn) with
v = 0 on Rn \ E . From [21, Corollary 6.4] it follows that for s sufficiently small, the
function us ∈ AεA. (Note that the variation us is not required to satisfy the constraint
cε(u) = 0 as uj is a solution of an unconstrained problem!) To show (18) for uj , first
note that∫

Ωε

[W (∇us)−W (∇uj)]dx = s

∫
Ωε

[∫ 1

0

dW

dF
([I + st∇v(uj)]∇uj)∇uTj dt

]
·∇v(uj)dx.

It follows now from (17) that for s small enough,∣∣∣∣∫ 1

0

dW

dF
([I + st∇v(uj))]∇uj)∇uTj dt

∣∣∣∣ ≤ K[W (∇uj) + 1] ∈ L1(Ωε).

Upon invoking the dominated convergence theorem, we obtain

lim
s→0

1

s

∫
Ωε

[W (∇us)−W (∇uj)] dx =

∫
Ωε

dW

dF
(∇uj)∇uTj · ∇v(uj) dx.(20)

Also

µj [cε(us)− cε(uj)] +
1

2
ηj [c

2
ε(us)− c2ε(uj)]

=

[
µj +

1

2
ηj(cε(us) + cε(uj))

]
[cε(us)− cε(uj)].

Now

cε(us)− cε(uj) = s

∫
Ωε

[∫ 1

0

[adj (I + st∇v(uj))]
T dt

]
· ∇v(uj) det∇uj dx.

It follows now, since v ∈ C1(Rn) with v = 0 on Rn \ E , that

lim
s→0

1

s
[cε(us)− cε(uj)] =

∫
Ωε

[I · ∇v(uj)] det∇uj dx.

3µε is the Lagrange multiplier corresponding to the volume constraint in (7) and is a measure of
the Cauchy stress acting on the deformed inner cavity.
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Combining this with (20) and using that cε(us)→ cε(uj) as s→ 0, we get that

d

ds
Eε,µj ,ηj (us)

∣∣∣∣
s=0

=

∫
Ωε

[
dW

dF
(∇uj)∇uTj

+ (µj + ηjcε(uj))(det∇uj)I
]
· ∇v(uj) dx.

Since uj is a minimizer, we must have that∫
Ωε

[
dW

dF
(∇uj)∇uTj + (µj + ηjcε(uj))(det∇uj)I

]
· ∇v(uj) dx = 0(21)

for all such v’s. Recall the subsequence {uj} converges weakly in W 1,p(Ωε) to uε,
with det∇uj ⇀ det∇uε in L1(Ωε). Furthermore, because of (15), we may assume
that the sequence is such that

Eε(uε) = lim
j
Eε,µj ,ηj (uj),

and, by the boundedness of {µj}, that µj → µε for some µε. Thus

lim
j

[
µjcε(uj) +

1

2
ηjcε(uj)

2

]
= 0.

It follows now that

Eε(uε) − γ
∫

Ωε

|∇uε|p dx =

∫
Ωε

W̃ (∇uε) dx

≤ lim inf
j

[∫
Ωε

W̃ (∇uj) dx + µjcε(uj) +
1

2
ηjcε(uj)

2

]
= lim

j
Eε,µj ,ηj (uj)− γ lim sup

j

∫
Ωε

|∇uj |p dx,

from which we obtain

lim sup
k

∫
Ωε

|∇uj |p dx ≤
∫

Ωε

|∇uε|p dx.

This together with the weak convergence of {uj} to uε in W 1,p(Ωε), implies the strong
convergence (of a subsequence not relabelled) uj → uε in W 1,p(Ωε). Thus, we may
assume that {uj} and {∇uj} converge a.e. to uε and ∇uε, respectively. Thus using
(17) and the dominated convergence theorem in (21) (dropping to the subsequence
{uj}), we obtain∫

Ωε

[
dW

dF
(∇uε)∇uTε + µε(det∇uε)I

]
· ∇v(uε) dx = 0.

Since (det∇uε)I = (adj∇uε)T∇uTε and ∇[v(uε)] = ∇v(uε)∇uε, it follows that the
above equation is equivalent to (18).

Now assume that uε ∈ C2(Ωε)∩C1(Ωε) with det∇uε > 0 in Ωε. Note that (19b)
and (19d) follow from the fact that uε is a solution of (7). The proof that (19a) holds
is similar to the one given in [21, Theorem 5.1], and thus we omit it. Now multiply
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(19a) by v(uε) where v ∈ C1(Rn) with v = 0 on Rn \ E , and integrate by parts using
(18) to get that∫

∂Ωε

v(uε) ·
[

dW

dF
(∇uε) + µε(adj∇uε)T

]
nds(x) = 0.

