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Abstract. We study the displacement boundary value problem of minimising the total energy
E(u) stored in a nonlinearly elastic body occupying a spherical domain B in its reference configura-
tion over (possibly discontinuous) radial deformations u of the body subject to affine boundary data
u(x) = λx for x ∈ ∂B. For a given value of λ, we define what we call the radial volume derivative
at λ, denoted G(λ), which measures the stability or instability of the underlying homogeneous defor-
mation uh

λ(x) ≡ λx to the formation of holes. We give conditions under which the critical boundary
displacement λcrit for radial cavitation is the unique solution of G(λ) = 0. Moreover, we prove that
the radial volume derivative G(λ) can be approximated by the corresponding volume derivative for
a punctured ball Bε, containing a pre–existing cavity of radius ε > 0 in its reference state, in the
limit ε → 0 and we use this to propose a numerical scheme to determine λcrit. We illustrate these
general results with analytical and numerical examples.
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1. Introduction. Cavitation (i.e., the formation of holes) is a commonly ob-
served phenomenon in the fracture of polymers and metals (see [2]). In his seminal
paper [1], Ball formulated a variational problem, in the setting of nonlinear elasticity,
for which the energy minimising radial deformations of (an initially solid) ball formed
a cavity at the centre of the deformed ball when the imposed boundary loads or dis-
placements were sufficiently large. Following this paper there have been numerous
studies of aspects of the problem of radial cavitation: some on analytical properties
(see, e.g., [21], [16], [11]) and others relating to specific stored energies (a helpful
overview is contained in [5]). Subsequent studies, e.g., of [12], [17], [10], [3] have ad-
dressed general analytic questions of existence of cavitating energy minimisers in the
non–symmetric case. Furthermore, works such as Abeyaratne and Hou [6], Lopez-
Pamies et al. [8, 9], Huang et al. [7], Tvergaard et al. [22] have proposed methods to
approximate the onset of cavitation in non-symmetric situations. A new approach for
determining the onset of cavitation for non-symmetric boundary conditions, which is
based on the method presented in the current paper, is given in [14].

A central problem in the general nonsymmetric case is to identify the set of
affine displacement boundary conditions for which a corresponding energy minimiser
produces holes. In [14], the authors introduce a notion of a derivative of the energy
functional with respect to hole formation and conjecture that the zero set of this
derivative corresponds to the boundary of the set of matrices which, when used to
define affine displacement boundary data, result in a discontinuous energy minimiser.
The current paper considers a radial version of this conjecture and we prove that the
conjecture is true in this case.

In common with a number of the cited works above, and to present the underlying
mathematical structure, we restrict attention in the current study to changes in the
bulk energy due to cavitation and do not include cavity initiation energy or effects
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due to surface energy, cavity contents etc., though of course such effects may play an
important role in any given application (and may also affect the onset of cavitation
if included)1.

To introduce the results in more detail, first consider a nonlinear hyperelastic
body occupying the unit ball B = {x ∈ Rn | ‖x‖ < 1}, n = 2, 3, . . . in its reference
state (the physically relevant cases being n = 2, 3).

The energy stored in the deformed body under a deformation u : B → Rn satis-
fying the local invertibility condition

det∇u(x) > 0 a.e. x ∈ B, (1.1)

is given by

E(u) =

∫
B

W (∇u(x)) dx, (1.2)

whereW :Mn×n
+ → R is the stored energy function of the material andMn×n

+ denotes
the set of n× n matrices with positive determinant.

If W is frame-indifferent and isotropic, then it is well known that there is a
symmetric function Φ such that

W (F) = Φ(v1, . . . , vn), (1.3)

where v1, . . . , vn are the singular values of the matrix F.
A radial deformation of the body is a mapping urad : B → Rn of the form

urad(x) = r(R)
x

R
, R = ‖x‖ , (1.4)

where r : [0, 1] → R. In this case the stored energy (1.2) can be expressed in the form

E(urad) = ωnI(r) = ωn

∫ 1

0

Rn−1Φ

(
r′(R),

r(R)

R
, . . . ,

r(R)

R

)
dR, (1.5)

where Φ is as in (1.3) and ωn denotes the area of the unit sphere in Rn (ω2 = 2π,
ω3 = 4π).

The Euler-Lagrange equation associated with the energy functional (1.5) is the
radial equilibrium equation

d

dR

[
Rn−1Φ,1(r(R))

]
= (n− 1)Rn−2Φ,2(r(R)), (1.6)

where

Φ,1(r(R)) = Φ,1

(
r′(R),

r(R)

R
, . . . ,

r(R)

R

)
, etc.,

and Φ,i denotes the partial derivative of Φ with respect to its ith argument.
Example 1.1. A simple class of a polyconvex isotropic stored energy function to

which the results in this paper can be applied is given by

Φ(v1, . . . , vn) =
µ

p
(vp1 + · · ·+ vpn) + h(v1 · · · vn) for v1, . . . , vn > 0, (1.7)

1See, e.g., [1, page 608] for comments on including surface energy effects.
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where µ > 0, p ∈ (1, n) and h : (0,∞) → (0,∞) is a convex compressibility term

which satisfies h(d) → ∞ and h(d)
d → ∞ as d → 0,∞ respectively. (However, we

note that the methods in this paper apply to more general polyconvex stored energy
functions under varied hypotheses.)

In this paper we consider the displacement boundary value problem in which we
impose the condition

urad(x) = λx for x ∈ ∂B,

where λ > 0, and we correspondingly define the admissible set of deformations by

Aλ = {r ∈W 1,p((0, 1)) | r′(R) > 0, r(1) = λ, r(0) ≥ 0}, (1.8)

where 1 < p < n. If r ∈ Aλ satisfies r(0) > 0, then the corresponding deformation
(1.4) produces a hole of radius r(0) in the deformed ball.

We define the homogeneous deformation in Aλ (corresponding to the homoge-
neous deformation uh

λ(x) ≡ λx of the ball) by

rhλ(R) ≡ λR,

and we seek to identify the set of all λ for which this homogeneous deformation is
no longer the global minimiser of the energy on Aλ. We correspondingly define the
unstable set of boundary strains by

U = {λ | I(r) < I(rhλ) for some r ∈ Aλ}. (1.9)

There has been much previous work on radial cavitation from which it is known
(see, e.g, [1], [21], [16]) that there exists a critical value λcrit such that

U = (λcrit,∞).

