
Loal Bifuration Analysis of a Seond GradientModel for Deformations of a Retangular SlabErrol L. Montes{Pizarro�Department of Mathematis and PhysisUniversity of Puerto RioCayey, Puerto Rio, 00737andPablo V. Negr�on{MarreroyUniversity of Puerto RioDepartment of MathematisHumaao, PR 00791{4300April 30, 2006AbstratIn this paper we arry a derivation of the equilibrium equations of two dimen-sional nonlinear elastiity with an added seond{gradient term proportional to asmall parameter " > 0. These equations are given by a fourth order semilinear sys-tem of pde's. We disuss di�erent types of possible boundary onditions for theseequations. We then speialize the equations to a retangular slab and study the lin-earized problem about a homogenous deformation. We show that these equationsadmit solutions representable as Fourier series in one of the independent variables.Furthermore we obtain the harateristi equation for the eigenvalues (possible bi-furation points) for the linear problem and derive asymptoti representations forthis equation for small ". We used these expressions to show that in the limit as"! 0 the harateristi equation for " > 0 onverges uniformly (in ertain regionsof the parameter spae) to the orresponding harateristi equation for " = 0.When the base material (" = 0) is that of a Blatz{Ko type, we get onditions for�emontes�aribe.netypnm�mate.uprh.edu



the existene of eigenvalues of the linear problem with " > 0 and small. Our nu-merial results in this ase indiate that the number of bifuration points is �nitewhen " > 0 and that this number monotonially inreases as "! 0. For the prob-lem with " > 0 we get onditions for the existene of loal branhes of non{trivialsolutions.1 IntrodutionFor many years one of the most diÆult open problems of non{linear elastiity theoryhas been the use of global ontinuation methods (via degree theory) to study the gov-erning quasilinear systems of partial di�erential equations of three{dimensional models,f. Antman in [3℄. Results along these lines for the displaement equations of equi-librium, together with boundary tration and displaements, were reently obtained byHealey and Simpson in [14℄. Their approah is based upon the onstrution of a degreewhih has the same important properties of the lassial Leray{Shauder degree. Thesenew methods make it possible, for the �rst time, to study global bifuration problemsin non{linear three{dimensional elastiity that are not reduible to ordinary di�erentialequations.At the level of generality of [14℄, the behavior of the global solution branhes would beharaterized, in addition to the two Rabinowitz alternatives, f. [20℄, by the possibilitythat they terminate due to loss of loal injetivity; and/or elliptiity; and/or the failure ofthe omplementing ondition. The omplementing ondition is an algebrai ompatibilityrequirement between the prinipal part of a linear ellipti di�erential operator and theprinipal part of the orresponding boundary onditions (f. [2℄, [25℄, [26℄, and referenestherein). In the ontext of the linearized boundary value problems of elastiity, violationsof the omplementing ondition have been assoiated to surfae wrinkling. Failure of loalinjetivity and elliptiity an be ruled out by imposing physially reasonable onstitutiveassumptions. (See e.g. [13℄.) However, the omplementing ondition an not be enforedas a onstitutive assumption on the stored energy funtion in the ontext of elastiitybeause that would rule out many interesting materials. In addition the omplementingondition, being a ondition on the linearized boundary value problem, also depends onthe solution at whih the problem is linearized. In general, we do not have an expliitlinearization at a non-trivial solution, hene we annot hek the omplementing ondi-tion diretly along those branhes. We refer here to the works in [12℄, [22℄, [18℄, and [19℄where the omplementing ondition is violated at least one along the trivial solutionbranh for Green-Hadamard type materials and for inompressible materials in [19℄. Itis obvious that the trivial solution branh, whih is expliitly known, does not \stop" atplaes where the omplementing ondition fails. This suggests that a branh of nontrivialsolutions does not neessarily stops at plaes where the omplementing ondition fails.But, if we globally follow a nontrivial solution branh we have no way to a priori rule outfailure of the omplementing ondition for tration boundary onditions within the on-text of the lassial theory of elasti materials. When the omplementing ondition fails2