Since the normal n to ∂Ωε is mapped by uε to

ñ(uε) = (det∇uε)(∇uε)−Tn,

upon setting y = uε(x), the previous equation is equivalent to∫
uε(∂Ωε)

v(y) · [T(y) + µεI] ñ(y) ds(y) = 0,(22)

where the Cauchy stress tensor T(uε) is given by

T(uε) = (det∇uε)−1 dW

dF
(∇uε)(∇uε)T .

From (22) and the arbitrariness of v, we get that

[T(y) + µεI] ñ(y) = 0 ∀ y ∈ uε(∂Bε(x0)),

which after changing variables back to Ωε yields (19c).

Remark 7. The hypotheses on W in Theorem 6 are satisfied by the model stored
energy function (10). The argument used in the proof of this theorem to get the
strong convergence of the sequence {uj} to uε in W 1,p(Ωε) from its weak convergence
is a slight variation of the one due to Evans [4].

We now study the sensitivity of the attained minimum value in (7) with respect
to changes in the matrix A and the volume parameter V . In the usual sensitivity
theorems of optimization theory, the parameters that change are on the right-hand
sides of the constraints which is the case for V in our problem. As for the matrix A, it
appears both in the right-hand side of the volume constraint and in the displacement
boundary condition on ∂Ω. Thus our calculation for the sensitivity with respect to A
picks up an additional term from ∂Ω. We use the notation uε(·,A, V ) to emphasize
the dependence of the minimizer on both A and V . With the aid of Theorem 6 it is
not difficult to show now that the following result holds.

Theorem 8. Let uε(·,A, V ) be a minimizer in (6), and assume that uε(·,A, V )
∈ C2(Ωε) ∩ C1(Ωε) and that uε ∈ C2(Ωε ×Mn×n

+ × (0, V0)) for some V0 > 0. Then
for A = diag(λ1, . . . , λn), λi > 0 for all i, we have that

∂

∂λi
Eε(uε(·,A, V )) =

∫
∂Ω

xiei ·
[

dW

dF
(∇uε) + µε (adj∇uε)T

]
nds(23a)

− µε |Ω|
detA

λi
, i = 1, . . . , n,

∂

∂V
Eε(uε(·,A, V )) = µε,(23b)
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where {ek} is the standard basis of Rn. Moreover with the “dots” denoting derivatives
with respect to V , we have

∂µε
∂V

=

∫
Ωε

∇u̇ε ·C(∇uε)[∇u̇ε] dx− µε
∫

Ωε

(adj∇uε)T · ∇üε dx,(24a)

∂µε
∂λi

=

∫
∂Ω

xiei ·
[
C(∇uε)[∇u̇ε] +

∂µε
∂V

(adj∇uε)T
]
n ds(24b)

+µε

∫
∂Ω

xiei ·
[
((adj∇uε)T · ∇u̇ε)I

− (adj∇uε)T ∇u̇Tε
]

(∇uε)−Tnds− |Ω| detA

λi

∂µε
∂V

,

where C(F) denotes the elasticity tensor (fourth order) at F.

3. Convergence of the regularized constrained minimizers. We now show
that the regularized constrained minimizers given by Theorem 3 converge as ε↘ 0 to
a solution of the “nonregular” constrained problem (6). The first part of the proof of
this result, dealing with the convergence and the existence of the limit, is very similar
to that in [23, Theorem 4.1], and consequently we sketch most of it. The second part,
in which we show that the limiting function is actually a solution of (6), is more subtle
due to the treatment of the integral volume constraint in (6) and the varying domains.
For the proofs of the main results in this section we make use of the following two
lemmas which we state without proofs.4

Lemma 9. There exists V0 > 0 such that for any V ∈ (0, V0), there exists
ε0(V ) > 0 such that

CεA ≡ {u ∈ AεA | cε(u) = 0} 6= ∅

for all ε ∈ [0, ε0(V )). Moreover, if W is nonnegative and for any 0 < γ < δ there
exists a constant K > 0 such that

W (F) ≤ K(‖F‖p + 1) whenever detF ∈ [γ, δ],(25)

then for any nonnegative sequence εj → 0, there exists a sequence zεj ∈ C
εj
A such that

Eεj (zεj ) ≤ C ∀ j

for some constant C > 0.

Lemma 10. Let Ω be a bounded, open set, and let the stored energy function W
satisfy conditions H1–H2 and (17). Let u ∈ C0

A and V ∈ (0, |Ω|detA). Then for any
sequence {εj} with εj → 0, there exists a sequence of functions {ûj} in W 1,p(Ω) with
ûj |Ωεj ∈ C

εj
A for each j and such that

lim
j→∞

∫
Ω

W (∇ûj(x)) dx =

∫
Ω

W (∇u(x)) dx.