In this paper we give an alternative characterisation of the unstable set of bound-
ary strains U which we then use as the basis for a numerical method to evaluate ∂U for
a number of energy functions. This characterisation is based on the approach given
in [14] and is motivated in part by calculations of Varvaruca [23]. We first define the
set of deformations

Aλ,c = {r ∈ Aλ | r(0) = c}, (1.10)

which produce a hole of a fixed radius c > 0 and volume V = ωn

n c
n. Next define the

intermediate functional2

F (λ, c) = inf
r∈Aλ,c

E(urad)− E(uh
λ)

V
= inf

r∈Aλ,c

I(r)− I(rhλ)

cn/n
. (1.11)

A straightforward scaling argument shows that F (λ, c) is a monotone increasing func-
tion of c and thus the following limit

G(λ) = inf
c>0

F (λ, c) = lim
c↘0

F (λ, c), (1.12)

2Note that V = ωncn

n
is the volume of the cavity produced by the radial deformation urad when

r(0) = c.
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exists. We call G(λ) the radial volume derivative of the energy functional (1.5) at λI.
This expression first appears in [23] where it is calculated in the class of deformations

of a ball for Φ(v1, v2, v3) =
(
v21 + v22 + v23

)p/2
, p ∈ [2, 3).

Since the units of the volume derivative are energy per unit volume, if positive it
measures the amount of energy required to force open a hole of unit volume in the
given material. If negative, the volume derivative measures the corresponding amount
of energy liberated by opening up such a hole.

We will show in Section 5 (see Remark 5.3) that −G(λ) corresponds to the lim-
iting value of the radial Cauchy stress on the cavity surface for an extended, non-

homogeneous, solution r(R) of (1.6) on (0,∞) and satisfying r(R)
R → λ as R→ ∞.

Remark 1.2. The results of [16] are easily adapted to prove that a minimiser of
I on Aλ,c exists for each c > 0 and we denote such a minimiser by rc. In this case,
the expression (1.12) is then given by

G(λ) = lim
c↘0

I(rc)− I(rhλ)

cn/n
. (1.13)

We define the stable set of boundary strains by

S = {λ | G(λ) > 0},

and it follows from previous work on cavitation that

S = (0, λcrit).

We show, under suitable assumptions on Φ, that {λcrit} = ∂U = {λ | G(λ) = 0}. It

turns out that in this radial problem, the criterion G(λ) = 0 exactly coincides with
a condition to determine λcrit introduced by Stuart in [21], derived using a shooting
argument. In particular, Stuart shows that for a cavitating solution r(R) of (1.6)
on (0, 1] with r(1) = λ and 0 < α := r′(1) < λ, the radial Cauchy stress on the
cavity surface is a monotone increasing function of the radial boundary stretch α.
In contrast, our approach using the volume derivative yields the same criterion by
using the minimum change in energy (per unit volume of cavity formed) due to cavity
formation (see (1.11), (1.12)).

The structure of the paper is as follows. We first gather in Section 3 some basic
results concerning the properties of cavitating or non–homogenous solutions of the
radial equilibrium equation (1.6). In Section 4 we derive results on cavitating solu-
tions with the inner cavity radius c prescribed. In particular, we study their limiting
behavior as c→ 0. These results are used in Section 5 to actually compute the volume
derivative (1.12) and to show that the vanishing of the volume derivative coincides
with the condition introduced in [21] for λcrit.

In Section 6 we regularise the problem of minimizing (1.5) over Aλ,c in the volume
derivative (1.12) or (1.13), by replacing the solid ball B by a punctured ball Bε with
a pre-existing hole of radius ε > 0 in its reference configuration. Specifically, we prove
that if we correspondingly write

Iε(r) =

∫ 1

ε

Rn−1Φ

(
r′(R),

r(R)

R
, . . . ,

r(R)

R

)
dR,

and replace the admissible sets (1.8), (1.10) by

Aε
λ = {r ∈W 1,p((ε, 1)) | r′(R) > 0, r(1) = λ, r(ε) ≥ 0},
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Aε
λ,c = {r ∈ Aε

λ | r(ε) = c},

and the expression (1.11) by

F ε(λ, c) = inf
r∈Aε

λ,c

Iε(r)− Iε(rhλ)

cn/n
,

then, for each λ > 0, F ε(λ, c) converges to G(λ) as ε, c → 0 provided that we choose
ε = o(c) (so that c

ε → ∞ as c → 0). Finally, in Section 7 we show how the volume
derivative can be used as the basis for a numerical method for approximating λcrit
and we give some numerical examples of the use of this method.

2. Hypotheses on the stored energy function. We assume throughout this
paper that the stored energy function Φ ∈ C3(Rn

++), where Rn
++ = {(v1, . . . , vn) | vi >

0, i = 1, . . . , n} and will refer to the following hypotheses on Φ:
(H1) (Tension-extension inequality) For each i = 1, . . . , n,

Φ,ii(v1, . . . , vn) > 0, for all (v1, . . . , vn) ∈ Rn
++. (2.1)

(H2) (Baker-Ericksen Inequalities) For each (v1, . . . , vn) ∈ Rn
++, i, j = 1, . . . , n,

i 6= j and vi 6= vj :

viΦ,i(v1, . . . , vn)− vjΦ,j(v1, . . . , vn)

vi − vj
> 0. (2.2)

(H3) For each v > 0 and i = 1, . . . , n,

Φ,1(a, v, . . . , v) → +∞ as a→ ∞, (2.3a)

and

Φ,1(a, v, . . . , v) → −∞ as a→ 0+. (2.3b)

(H4) For each (v1, . . . , vn) ∈ Rn
++, i, j = 1, . . . , n , i 6= j and vi 6= vj :

Φ,i(v1, . . . , vn)− Φ,j(v1, . . . , vn)

vi − vj
+Φ,ij(v1, . . . , vn) ≥ 0.

(H5) Define

R(q, v) =
qΦ,1(q, v, . . . , v)− vΦ,2(q, v, . . . , v)

q − v
, q 6= v.