the global ontinuation method developed by Healey and Simpson annot be applied,but that, by itself, does not neessarily implies that the global branh atually stops. Itmay very well ontinue, as the trivial solution branh does in the problems mentionedabove.One simple way to overome the failure of the omplementing ondition, f. the \Con-luding Remarks" in [12℄, is to add to the stored energy funtion a term quadrati in theseond order gradient of the deformation and proportional to a small parameter " > 0(f. (2.1)). In the ontext of 3D nonlinear elastiity this would give us a semilinear fourthorder system of equations for the equilibrium on�gurations in whih the orrespondinglinearized problem never violates the omplementing ondition. In this paper we studythe loal bifuration of equilibrium on�gurations for deformations of a retangular slabbut with the stored energy funtion modi�ed as above. Our idea is to onsider the prob-lem with the added higher order gradient term as a singular perturbation of the problemstudied by Simpson and Spetor in [22℄.The problem of bars under uniaxial ompression have been studied among others by[8℄ and [9℄ (linearized equations for 2d and 3d problem), [22℄ with a loal bifurationanalysis for the 2d nonlinear problem, [23℄ and [24℄ with a linear analysis inludingstability results for the 3d problem, for Green{Hadamard and Blatz{Ko type materialsrespetively. In [12℄ a rigorous loal and global analysis is given for axisymmetri typesolutions for the 3d problem of a ylindrial olumn under uniaxial ompression.Higher gradient models have been proposed by several authors to onsider next neigh-bor interation, to introdue length sale in the theory of elastiity, to study boundaryphenomena, and have been studied extensively in the ontext of phase transitions, f.[11℄, [16℄, [17℄, [27℄, [29℄, and referenes therein. But to the best of our knowledgethe only works with a rigorous global analysis are [11℄ for fored phase transitions inone{dimensional shape memory models, and [16℄ with results on global ontinuation innonlinear three dimensional elastiity.Although the non-violation of the omplementing ondition simpli�es the global studyfrom a funtional analyti point of view, it ompliates onsiderably the solution of thelinearized problem, and the veri�ation of the hypothesis for the loal bifuration analysis.It seems to be impossible to verify these hypotheses in general! For example, for the twodimensional problem onsidered in this paper with a quadrati higher order term inthe stored energy funtion, the orresponding harateristi equation (f. (4.25), (4.26))whose roots give the possible bifuration points, is given by a determinant with 36 highlynonlinear terms to be aounted for. Even for a generalized Blatz{Ko type material,whih has a relatively simple stored energy funtion, f. (7.1), we are fored to verifynumerially some of the hypotheses for the linear analysis.In Setion (2) we arry a derivation of the equations of two{dimensional nonlinear elas-tiity with an added seond{gradient term. These equations are given by a fourth ordersemi{linear system of pde's. We disuss di�erent types of possible boundary onditionsfor these equations. In Setion (3) we then speialize these equations to a retangularslab. By extending the domain periodially along the y, we are able to reast our bound-3



ary value problem (f. (3.3)) as an operator equation between suitable Banah spaes.We then exploit some of the hidden symmetries in the Piola{Kirhho� stress tensor toshow that the resulting equation is equivalent to the original problem. We establish theFr�ehet di�erentiability of the orresponding operator and haraterize its linearization.In Setion (4) we study the linearized problem about the trivial homogenous deforma-tion (f. (3.7)). We show that these equations admit solutions representable as Fourierseries in one of the independent variables. Furthermore we obtain the harateristi equa-tion for the eigenvalues (possible bifuration points) for the linear problem. The resultingeigenfuntions an be lassi�ed aording to their symmetry, or lak of it, as of barrellingor bukling type respetively. We obtain asymptoti representations as " & 0 for theharateristi equations with the other variables �xed, and used these to show that inthe limit as "& 0 both harateristi equations of bukling and barrelling type onvergeuniformly (in regions in whih � is bounded away from zero) to the orresponding har-ateristi equations in [22℄. For ompleteness of the