We now have one of the main results of this paper.

4The construction in the proof of Lemma 9 is based on translations and dilations of functions
like (46) adjusted to satisfy the volume constraint over Ωε, while that for Lemma 10 makes use of the
implicit function theorem on variations of any u ∈ C0A similar to those used in the proof of Theorem
6.
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Theorem 11. Let the hypotheses in Lemma 10 hold. For V ∈ (0, |Ω|detA), let
{εj} be a sequence of positive numbers converging to zero, and for each εj, let uj be
a minimizer for (7). Then {uj} has a subsequence {ujk} such that for any δ > 0,

ujk ⇀ uV in W 1,p(Ωδ),

where the function uV is a solution of (6), and with

E(uV ) = lim
k
Eεjk (ujk).(26)

Proof. We let
CεA ≡ {u ∈ AεA | cε(u) = 0} , ε ≥ 0.

It follows from Lemma 9 that these sets are nonempty for ε small enough. Thus each
uj satisfies

Eεj (uj) = min
u∈C

εj
A

∫
Ωεj

W (∇u(x)) dx = min
u∈C

εj
A

Eεj (u).

Now we fix an index J ∈ N and take j > J . It follows from hypothesis H2 on W and
Poincaré’s inequality that for some constant K > 0,

EεJ (uj) ≥ K ‖uj‖pW 1,p(ΩεJ ) , j > J.

Again, it follows from H2 that we may assume that W is nonnegative. Hence

EεJ (uj) ≤ Eεj (uj) ≤ C, j > J,

where the constant C is given by Lemma 9. Combining this with the previous in-
equality we get that (for a subsequence) {uj} converges weakly in W 1,p(ΩεJ ) to a
function uJ and that {det∇uj} converges weakly in L1(ΩεJ ) to a function θJ . Since
p ∈ (n − 1, n), it follows from [15, Theorem 4.2] that uJ satisfies condition INV,
θJ = det∇uJ , and det∇uJ > 0 a.e. By choosing an appropriate diagonal sequence,
it is shown in [23] that there exist a subsequence {ujk} and a function uV ∈W 1,p(Ω)
such that

ujk ⇀ uV in W 1,p(ΩεJ ).

The results in [23, section 4.2] show that uV ∈ AA.
It remains to show that uV is a solution of (6). By the results quoted in the

previous paragraph, we get that the subsequence {ujk} has the property that

det∇ujk ⇀ det∇uV in L1(ΩεJ ).

Since ujk ∈ C
εjk
A , we also have that∫

Ωεjk

det∇ujk dx = (detA) |Ω| − V ∀k.

Now we extend det∇ujk to Ω as follows:

gk(x) =

{
det∇ujk(x), x ∈ Ωεjk ,

0, x ∈ Ω \ Ωεjk .

Clearly gk ∈ L1(Ω) and∫
Ω

gk dx =

∫
Ωεjk

det∇ujk dx = (detA) |Ω| − V ∀k.
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Writing∫
Ω

(det∇uV − gk) dx =

∫
ΩεJ

(det∇uV − gk) dx +

∫
BεJ (x0)

(det∇uV − gk) dx,(27)

we note that the second term above can be made arbitrarily small by taking J suffi-
ciently large. To see this we first observe that∫

BεJ (x0)

gk dx =

∫
Dk

det∇ujk dx,

where Dk = BεJ (x0) \ Bεjk (x0). Now using Jensen’s inequality and the convexity of
h(·), we get that

|Dk|h
(

1

|Dk|

∫
Dk

det∇ujk dx

)
≤
∫
Dk
h(det∇ujk) dx.

By Lemma 9 the right-hand side of this inequality is uniformly bounded. Thus our
statement about the second term in (27) now follows from (11b) and arguing by
contradiction. Now once J is fixed, the first term in (27) can be made arbitrarily small
as gk equals det∇ujk over ΩεJ for k sufficiently large and by the weak convergence
of {det∇ujk} to det∇uV in L1(ΩεJ ). This shows that∫

Ω

det∇uV dx = lim
k→∞

∫
Ω

gk dx = (detA) |Ω| − V.(28)

Hence uV ∈ C0
A. We now show that uV is a minimizer over C0

A.
For any u ∈ C0

A and for the subsequence {εjk} above, let {ûjk} be the corre-
sponding sequence given by Lemma 10 with the property that

lim
k→∞

∫
Ω

W (∇ûjk(x)) dx =

∫
Ω

W (∇u(x)) dx.(29)

As a function over Ωεjk , we have that ûjk ∈ C
εjk
A . Since ujk is the minimizer over