There exist constants A,B > 0 and 0 < β < n− 1 such that:

(i) 0 ≤ R(q, v) ≤ A+Bvβ , for all 0 < q ≤ v, (2.4a)

and

(ii)
∂R

∂q
(q, v) ≥ 0, for all 0 < q ≤ v. (2.4b)

(H6) For all (v1, . . . , vn) ∈ Rn
++:

(i) Φ(v1, . . . , vn) ≥ h(v1 · · · vn) where h(d) → ∞ and h(d)
d → ∞ as d→ 0,∞

respectively.
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(ii) there exists ε0 > 0 and K > 0 such that

|viΦ,i(v1, tv2, . . . , tvn)| ≤ K[Φ(v1, . . . , vn) + 1],

whenever |t− 1| < ε0, and i = 2, . . . , n.
Example 2.1. Consider the class of stored energy functions

Φ(v1, . . . , vn) =
n∑

i=1

φ(vi) +
n∑

i,j=1

i<j

ψ(vivj) + h(v1 · · · vn). (2.5)

It follows now that:
(i) Φ satisfies (H1) if all of φ, ψ, h ∈ C2((0,∞)) are convex and at least one of

φ′′, ψ′′, h′′ is strictly positive on (0,∞).
(ii) Φ satisfies (H2) if vφ′(v), tψ′(t) are both increasing functions at least one of

which is strictly increasing (e.g. if φ′(v), φ′′(v) > 0 for all v and ψ′(t), ψ′′(t) >
0 for all t).

(iii) If h(d) → ∞ as d → ∞ and h(d) → ∞ as d → 0, then Φ satisfies (H3).
Moreover, if φ and ψ are nonnegative, then (i) in (H6) holds.

(iv) If φ, ψ, h ∈ C2((0,∞)) are convex, then Φ satisfies (H4).
(v) Condition (H5) is satisfied, for example, by choosing φ(t) = tp and ψ(t) = tα,

with p ∈ [1, n), α ∈ [1, n2 ) and any choice of the function h. If in addition,
h(d) = Cdγ +Dd−δ with C,D > 0 and γ, δ ≥ 1, then (ii) in (H6) holds.

3. Properties of solutions of the radial equilibrium equation. In this
section we recall some basic properties of solutions of the radial equilibrium equation
(1.6). Note that by the symmetry of Φ on its arguments, we have that for each λ > 0,
the homogeneous deformation rhλ(R) ≡ λR is always a solution of (1.6).

Definition 3.1. We say that r ∈ C2((0, R0)), R0 > 0 is a cavitating solution of
(1.6) if r(0) = limR→0 r(R) = c > 0.

The next two results present a monotonicity property of the tangential strain and
a convexity/concavity property of solutions of (1.6).

Proposition 3.2 ([1], [16]). Assume that (H1) holds. Any non–homogeneous
solution r(R) of the radial equilibrium equation satisfies either

i) r′(R) < r(R)
R , or,

ii) r′(R) > r(R)
R ,

on any maximal interval of existence. Hence r(R)
R is a monotonic function on any

interval of existence. In particular, if r(R) is a cavitation solution on (0, 1], so that
r(0) = c > 0, it then follows that (i) holds for all R ∈ (0, 1].

Corollary 3.3 ([1], [16]). Assume that (H1), (H4) hold. For any non–homogeneous
solution r of the radial equilibrium equation:

i) r′′(R) ≥ 0 if r′(R) < r(R)
R , or,

ii) r′′(R) ≤ 0 if r′(R) > r(R)
R ,

on any interval of existence.
The following monotonicity property of the radial Cauchy stress for solutions of

(1.6), is a straightforward consequence of Proposition 3.2 and the hypotheses on Φ.
Proposition 3.4. Assume that (H1), (H2) hold. Let r(R) be any non–homogeneous

solution of the radial equation (1.6). Then the radial Cauchy stress

T (r(R)) =

(
R

r(R)

)n−1

Φ,1(r(R)), (3.1)
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is monotone increasing (respectively decreasing) if r satisfies r′(R) < r(R)
R (respectively

r′(R) > r(R)
R ) on any interval of existence. Hence limR→0 T (r(R)) exists (as an

element of R ∪ {∞,−∞}) for any solution r of the radial equation on (0, 1).

The next result (cf. [16, Proposition 1.6]) demonstrates in particular that every
extended solution of the radial equilibrium equation converges asymptotically to a
homogeneous solution.

Proposition 3.5 (Asymptotic behaviour of solutions). Assume that (H1), (H2)
and (H4) hold. Then every cavitating solution r ∈ C2((0, 1]) of the radial equilibrium
equation (1.6) extends to a solution of the equation on (0,∞) and there exists µ ∈
(0,∞) such that r(R)

R ↘ µ as R→ ∞.

Conversely, the next result shows that every homogeneous deformation is achiev-
able as the asymptotic limit of a non-trivial solution of the radial equation.

Proposition 3.6. Assume that (H1)-(H4) hold. For each λ ∈ (0,∞), there exists

a nonhomogeneous solution of the radial equation (1.6) on (0,∞) with r(R)
R → λ as

R→ ∞.

Proof. The proof of this result follows on first writing the radial equilibrium
equation in the form (3.6) and solving it with initial condition g(λ) = λ to obtain
a solution g(v) defined for v ∈ [λ, λ + δ), δ > 0. Now, take a point µ ∈ (λ, λ + δ)
and solve the initial value problem for the radial equation, in the form (1.6), for
R ∈ (0, 1] with initial conditions r(1) = µ, r′(1) = g(µ). (It follows, by adapting the
continuation arguments of [21], that such a solution exists for R ∈ (0, 1].) Hence, by
construction, this solution also extends to a solution of (1.6) for R ∈ (0,∞) with the
required asymptotic behaviour.

The next few results pertain to the existence of cavitating solutions of the radial
equilibrium equations with specific properties. For illustration and for the purposes
of this paper we state specific hypotheses, though the conclusions of the propositions
hold under a variety of hypotheses and we refer to the works [1], [16], [10], [21] for
examples of other such hypotheses.

Proposition 3.7 (Existence of cavitating solutions). Assume that (H1)-(H4)
and (H6) hold. Then, for each choice of λ > c > 0, there exists a minimiser of (1.5)
on (1.10) which corresponds to a solution rc ∈ C2((0, 1]) of (1.6) satisfying

rc(1) = λ and rc(0) = c. (3.2)

Remark 3.8. The minimizers from the proposition have in general nonzero radial
Cauchy stress (cf. (3.1)) on the cavity surface.

The energy of radial cavitating solutions. The following identity (cf. [1, Page
585]) which is satisfied by solutions of (1.6), will be central to the arguments that we
employ in calculating the volume derivative:

d

dR

[
Rn

(
Φ+

(
r(R)

R
− r′(R)

)
Φ1

)]
= nRn−1Φ, (3.3)

where the arguments of Φ and Φ1 are (r′(R), r(R)/R, . . . , r(R)/R).