CεjkA , we have that ∫
Ωεjk

W (∇ujk(x)) dx ≤
∫

Ωεjk

W (∇ûjk(x)) dx.(30)

Let N > 0 be given. For k > N and the nonnegativity of W we get that∫
ΩεjN

W (∇ujk(x)) dx ≤
∫

Ωεjk

W (∇ujk(x)) dx.(31)

By the results in [1], the functional EεjN (·) (cf. (7)) is weakly lower semicontinuous

over AεjNA . Using this and since ujk ⇀ uV in W 1,p(ΩεjN ), we conclude that∫
ΩεjN

W (∇uV (x)) dx ≤ lim inf
k

∫
ΩεjN

W (∇ujk(x)) dx.(32)

From the nonnegativity of W , it follows from (29)–(32) that∫
ΩεjN

W (∇uV (x)) dx ≤
∫

Ω

W (∇u(x)) dx.
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Since N is arbitrary, we can conclude that∫
Ω

W (∇uV (x)) dx ≤
∫

Ω

W (∇u(x)) dx.

Since u ∈ C0
A is arbitrary, we get that uV is a minimizer over C0

A. If we set u = uV
in (29), then we get as well that∫

Ω

W (∇uV (x)) dx = lim inf
k

∫
Ωεjk

W (∇ujk(x)) dx,

from which the result about the energies follows upon taking another subsequence.

Remark 12. We should point out that since the minimizers in (6) are not nec-
essarily unique, the results of Theorem 11 are true for one such minimizer and the
convergence is for a subsequence.

We now derive an expression for a weak form of the equilibrium equations for
the minimizer uV in Theorem 11. Although the next result seems similar to that of
Theorem 6, the proof is somewhat more technical due to the fact that the domains of
the sequence of approximating functions are changing with the sequential index. We
use the notation µj = µεj for the Lagrange multiplier (cf. (18)) corresponding to the
minimizer uj of (7) in the statement of Theorem 11.

Theorem 13. Assume that (17) and the hypotheses in Theorem 11 hold and that
the stored energy function W is of the form γ|F|p + W̃ (F) where γ > 0 and W̃ satisfy
H1 and H3. Let uV be the minimizer in Theorem 11. Then there exists µV ∈ R, a
limit point of {µj}, such that∫

Ω

[
dW

dF
(∇uV ) + µV (adj∇uV )

T

]
· ∇[v(uV )] dx = 0(33)

for all v ∈ C1(Rn) with v = 0 on Rn \ E where E = {Ax : x ∈ Ω}. Moreover, if
uV ∈ C2(Ω \ {x0}) ∩ C1(Ω \ {x0}) with det∇uV > 0 in Ω \ {x0}, then

div

[
dW

dF
(∇uV ) + µV (adj∇uV )

T

]
= 0 in Ω \ {x0}(34)

and

lim
δ→0

∫
∂Bδ(x0)

v(uV ) ·
[

dW

dF
(∇uV ) + µV (adj∇uV )T

]
nds(x) = 0.(35)

Proof. Let {ujk} be the subsequence given by Theorem 11 such that (26) holds
and for any δ > 0,

ujk ⇀ uV in W 1,p(Ωδ),(36a)

det∇ujk ⇀ det∇uV in L1(Ωδ).(36b)

Here ujk is the minimizer given by Theorem 3 corresponding to εjk . The proof is
divided into several steps.

Step 1. We first show that∫
Ω

|∇uV |p dx = lim
k

∫
Ωεjk

|∇ujk |
p

dx.(37)
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Note that∫
Ωδ

W̃ (∇uV ) dx ≤ lim inf
k

∫
Ωδ

W̃ (∇ujk) dx ≤ lim inf
k

∫
Ωεjk

W̃ (∇ujk) dx,

from which it follows that∫
Ω

W̃ (∇uV ) dx ≤ lim inf
k

∫
Ωεjk

W̃ (∇ujk) dx.

Using this we have now∫
Ω

W (∇uV ) dx − γ
∫

Ω

|∇uV |p dx =

∫
Ω

W̃ (∇uV ) dx

≤ lim inf
k

∫
Ωεjk

W̃ (∇ujk) dx

≤ lim
k

∫
Ωεjk

W (∇ujk) dx− γ lim sup
k

∫
Ωεjk

|∇ujk |
p

dx,

which upon invoking (26) yields that

lim sup
k

∫
Ωεjk

|∇ujk |
p

dx ≤
∫

Ω

|∇uV |p dx.

Since ujk ⇀ uV in W 1,p(Ωδ), we get that∫
Ωδ

|∇uV |p dx ≤ lim inf
k

∫
Ωδ

|∇ujk |
p

dx ≤ lim inf
k

∫
Ωεjk

|∇ujk |
p

dx,

which by the arbitrariness of δ leads to∫
Ω

|∇uV |p dx ≤ lim inf
k

∫
Ωεjk

|∇ujk |
p

dx.

This combined with our previous result yields (37).

Step 2. We now show that

∇ujk → ∇uV a.e. in Ωδ

for any δ > 0. Let ψ : R→ [0,∞) be a smooth function such that ψ(t) = 0 for t ≤ 1
and ψ(t) = 1 for t ≥ 4

3 . For each k let ûjk : Ω→ Rn be given by

ûjk(x) =

{
ψ
(

2|x−x0|
|x−x0|+εjk

)
ujk(x), x ∈ Ωεjk ,

0, x ∈ Ω \ Ωεjk .

Using (36a) one can show now that ûjk ⇀ uV in W 1,p(Ω) and that∫
Ω

|∇uV |p dx = lim
k

∫
Ω

|∇ûjk |
p

dx.(38)
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Since ûjk ⇀ uV in W 1,p(Ω), it follows now that (for a subsequence) ∇ûjk → ∇uV
a.e. in Ω. Since ûjk(x) = ujk(x) for all x ∈ Ω2εjk

, it follows that ∇ujk → ∇uV a.e.
in Ωδ for any δ > 0.

Step 3. Finally we show now that the weak form (33) of the equilibrium equations
for the minimizer uV holds. Once again the varying domains in the sequence {ujk}
complicates the analysis. The convergence a.e. established in Step 2 is an essential
ingredient for the following arguments.

Let N > 0 be such that εjk < δ for k > N . Using Theorem 6 we get now that

0 =

∫
Ωεjk

[
dW

dF
(∇ujk)∇uTjk + µjk(det∇ujk)I

]
· ∇v(ujk) dx

=

∫
Bδ(x0)\Bεjk (x0)

[
dW

dF
(∇ujk)∇uTjk + µjk(det∇ujk)I

]
· ∇v(ujk) dx

+

∫
Ωδ

[
dW

dF
(∇ujk)∇uTjk + µjk(det∇ujk)I

]
· ∇v(ujk) dx, k > N,(39)

for all v ∈ C1(Rn) with v = 0 on Rn \ E . It follows from Step 2, hypothesis (17), and
the generalized dominated convergence theorem (see [20]) that

lim
k

∫
Ωδ

[
dW

dF
(∇ujk)∇uTjk

]
· ∇v(ujk) dx =

∫
Ωδ

[
dW

dF
(∇uV )∇uTV

]
· ∇v(uV ) dx.

Also from (36b) and [21, Lemma 6.7] we get that

lim
k

∫
Ωδ

(det∇ujk)I · ∇v(ujk) dx =

∫
Ωδ

(det∇uV )I · ∇v(uV ) dx.

By an argument similar to the one within the proof of Theorem 11 (cf. (27)), we get
that the integrals ∫

Bδ(x0)\Bεjk (x0)

(det∇ujk)I · ∇v(ujk) dx

can be made arbitrarily small as δ ↘ 0 and k →∞. Now let

wk(x) =

{
W (∇ujk(x)), x ∈ Ωεjk ,

0 elsewhere.

Since ∇ujk → ∇uV a.e. in Ωδ for any δ > 0, we have that wk →W (∇uV ) a.e. in Ω.
Also

‖wk‖L1(Ω) =

∫
Ωεjk

W (∇ujk(x)) dx→
∫

Ω

W (∇uV (x)) dx = ‖W (∇uV )‖L1(Ω) ,

by (26). It follows now that wk → W (∇uV ) in L1(Ω), which implies that {wk} is
equi-integrable. This property of the wk’s together with (17) can be used now to show
that the integrals ∫

Bδ(x0)\Bεjk (x0)

dW

dF
(∇ujk)∇uTjk · ∇v(ujk) dx
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can be made arbitrarily small as δ ↘ 0 and k →∞. Thus letting first k →∞ in (39),
and then letting δ ↘ 0, we get that for some µV ∈ R,∫

Ω

[
dW

dF
(∇uV )∇uTV + µV (det∇uV )I

]
· ∇v(uV ) dx = 0

for all v ∈ C1(Rn) with v = 0 on Rn \ E .
Now assume that uV ∈ C2(Ω\{x0})∩C1(Ω\{x0}) with det∇uV > 0 in Ω\{x0}.