Proposition 3.9. Suppose that (H1) holds and that rc is a cavitating solution
satisfying

rc(1) = λ, rc(0) = c > 0, (3.4)
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with limiting radial Cauchy stress on the cavity surface given by

lim
R→0+

T (rc(R)) = Kc for some Kc ∈ R.

Then it follows from (3.3) that the energy of such a solution is finite and given by

I(rc) =
1

n
lim
δ→0

[
Rn

(
Φ+

(
rc(R)

R
− r′c(R)

)
Φ1

)]∣∣∣∣R=1

R=δ

,

=
1

n
[Φ(r′c(1), λ, . . . , λ) + (λ− r′c(1))Φ1(r

′
c(1), λ, . . . , λ)−Kcc

n] .

Proof. The result follows from slight modifications of the proof of [16, Proposition
1.13] to allow for the fact that the limiting value of the radial Cauchy stress on the
cavity surface can be non-zero.

The results of [1], [16] (see also [10]) give a variety of conditions under which
(for sufficiently large λ) there exist energy minimising radial deformations which are
cavitating solutions with zero radial Cauchy stress on the cavity surface. Given P ∈
R, if we replace the stored energy function Φ by Φ̃(v1, . . . , vn) = Φ(v1, . . . , vn) −
Pv1 · · · vn, then the same arguments applied to Φ̃ yield a cavitating deformation r̃
for the original stored energy function Φ which satisfies T (r̃(0)) = P . (This follows
since T̃ (r(R)) = T (r(R)) − P and since the extra term added to Φ to form Φ̃ is a
null lagrangian and hence does not change the radial equilibrium equation.) Thus we
have the following:

Corollary 3.10. For each P ∈ R there exists a cavitating solution of the radial
equation (1.6) with radial Cauchy stress equal to P on the cavity surface.

Alternative form of the radial equilibrium equation. We discuss now a change of
variables employed in [21] to recast the radial equation (1.6) for non homogeneous
solutions as a first order equation using the tangential stretch r

R as an independent
variable. For any nonhomogeneous solution r(R) of (1.6), define the new independent
variable v = r

R and write r′(R) as a new dependent variable g(v). (Note that Propo-
sition 3.2 ensures that this change of independent variable is one-to-one.) In this case
equation (1.6) takes the form

d

dv
Φ,1(g(v), v, . . . , v) = (n− 1)

[
Φ,2(g(v), v, . . . , v)− Φ,1(g(v), v, . . . , v)

g(v)− v

]
. (3.5)

Expanding (3.5) we obtain

dg

dv
=

−(n− 1)

Φ,11(g(v), v, . . . , v)

[
Φ,12(g(v), v, . . . , v)

+
[Φ,1(g(v), v, . . . , v)− Φ,2(g(v), v, . . . , v)]

g(v)− v

]
. (3.6)

Hence, in particular, by (H1) and (H4), it follows that dg
dv < 0 along solutions. For

later use we note that the radial Cauchy stress in the new variable is given by

T̃ (v) =
1

vn−1
Φ,1(g(v), v, . . . , v), (3.7)

and satisfies

dT̃

dv
= −(n− 1)

1

vn

(
vΦ,2(g(v), v, . . . , v)− g(v)Φ,1(g(v), v, . . . , v)

v − g(v)

)
. (3.8)
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Remark 3.11. It is interesting to note that the radial equation (3.6) (which
appears in [1], [21]) converts the second order radial equilibrium equation (1.6) into
a first order differential equation with respect to the independent variable v. This
observation can be useful in plotting the corresponding phase portrait of solutions.

Finally we close this section by stating some properties of the curves of constant
Cauchy stress in the plane (v, g) of (3.6).

Proposition 3.12. For each P ∈ R, define the curve of constant radial Cauchy
stress σP : (0,∞) → (0,∞) by

Φ,1(σP (v), v, . . . , v)

vn−1
= P for all v > 0. (3.9)

Then σP ∈ C1((0,∞)) and is defined for all v > 0.
Proof. Fix P , then for each v0 ∈ (0,∞), hypothesis (H3) guarantees that there

exists σ > 0 satisfying v1−nΦ,1(σ, v, . . . , v) = P (and this σ is unique by (H1)). By
(H1) and the Implicit Function Theorem, a local solution σ(v) of (3.9) exists for
v ∈ (v0 − ε, v0 + ε), for some ε > 0. The global existence of σp satisfying (3.9) now
follows from this local result by (H1) and the arbitrariness of v0.

Example 3.13. Suppose that the stored energy function Φ is as in (2.5) but with
ψ ≡ 0 and φ(t) = µtp for some p ∈ [1, n) so that

Φ(v1, . . . , vn) = µ

n∑
i=1

vpi + h(v1 · · · vn). (3.10)

Suppose further that Φ satisfies (H1)–(H5). (See Example 2.1.) Then any constant
Cauchy stress curve σP (v) satisfies

σP (v) → 0 and σP (v)v
n−1 → d as v → ∞ where h′(d) = P. (3.11)

Finally, we note for later use that

lim
v→∞

1

vn
[Φ(σP (v), v, . . . , v)− σP (v)Φ,1(σP (v), v, . . . , v)] = 0, (3.12)

for this class of stored energy functions.

4. Properties of cavitating solutions as c → 0. In this section we gather
results on the limiting behaviour of cavitating solutions rc satisfying

rc(1) = λ, rc(0) = c, (4.1)

(for fixed λ) in the limit as c → 0. The first result demonstrates that these solu-
tions converge uniformly to the corresponding homogeneous deformation. However,
a perhaps at first sight surprising feature, is that the convergence of the strains of
the cavitating deformations is to that of a non-homogeneous deformation due to a
boundary layer effect near the cavity surface (see Proposition 4.4).

Proposition 4.1. Let Φ satisfy (H1)-(H4). Then for each λ > 0 we have that
rc → rhλ uniformly on [0, 1] as c→ 0.