The proof of (34) is similar to the one given in [21, Theorem 5.1], and thus we omit
it. Let δ > 0 be given. If we multiply (34) by v(uV ), where v ∈ C1(Rn) with v = 0
on Rn \ E and constant over K, and integrate by parts over Ωδ, we get that∫

Ωδ

[
dW

dF
(∇uV ) + µV (adj∇uV )

T

]
· ∇[v(uV )] dx

=

∫
∂Bδ(x0)

v(uV ) ·
[

dW

dF
(∇uV ) + µV (adj∇uV )T

]
nds(x).

Taking the limit as δ ↘ 0 and using (33) we get that (35) holds.

We now establish a very nice connection between the Lagrange multipliers µV and
the volume derivative (cf. [18]). The volume derivative of the stored energy function
W at the boundary displacement A is given by

G(A) = lim
V→0+

inf
u∈AA,V

E(u)− E(Ax)

V
= lim
V→0+

E(uV )− E(Ax)

V
,(40)

where E(·) is as in (1) and uV is the minimizer from Theorems 11 and 13. In the
following, we write u(x, V ) instead of uV (x).

Theorem 14. Assume that (17) and the hypotheses in Theorems 11 and 13 hold
and that

1. u(·, V ) ∈ C2(Ω \ {x0}) ∩ C1(Ω \ {x0}) with det∇uV > 0 in Ω \ {x0};
2. u(·, ·) ∈ C3((Ω \ {x0})× (0, V0)) for some V0 > 0;
3. for some δ > 0, u(·, V )→ uh(·) in C2(Ω \ Bδ(x0)) as V ↘ 0, where uh(x) =

Ax for all x ∈ Ω.
Then

G(A) = lim
V→0+

µV ,

where {µV } are the Lagrange multipliers from Theorem 13.

Proof. Under the stated hypotheses it is shown in [18, Proposition 5.4] that

G(A) = − 1

n
lim
V→0+

1

V

[
lim
δ→0+

∫
∂Bδ(x0)

(uV −Ax0) · ∂W
∂F

(∇uV )n ds(x)

]
,

where the normal n to ∂Bδ(x0) points in the outward direction. Let K ⊂ Ω be a
compact set such that uV (Bδ(x0)) ⊂ K for all δ and V sufficiently small. Then
taking v in (35) such that v(x) = x−Ax0 for x ∈ K, we get that

lim
δ→0+

∫
∂Bδ(x0)

(uV −Ax0) · dW

dF
(∇uV )n ds(x)

= −µV lim
δ→0+

∫
∂Bδ(x0)

(uV −Ax0) · (adj∇uV )Tnds(x).
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But ∫
∂Bδ(x0)

(uV −Ax0) · (adj∇uV )Tn ds(x)

=

∫
∂Ω

(uV −Ax0) · (adj∇uV )Tn ds(x)− n
∫

Ω\Bδ(x0)

det∇uV dx.

Thus

lim
δ→0+

∫
∂Bδ(x0)

(uV −Ax0) · (adj∇uV )Tnds(x)

=

∫
∂Ω

(uV −Ax0) · (adj∇uV )Tnds(x)− n
∫

Ω

det∇uV dx

= n(detA) |Ω| − n[(detA) |Ω| − V ] = nV.

It follows now that

G(A) = − 1

n
lim
V→0+

1

V
(−µV nV ) = lim

V→0+
µV .

4. Numerical results. In this section we describe some of the elements of a
numerical procedure based on the results of the previous sections, to compute a min-
imizer of (6). In addition we work a numerical example in which we check the con-
vergence as ε ↘ 0 predicted by Theorem 11 and another example in which we test
the robustness of the method in the so-called incompressible limit.

For given values of ε, V , we use the method outlined in Theorem 3 to compute the
minimizer uε in (7). The minimizers in (14a) of Theorem 3 (dropping the subscript
“j”) are computed using the gradient flow equation:5

∆ut = −div

[
dW

dF
(∇u) + (µ+ ηcε(u))(adj∇u)t

]
in Ωε,(41)

where for all t ≥ 0, u(x, t) = Ax over ∂Ω and[
∇ut +

dW

dF
(∇u) + (µ+ ηcε(u))(adj∇u)t

]
n = 0 on ∂Bε(x0).(42)

The gradient flow equation leads to a descent method for the solution of (14a) of
Theorem 3. (For more details about gradient flow methods (also called Sobolev gra-
dient methods) and their properties, we refer to [19]. For further applications of this
technique in other problems leading to cavitation see [8].) After discretization of the
partial derivative with respect to “t,” one can use a finite element method to solve the
resulting flow equation. In particular, if we let ∆t > 0 be given and set ti+1 = ti+ ∆t
where t0 = 0, we can approximate ut(x, ti) with

zi(x) =
ui+1(x)− ui(x)