Proof. Define φ(R) = rc(R)−λR. Then φ′′(R) = r′′(R) ≥ 0 on (0, 1) by Corollary
3.3, part (i). Also

φ′(1) = r′c(1)− λ = r′c(1)− rc(1) < 0,
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by Proposition 3.2, part (i). Hence φ′(R) < 0 for R ∈ (0, 1) which implies that φ is
monotone decreasing on [0, 1]. Since φ(1) = 0, we get that φ(R) > 0 on [0, 1) and
that φ(0) = c = maxR∈[0,1] φ(R). Hence

0 ≤ φ(R) = rc(R)− λR ≤ c for R ∈ [0, 1],

and the result follows.
The next result notes a monotonicity property of the cavitating solutions and

follows from a uniqueness theorem for radial solutions on shells [16, Theorem 2.5]
which implies in particular that the graphs of radial cavitating solutions r ∈ C2((0, 1))
satisfying r(1) = λ cannot intersect on (0, 1).

Proposition 4.2. Let (H1) hold and let 0 < c1 < c2. If rc1 , rc2 ∈ C2((0, 1]) are
cavitating solutions satisfying rci(0) = ci, rci(1) = λ, for i = 1, 2, then

rc1(R) < rc2(R) for R ∈ [0, 1). (4.2)

Suppose further that (H2) and (H4) hold. Then by Proposition 3.5, each rci can
be extended to (0,∞) as a solution of the radial equation (1.6), and the extended
functions satisfy

rc1(R) > rc2(R), for R ∈ (1,∞). (4.3)

Our next result turns out to be crucial for some of the main results in this and
the next section. It establishes another monotonicity property, this time for the radial
strains at R = 1, and their convergence and rate as c↘ 0.

Lemma 4.3. Suppose that (H1), (H4) hold and assume that cavitating solutions
satisfying rc(1) = λ, rc(0) = c exist for all c > 0. If 0 < c1 < c2 then

r′c2(1) < r′c1(1) < λ, (4.4)

and r′c(1) ↗ λ as c↘ 0. Moreover, if (2.4b) holds, then λ−r′c(1) = O(cn) as c↘ 0.
Proof. The first inequality in (4.4) follows from the ordering property given in

the previous proposition, while the last one follows from Proposition 3.2, part (i). In
addition, from Corollary 3.3, part (i), we have that r′′c (R) ≥ 0. Hence rc is convex
and so

rc(0) ≥ rc(1) + (0− 1)r′c(1),

and hence

c ≥ λ− r′c(1) > 0,

from which it follows that r′c(1) ↗ λ as c↘ 0.
For the second part of the proof we use the change of variables (see [1]) ρ = Rn,

u(ρ) = rnc (R) for R ∈ [0, 1]. Then

u′(ρ) =
du

dρ
=

(
d
dRr

n
c (R)
dρ
dR

)∣∣∣∣∣
R=ρ

1
n

=

(
r′c(R)

(
rc(R)

R

)n−1
)∣∣∣∣∣

R=ρ
1
n

.

It follows from (2.4b) (see [21]) that u′′(ρ) ≥ 0. Using the convexity of u it now follows
that

u(0) ≥ u(1) + (0− 1)u′(1),
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and hence

cn

λn−1
≥ λ− r′c(1) > 0,

from which it follows that λ− r′c(1) = O(cn) as c↘ 0.
Despite the uniform convergence of the cavitating solutions of (1.6) to the ho-

mogeneous deformation proved in Proposition 4.1, the next result demonstrates that,
when using the representation of the radial equation in the form (3.6), the convergence
of the corresponding solution strains is to those of a non-homogeneous deformation.

Theorem 4.4. Let (H1), (H4) hold. Fix λ > 0 and for each c ∈ (0, λ) let rc be a
cavitating solution satisfying rc(1) = λ, rc(0) = c. Let gc(v) denote the corresponding
function that solves (3.5) defined on [λ,∞). Then for each v ∈ [λ,∞),

gc(v) → g0(v) as c→ 0,

where g0(v) is the unique solution of (3.5) satisfying g0(λ) = λ.
Proof. This follows from the continuous dependence of solutions to the initial

value problem for (3.5) once we prove that gc(λ) → g0(λ) as c→ 0. This fact follows
from Lemma 4.3 since gc(λ) = r′c(1).

To close this section we state the equivalent of the monotonicity result in Lemma
4.3, but for solutions of (3.5).

Theorem 4.5. Let λ > 0, 0 < c1 < c2 and let rc1 and rc2 be cavitating solu-
tions satisfying rci(1) = λ, rci(0) = ci, i = 1, 2. Then the corresponding solutions
g1(v), g2(v) of (3.5) defined on [λ,∞) satisfy g1(v) > g2(v) for all v ∈ [λ,∞).

Proof. This fact follows from Lemma 4.3 since gc(λ) = r′c(1), and the uniqueness
of solution to the initial value problem associated to (3.5).

5. The radial volume derivative. We recall that the radial volume derivative
is defined by

G(λ) = inf
c>0

F (λ, c) = lim
c↘0

F (λ, c), (5.1)

where

F (λ, c) = inf
r∈Aλ,c

I(r)− I(rhλ)

cn/n
, (5.2)

and

Aλ,c = {r ∈ Aλ | r(0) = c},

is the set of deformations in Aλ (see (1.8)) which produce a hole of a fixed radius
c > 0.

From the definition (5.2) and Proposition 3.9, we have that

F (λ, c) =
Φ(r′c(1), λ, . . . , λ) + (λ− r′c(1))Φ1(r

′
c(1), λ, . . . , λ)− Φ(λ, . . . , λ)

cn
−Kc .

Next note that

Φ(λ, . . . , λ) = Φ(r′c(1), λ, . . . , λ) + (λ− r′c(1))Φ1(r
′
c(1), λ, . . . , λ)

+
1

2
Φ,11(ξ, λ, . . . , λ)(λ− r′c(1))

2,
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where ξ ∈ (λ, r′c(1)). Thus we can write

F (λ, c) = − 1

2cn
Φ,11(ξ, λ, . . . , λ)(λ− r′c(1))

2 −Kc .

It now follows from Lemma 4.3 that the first term on the right hand side converges
to zero as c→ 0 and so the volume derivative (5.1) is given by

G(λ) = − lim
c→0

Kc. (5.3)

The next result evaluates the above limit.
Lemma 5.1. Let (H1), (H2) and (H5)(i) (see (2.4a)) hold and suppose that for

each c ∈ (0, 1), rc ∈ C2((0, 1)) is a radial cavitating solution satisfying rc(1) = λ,
rc(0) = c. Then

Kc → K0 as c↘ 0, (5.4)

where

K0 =
Φ,1(λ, . . . , λ)

λn−1

−(n− 1)

∫ ∞

λ

g0(v)Φ,1(g0(v), v, . . . , v)− vΦ,2(g0(v), v, . . . , v)

vn(g0(v)− v)
dv, (5.5)

and g0(v) is the unique solution of (3.5) satisfying g0(λ) = λ.
Proof. We recall from Proposition 3.9 that:

Kc = lim
R→0+

T (rc(R)).

Using v = rc(R)/R as the independent variable and writing r′c as a function gc(v), we
get that

Kc = lim
v→∞

T̃ (v),

where T̃ is given by (3.7). It follows now from (3.7), (3.8) that

Kc =
Φ,1(gc(λ), λ, . . . , λ)

λn−1
+

∫ ∞

λ

dT̃

dv
dv,

=
Φ,1(gc(λ), λ, . . . , λ)

λn−1

−(n− 1)

∫ ∞

λ

gc(v)Φ,1(gc(v), v, . . . , v)− vΦ,2(gc(v), v, . . . , v)

vn(gc(v)− v)
dv. (5.6)

This together with Theorem 4.4, (2.4a), and the Dominated Convergence Theorem
completes the proof.

Combining Lemmas 4.3 and 5.1, and using equation (5.3), we obtain the next
result.

Proposition 5.2. Assume that (2.4a) and (2.4b) hold. Then for the radial
functional (1.5) we have that

G(λ) = −K0.
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Thus G(λ) = 0 precisely when

Φ,1(λ, . . . , λ)

λn−1
− (n− 1)

∫ ∞

λ

g0(v)Φ,1(g0(v), v, v)− vΦ,2(g0(v), v, v)

vn(g0(v)− v)
dv = 0, (5.7)

which coincides with the condition for the critical boundary displacement given by
Stuart in [21].

Remark 5.3. It follows from Lemma 5.1 and (3.8) that we can interpret −G(λ) =
K0 as the limiting value of the radial Cauchy stress on the cavity surface for a cav-
itating solution r(R) on (0,∞) of the radial equilibrium equation (1.6) that satisfies
r(R)
R → λ as R→ ∞.

Example 5.4. We consider the special case of (2.5) in which:

Φ(v1, . . . , vn) = c1

n∑
i=1

vi + c2
∑
i<j

vivj + h(v1 · · · vn). (5.8)

For this stored energy function one can solve in closed form the equilibrium equation
(1.6). (See [4].) The general solution is given by:

rn(R) = K1R
n +K2,

where r′(R)(r(R)/R)n−1 = K1. The constants K1,K2 are chosen to satisfy the bound-
ary conditions r(0) = c and r(1) = λ, which yields that:

K1 = λn − cn, K2 = cn.

With these values for the constants K1,K2, and provided that the function h satisfies
(iii) of Example 2.1, the function r above is the global minimizer of I(·) over Aλ,c.
The energy of r is given by (c.f. (3.3)):

nI(r) = nc1λ+ nc2λ
2 + h(K1),

and that of rhλ by:

nI(rhλ) = nc1λ+ nc2λ
2 + h(λn).

It follows now that:

G(λ) = lim
c→0+

I(r)− I(rhλ)

cn/n

= lim
c→0+

h(λn − cn)− h(λn)

cn
= −h′(λn).

Thus G(λ) = 0 if and only if h′(λn) = 0, which is exactly the same condition obtained
in [4] for the criteria for the initiation of cavitation. This example can be generalized
to the case of non–radial deformations (see [14]).

6. Approximation by regularised problems. We now consider the regular-
ized cavitation problem in which the reference configuration B is replaced by a punc-
tured ball Bε with a pre-existing hole of radius ε > 0. We define the corresponding
energy of a radial deformation of the punctured ball by

Iε(r) =

∫ 1

ε

Rn−1Φ

(
r′(R),

r(R)

R
, . . . ,

r(R)

R

)
dR, (6.1)
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and we correspondingly replace the admissible sets (1.8), (1.10) by

Aε
λ = {r ∈W 1,p((ε, 1)) | r′(R) > 0, r(1) = λ, r(ε) ≥ 0}, (6.2)

Aε
λ,c = {r ∈ Aε

λ | r(ε) = c}. (6.3)

We next seek to approximate the expression (1.11) used in the definition of the radial
volume derivative by

F ε(λ, c) = inf
r∈Aε

λ,c

Iε(r)− Iε(rhλ)

cn/n
. (6.4)

Note that the Euler–Lagrange equation for (6.1) is still given by (1.6) for R ∈
(ε, 1). The following result follows from this fact and slight modifications to the results
in [16] for punctured balls, to account for the specification of rε(ε). The last statement
in the proposition follows from Theorem 4.5.

Proposition 6.1. Let (H1)-(H6) hold. Then for each ε ∈ (0, 1) and 0 < c <
λ there exists a unique solution rε of the radial equilibrium equation on (ε, 1) with
rε(ε) = c and rε(1) = λ. Each such solution extends to a solution r(R) of the radial
equation on (0, 1) if c ≥ λε. The extended solution satisfies r(0) ≥ 0 (with r(0) > 0
provided c > λε). Moreover, limR→0 T (r(R)) = P ∈ R and the limiting Cauchy stress
P is a monotonic function of the radial strain r′(1) ∈ (0, λ] on the outer boundary.

The next theorem is the equivalent of Theorem 4.4 but for punctured balls.

Theorem 6.2. Fix λ > 0 and for each ε ∈ (0, λ) let rε be a solution of (1.6) over
(ε, 1) satisfying rε(1) = λ, rε(ε) = c > λε. By the last proposition, each such solution
extends to a cavitation solution on (0, 1). Let gε(v) denote the corresponding function
that solves (3.5) and which is defined on [λ,∞). Then for each v ∈ [λ,∞),

gε(v) → g0(v) as c→ 0,

where g0(v) is the unique solution of (3.5) satisfying g0(λ) = λ (note that ε → 0 as
c→ 0).

Proof. This follows from the continuous dependence of solutions to the initial
value problem for (3.5) once we prove that gε(λ) → g0(λ) as c→ 0. This fact follows
from arguments analogous to those used in the proof of Proposition 4.1 since by
Corollary 3.3 it follows that r′′ε (R) ≥ 0 and hence

rε(ε) = c ≥ rε(1) + (ε− 1)r′ε(1) ≥ λ− r′ε(1) ≥ 0.

The required result now follows since gε(λ) = r′ε(1).