∆t
,

where ui(x) = u(x, ti), etc.. (We take u0(x) to be some initial deformation satisfying
the boundary condition on ∂Ω, e.g., Ax.) Inserting this approximation into the weak
form of (41), (42), and evaluating the right-hand side of (41) at u = ui, we arrive at
the following iterative formula:∫

Ωε

∇zi · ∇v dx +

∫
Ωε

[
dW

dF
(∇ui) + (µ+ ηcε(ui))(adj∇ui)t

]
· ∇v dx = 0(43)

5It follows from (21) that the Euler–Lagrange equations for the minimizer in (14a) of Theorem
3 are formally given by equating to zero the right-hand side of (41).
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for all v vanishing on ∂Ω and sufficiently smooth so that the integrals above are well
defined. Given ui, one can solve the above equation for zi via some finite element
scheme and then set ui+1 = ui + ∆t zi. This process is repeated for i = 0, 1, . . ., until
ui+1−ui is “small” enough (10−3 in the calculations below), or some maximum value
of “t” is reached, declaring the last ui as an approximation of uε. This whole process
is repeated for smaller values of of ε to obtain as a result an approximation of the
minimizer uV in (6).

For the computations we used the stored energy function (10) in which

h(d) = c1d
e1 + c2d

−e2 ,(44)

where c1, c2 ≥ 0 and e1, e2 > 0. The reference configuration is stress-free provided6

c2 =
κ(
√
n)q−2 + c1e1

e2
.(45)

The case κ = 0 in (10) is called an elastic fluid.
For an elastic fluid in which Ω = B ≡ B1(0) and x0 = 0, the minimizer uV in (6)

is given7 by (see [18])

uV (x) = [dRn + (1− d)]1/n
Ax

R
, R = ‖x‖ ,(46)

where d is given by

d = 1− nV

ωn detA
.

(V is assumed to be sufficiently small as to guarantee that d > 0.) It follows that
det∇uV = ddetA. Thus we have that

E(uV ) =

∫
B
h(det∇uV ) dx =

ωn
n
h(ddetA),

where ωn denotes the area of the unit sphere in Rn. We now consider the particular
case in which

n = 2, c1 = 1, e1 = 2, e2 = 1, V = π(0.15)2, A = diag(1.1, 1.4).(47)

Using the formulas above, we get that

E(uV ) = π h((1.1)(1.4)− 0.152) = 11.3750.

For the parameters in Theorem 3 we used γ = 0.25, β = 2, with the stopping criteria in
(14b) of Theorem 3 given by |µj+1−µj | < 10−3|µj |. The solution of the subproblems
(43) was done using the package freefem++ (see [5]) with first-order Crouzeix–Raviart
finite elements. We show in Table 1 the results in this case for the method described
at the beginning of this section and for the data (47). Each line in this table shows,
for a given ε, the last computed step of the method outlined in Theorem 3. Note that
the penalty parameter η (fifth column) does not become too large, thus avoiding the
ill-conditioning associated with large values of these parameters. Also the computed

6For the stored energy function (10), we have that ∂W
∂F

(F) = κ |F|q−2 F + h′(det F)(adj F)T .

Thus in the case (44), ∂W
∂F

(I) = 0 for (44) if and only if (45) holds.
7The minimizer in (7) is given by a similar expression but replacing d with dε = d/(1− εn).
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Table 1
Convergence of the regularized minimizers for the case of a two dimensional elastic fluid and

data (47).

ε cε(uε) Eε,µ,η(uε) µ η

0.1 -2.92883e-05 11.3636 -2.22599 40
0.05 -4.85216e-06 11.3699 -2.19213 160
0.025 1.26299e-06 11.3717 -2.18469 160
0.0125 -2.08708e-06 11.3721 -2.18249 320
0.00625 4.99878e-06 11.3723 -2.17622 160

(a) Finite element mesh

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

(b) Computed minimizer

Fig. 1. Finite element mesh and computed minimizer for the case of an elastic fluid and a
spherical domain for the data (47).

energy values are approaching the exact energy 11.3750 in accordance with the result
in Theorem 11, to within the convergence tolerances in the gradient flow and penalty-
multiplier iterations and finite element approximations. In Figure 1 we show the
initial finite element mesh and final computed deformation corresponding to ε =
0.00625. The hole (which is not circular) inside the computed deformation satisfies
the constraint of having area V = π(0.15)2 with an error of the order of O(10−7).

For the stored energy corresponding to an elastic fluid, it is shown in [18] that
the volume derivative at the matrix A is given by −h′(detA). For the data (47)
we get a value of −2.2367 for the volume derivative. If we repeat the calculation in
Table 1 corresponding to ε = 0.00625 but with prescribed area V = π(0.01)2, we get
a multiplier value upon convergence of −2.2375, which approximates quite well the
exact volume derivative to within the convergence tolerances.