We now have the main result of this section, namely, the convergence of the
approximations (6.4) to the exact volume derivative.

Theorem 6.3. Suppose that the stored energy function Φ is of the form (3.10)
and that it satisfies (H1)-(H5). Then the expression (6.4) converges to the volume
derivative for the solid ball as c→ 0 provided that ε = o(c) as c→ 0.

Proof. By the conservation law (3.3), and writing r′ε(R) as a function gε(v),
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v = rε(R)
R , we obtain

F ε(λ, c) =
1

cn

[
Rn

(
Φ
(
r′ε,

rε
R
, . . . ,

rε
R

)
+
(rε
R

− r′ε

)
Φ1

(
r′ε,

rε
R
, . . . ,

rε
R

)
− Φ(λ, . . . , λ)

)]∣∣∣∣R=1

R=ε

=
1

cn
[Φ(r′ε(1), λ, . . . , λ) + (λ− r′ε(1))Φ,1(r

′
ε(1), λ, . . . , λ)− Φ(λ, . . . , λ)]

−
[
1

vn

(
Φ(gε(v), v, . . . , v)− gε(v)Φ,1(gε(v), v, . . . , v)

−Φ(λ, . . . , λ)

)]∣∣∣∣
v= c

ε

− T̃ (ε), (6.5)

where T̃ is given by (3.7) with g = gε. The proof now proceeds in three steps.
Step 1. Since ε = o(c), we may assume without loss of generality, that c ≥ λε. We use

the change of variables (see [1]) ρ = Rn and set u(ρ) = rnε

(
ρ

1
n

)
for R ∈ [ε, 1].

Then

u′(ρ) =
du

dρ
=

(
d
dRr

n(R)
dρ
dR

)∣∣∣∣∣
R=ρ

1
n

=

(
r′ε(R)

(
rε(R)

R

)n−1
)∣∣∣∣∣

R=ρ
1
n

,

and it follows from (2.4b) (see [21]) that u′′(ρ) ≥ 0. Hence

u(ε) ≥ u(1) + (ε− 1)u′(1).

Thus,

cn

λn−1
≥ λ− r′ε(1) > 0,

from which it follows that λ− r′ε(1) = O(cn) as c↘ 0 if ε = o(c). An exactly
analogous argument to that used in Section 5 (using expression (5.3)) now
shows that the first term in square brackets in expression (6.5) converges to
zero as c→ 0.

Step 2. We next prove that the second term in square brackets in (6.5) also converges
to zero as c→ 0. Let us recall that from (H5) and (3.8), we get that T̃ (v) is
decreasing. Thus it follows that

P2 ≡ T̃ (c/ε) ≤ T̃ (v) ≤ T̃ (λ), v ∈ [λ, c/ε).

Since gε(λ) < λ, we get from (H1) that:

T̃ (λ) =
1

λn−1
Φ,1(gε(λ), λ, . . . , λ) <

1

λn−1
Φ,1(λ, λ, . . . , λ) ≡ P1.

Hence

P2 ≤ T̃ (v) ≤ P1, v ∈ [λ, c/ε).

This inequality together with (H1) again, imply that

σP2(v) ≤ gε(v) ≤ σP1(v), v ∈ [λ, c/ε).
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Since the function

H(s, t) = Φ(s, t, . . . , t)− sΦ,1(s, t, . . . , t),

satisfies ∂H(s,t)
∂s = −sΦ,11(s, t, . . . , t) < 0 for s > 0, the above inequality

implies that

1

vn
H(σP1(v), v) ≤

1

vn
H(gε(v), v) ≤

1

vn
H(σP2(v), v) for v ∈ [λ, c/ε).

Next note that the two outermost terms in the above inequality converge to
zero as v → ∞ (by (3.12)). Finally, the result follows since c

ε → ∞ as c → 0
(since ε = o(c) by assumption).

Step 3. Finally, we prove that the remaining term in (6.5), namely T̃ (ε) converges to
(5.5) as c→ 0. This follows from an exactly analogous argument to that used
in the proof of Lemma 5.1 on using the convergence result for punctured balls
given in Theorem 6.2.

Remark 6.4. The hypothesis that ε = o(c) in the last theorem guarantees that
the tangential stretches on the deformed cavity surfaces of the punctured balls tend to
infinity (which is the value of the tangential stretch for the cavitating solution on the
cavity surface for the solid ball problem) as ε→ 0.

7. Numerical Results. In this section, we apply the approximation results of
Section 6 and discuss some of the numerical aspects of computing the critical boundary
displacement for cavitation using the volume derivative.

To numerically compute G(λ), one has to first approximate the minimum energy

Iε(rε) = infr∈Aε
λ,c
Iε(r),

in equation (6.4) for a given small c > 0 and ε = o(c). Next the difference quotient

Iε(rε)− Iε(rhλ)

cn/n
, (7.1)

gives an approximation to G(λ). For small c the computation of this difference quo-
tient is susceptible to cancelation of significant digits. Thus, in actual computations,
we do not make c extremely small to prevent such cancelations.

To approximate the minimum of

Iε(r) =

∫ 1

ε

Rn−1Φ

(
r′(R),

r(R)

R
, · · · , r(R)

R

)
dR, (7.2)

subject to r(ε) = c, r(1) = λ, and r′(R) ≥ 0 for R ∈ (ε, 1), we use the following
discretization. For m ≥ 1, let h = (1 − ε)/m and Ri = ε + ih, 0 ≤ i ≤ m. We
discretize Iε as follows

Iεh = h

m∑
i=1

(
Ri−1 +Ri

2

)n−1

Φ

(
ri − ri−1

h
,
ri−1 + ri
Ri−1 +Ri

, · · · , ri−1 + ri
Ri−1 +Ri

)
,

subject to r0 = c, rm = λ, and ri ≥ ri−1 for i = 1, . . . ,m. Since the hessian matrix of
Iεh is symmetric and tri–diagonal, the minimization process can be carried out very
efficiently via Newton’s method for large values of m.
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Table 7.1
Approximations to λcrit generated by computing for different values of c, a root of the difference

quotient (7.1) in the volume derivative for the stored energy function in Example 7.1.

ε = c2 ε = c3

c λc ec qc λc ec qc
1.00E-01 1.0529 6.57E-03 2.03 1.0590 4.81E-04 3.52
5.00E-02 1.0562 3.24E-03 2.03 1.0593 1.37E-04 4.16
2.50E-02 1.0579 1.59E-03 2.05 1.0594 3.29E-05 5.64
1.25E-02 1.0587 7.74E-04 2.33 1.0595 5.83E-06 0.10
6.25E-03 1.0591 3.32E-04 6.84 1.0595 5.88E-05 0.24
3.13E-03 1.0595 4.85E-05 — 1.0597 2.45E-04 —

For the actual numerical computations, we used a stored energy function of the
form (2.5) with n = 3:

Φ(v1, v2, v3) = c1 (v
p
1 + vp2 + vp3) + c2

(
(v1v2)

β + (v1v3)
β + (v2v3)

β
)

+C(v1v2v3)
γ +D(v1v2v3)

−δ, (7.3)

where p ∈ [1, 3), c1, c2, C,D ≥ 0, β, γ, δ ≥ 1.
Example 7.1. We consider the special case of the function above in which p =

β = 1. From Example 5.4 we have, with h(d) = Cdγ +Dd−δ in (5.8), that:

G(λ) = δDλ−3(δ+1) − γCλ3(γ−1). (7.4)

Thus G(λ) = 0 for

λcrit =

[
δD

γC

] 1
3(γ+δ)

.

For the values γ = 3, δ = 1, C = 1, D = 6, c1 = c2 = 1, we obtain λcrit = 1.0595,
rounded to the indicated number of digits. In Table 7.1, λc denotes the computed value
for a given c for which the difference quotient (7.1) is zero3, ec = |λc − λcrit| is the
exact error in λc, and qc is the quotient of successive errors, that is qc = ec/e c

2
. The

table includes data for the cases ε = c2 and ε = c3. The computations were carried out
using m = 4000 in (7.2) and the values of c are halved as one goes down in the table.
The results show that the λc’s are converging to λcrit. From the computed difference
quotients, one can deduce that the convergence is O(c) for the choice ε = c2, and
O(c2) for the choice ε = c3. Note however that these rates deteriorate as c gets small
due to the loss of significant digits in computing the difference quotient (7.1). Finally,
in Figure 7.1, we show a graph of the difference quotient (7.1) for c = 3.125E − 3.
The graph of the difference quotient is essentially indistinguishable from that of (7.4)
in this case.

Example 7.2. In Table 7.2 we show the computed values of λc for the stored
energy function (7.3) with c1 = 1, c2 = 0, C = 1, D = 2, and p = γ = δ = 1.5. Again
we use m = 4000 in (7.2) and ε = c2. Since for this example we do not have the
exact value of λcrit to compare our results with, we instead consider ec =

∣∣λc − λ c
2

∣∣,
and qc = ec/e c

2
. Again the quotients qc suggest a convergence rate of O(c), with the

quotients reducing as c becomes small due to loss of significant digits.

3To compute λc, the difference quotient (7.1) is approximated for different values of λ, and then
λc is an approximate root of the cubic spline interpolating this data.
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Fig. 7.1. Graph of the difference quotient (7.1) for c = 3.125E−3 for the stored energy function
in Example 7.1.

Table 7.2
Approximations to λcrit for the stored energy function in Example 7.2.

c λc ec qc

1.00E-01 1.1308 6.99E-03 2.65
5.00E-02 1.1378 2.64E-03 2.60
2.50E-02 1.1404 1.02E-03 1.62
1.25E-02 1.1415 6.28E-04 0.53
6.25E-03 1.1421 1.19E-03 0.31
3.13E-03 1.1433 3.90E-03 —
1.56E-03 1.1472 — —

Example 7.3. In this example we consider the stored energy function used in
[15] to construct an explicit cavitating solution. The stored energy function is given
by:

Φ(v1, v2, v3) = µ(v21 + v22 + v23) + h(v1v2v3), (7.5)

where

h(d) = µ
(
Cd2 − 2(C + 1)d+D

)
, d ≥ 1,

and µ,C,D are nonnegative constants. For d ∈ (0, 1) the function h(·) can be defined
in any way that guarantees that h(·) is convex for d > 0 and satisfies h(d) → ∞ as
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Table 7.3
Approximations to λcrit for the stored energy function in Example 7.3.

c λc

1.00E-01 1.000249924631959
5.00E-02 1.000104151191559
2.50E-02 1.000085929620128
1.25E-02 1.000083664002573
6.25E-03 1.000083428640763
3.13E-03 1.000083592724828

d → 0. For the values µ = 0.25, and C = 10000 (D is chosen to make the minimum
value of h(·) positive), it was reported in [15] that λcrit is approximately 1.000083.
We used m = 4000 in (7.2) and ε = 0, i.e., no pre–existing hole. In the table below
we show the approximations to λcrit via the volume derivative for different values of
the cavity radius c. We see that the computed approximations λc are converging to the
reported value of λcrit. Again we mention that to compute λc, the difference quotient
(7.1) is approximated for different values of λ, in this case for values of λ in [1, 1.001],
and then λc is an approximate root of the cubic spline interpolating this data.

8. Concluding remarks. There are many alternative sets of hypotheses under
which the results presented in this paper hold and we refer the interested reader, e.g.,
to the papers [1], [21], [10], [11] for examples of such alternatives.

We note that the volume derivative studied in the current paper is purely re-
stricted to radial deformations and hence may not coincide with the general volume
derivative as defined in [14] (the derivative in [14] is defined using the class of all,
possibly non-symmetric, deformations and it is currently not known whether these
energy minimisers coincide with radial minimisers in the compressible case4).

For the radial problem, a more efficient numerical method to approximate λcrit
than the one used in Section 7 is given in [13]. In that paper, the approach in Section
6, using regularised problems on punctured balls, is used as the basis for a very
efficient numerical method for computing the critical boundary displacement λcrit.
Also, as previously noted, our expression (5.7) for the vanishing of the radial volume
derivative, coincides with the condition for the critical boundary displacement for
radial cavitation obtained, using a shooting argument, by Stuart in the interesting
paper [21]. However, the methods in [13] and that in [21], do not generalise to non-
symmetric problems. On the contrary, the approach of the current paper, identifying
the critical boundary displacements as the zero set of the volume derivative provides
a novel, and potentially very effective, criterion for the computation of the boundary
of the set of linear displacement boundary conditions for which cavitation occurs in
multi-dimensional, non-symmetric problems (see [14]).
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4See, however, the papers [18], [19], [20] in which symmetrisation arguments are used to prove
that radial minimisers are minimising in the class of general non symmetric deformations.
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