The incompressible case of our problem corresponds to the case in which det∇u
is set to one in the h term of (10), and we minimize in (6) subject to the additional
constraint of det∇u = 1. In this case, for Ω = B1(0) and A = λI, assuming that the
minimizer uV is radial,8 then uV (x) = r(‖x‖) x

‖x‖ where

r(R) =
n
√
Rn + λn − 1, λn = 1 + cnV , V =

ωn
n
cnV .(48)

8See [22] for conditions under which a minimizer is radial.
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Fig. 2. Graph of the determinant of the last approximate minimizer in the incompressible limit
case.

(Note that the boundary displacement λ is completely determined by the volume
constraint parameter V .) Our next simulation is for what is called the incompressible
limit. In particular, we consider the stored energy function (10) in which

h(d) = c1d
e1 + c2d

−e2 + k(d− 1)2,(49)

where c1, c2 ≥ 0, e1, e2 > 0, and k ≥ 0 is a “large” parameter. The parameters for
the simulations (not including k) were taken to be

n = 2, κ = 1, q = 1.5, c1 = 1, e1 = 2, e2 = 1, cV = 0.5.

The energy of the discrete version of (48) is given approximately by 16.6089. In
Table 2 we show the results obtained by solving the nearly incompressible problem
(7) (using (49) in (10)) via the regularized method (with ε = 0.05) for increasing
values of k. The results in columns three and four in Table 2 show that both the en-
ergy of the incompressible exact solution (48) and the incompressibility condition are
approximated quite well to within the discretization and convergence tolerances. In
Figure 2 we show a graph of the determinant of the computed approximate minimizer
corresponding to the last line in Table 2.

Table 2
Results obtained in the incompressible limit case.

k cε(uε) Eε(uε) ‖det∇uε − 1‖1
10 9.71729e-05 16.6068 6.8198e-03
100 1.53748e-05 16.6074 9.20077e-04
1000 6.51531e-07 16.6075 9.47614e-05

5. Final comments. In [18, Proposition 6.1] the authors introduced a numerical
scheme for the solution of (6) based on approximating the original constrained problem
by a sequence of regularized constrained problems over punctured domains. They
anticipated without proof the convergence of the corresponding regularized minimizers
to a solution of (6) as ε ↘ 0. The result in Theorem 11 fills that gap. Moreover,
the regularized constrained problems over punctured domains are solved numerically
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via a penalty-multiplier technique that leads to a more stable numerical scheme for
this internal iteration, as compared to the standard quadratic penalty method. This
is the case as in general one achieves convergence in the penalty-multiplier method
without having to make the penalty parameter excessively large, which could lead to
numerical ill-conditioning.

Let µε(A, V ) be the multiplier in Theorems 6 and 8. By combining Theorems 6
and 14 we get that (cf. (40))

G(A) = lim
V→0

lim
ε→0

µε(A, V ).(50)

Thus the computation of µε(A, V ) for progressively smaller values of V, ε leads to
a numerical scheme for approximating the volume derivative G(A), perhaps more
robust than the one employed in [18] based on difference quotients.

The set

F = {A : G(A) = 0, A = diag(λ1, . . . , λn), λi > 0, 1 ≤ i ≤ n}

is called the fracture surface associated to the stored energy function W . In [18] the
authors give justifications for the interpretation of F as the boundary of the set of
boundary displacement matrices leading or inducing to cavitation as defined in [1].
Let

FεV = {A : µε(A, V ) = 0, A = diag(λ1, . . . , λn), λi > 0, 1 ≤ i ≤ n} .(51)

Note that for the matrices in FεV , the corresponding minimizer uε produces a stress-
free inner cavity of volume V (cf. (19c)). It follows from (50) that the computation of
the sets FεV in (51) for progressively smaller values of V, ε leads to a numerical scheme
for approximating the fracture surface F .

This method for approximating F in a certain sense generalizes to the nonradial
case the inverse method proposed in [17] for computing the critical λc in the radial
case. This is so because in the method proposed in [17], when one specifies the
cavity radius r(0) of a radial deformation of an ε punctured ball, we are specifying
the volume of the cavity which is spherical in that case. Then one determines the
boundary displacement λ for which the radial minimizer has the proposed cavity
radius and zero Cauchy stress in the inner cavity. In the present context, computing
FεV is equivalent to specifying the volume of the cavity and then determining the
boundary deformation matrices A that lead to solutions of (7) that produce a stress-
free cavity, not necessarily spherical, with the specified volume. Contrary to the radial
case in which there is only one critical value of λc, in the nonradial case F is in general
an n− 1 dimensional surface.
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