presentation, we show in Setion(5) that the linearization of our boundary value problem about the trivial homogeneoussolution satis�es the omplementing ondition for all values of � > 0 whenever " > 0.In Setion (6) we establish onditions that guarantee the existene of branhes ofnontrivial solutions to our boundary value problem bifurating loally from the trivialbranh. The presentation in this setion is greatly simpli�ed as ompared to that ofthe usual mixed tration{displaement boundary value problem of nonlinear elastiity,beause by the presene of the seond order gradient term in the stored energy funtion,our operator automatially satis�es both the strong elliptiity and the omplementingonditions. These imply that ertain spetral and apriori estimates on solutions of thelinearization of our boundary value problem hold, whih in turn imply that the linearizedoperator is Fredholm of index zero. Thus we get existene of loal bifuration from asimple eigenvalue satisfying the so alled rossing ondition. We then show that thisrossing ondition is equivalent to the eigenvalue being a simple root of the orrespondingharateristi equation. This result is established by generalizing the proof in [22℄ (seealso [12℄) to aount for the added seond order gradient term in the stored energyfuntion.In setion (7) we onsider, as an example, Blatz-Ko type materials. Even for thissimple material, we are fored to do numerial studies to partially hek some of thehypothesis of the loal bifuration analysis made in general in the previous setions. Ouranalysis suggests that when the higher order gradient term is present, i.e. " > 0 , forthis material the problem admits only a �nite number of possible bifuration points for� 2 (0; 1℄, and that this number of possible bifuration points monotonially inreasesas " approahes zero, aumulating preisely at the value of � for whih the linearizedproblem for the ase " = 0 fails to satisfy the omplementing ondition.
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1.1 NotationThe Einstein summation onvention is used for repeated latin indies. The dyadi produtof two vetors a;b 2 Rn is denoted by ab and is de�ned by ab = aibjeiej, where a = aiei,et., with respet to a �xed (onstant) orthonormal basis e1; : : : ; en. For any seond ordertensor A and vetor a we write A � a = Aijajei and a �A = Aijaiej where A = Aijeiej.For any given two seond order tensors we write A �B = AikBkjeiej for the produt oromposition of the tensors. The inner produt of two vetors is de�ned by a � b = aibiand that of two seond order tensors by A : B = AijBij = trae (At �B). If A and B areseond and third order tensors respetively, then A k: B denotes the result of ontratingthe dyadi produt AB on all indexes in B exept the k{th. For exampleA 2: B = AijBikjek:We use the following notation for partial derivatives of salar valued funtions:f;j = �f�xj ; f;ij = �2f�xj�xi ; et.:Now with f = (f1; : : : ; fn) we have thatrf = fi;jeiej; div f = r � f = fi;i:For a seond order tensor A we have thatrA = Aij;keiejek; divA = r �A = Aij;jei:For a third order tensor B we have thatrB = Bijk;leiejekel; divB = r �B = Bijk;keiej:It follows now thatr2f = fi;jkeiejek ; r3f = fi;jkleiejekel; r � r2f = �(fi;j)eiej:If n is the outer unit normal to the surfae S, we de�ne the surfae gradient andsurfae divergene respetively of the vetor �eld f by (see [6℄):rsf = (I� nn) � rf t ; rs � f = (I� nn) : rf : (1.1)We let Lin denote the spae of all linear transformations from Rn into Rn and writeLin+ = fH 2 Lin : detH > 0g ;where det denotes the determinant.The Shauder spae Cm;�(
) denotes the Banah spae of funtions with up to montinuous derivatives in 
 with the derivatives of order m satisfying a H�older onditionwith exponent �. The norm in Cm;�(
) is denoted by k�km;�;
.If G : (x;y) � X � Y ! Z is a mapping between the Banah spaes X ;Y;Z, thenGx; Gy; Gxy. et., denote the orresponding (partial) Fr�ehet derivatives of G.5



2 Formulation of the Governing EquationsIn this setion we out arry a derivation of the equations of equilibrium for nonlinearelastiity with an added seond order gradient term to the stored energy funtion. Formore general derivations see [16℄ and [17℄. In [16℄ there are as well results onerningglobal ontinuation for these problems in the ontext of three dimensional elastiity.We onsider a body that, for onveniene, we identify with the region B that itoupies in a �xed referene on�guration in Rn . A deformation f of the body is amember of the spae Def = �f 2 C4(B;Rn) : detrf > 0	 :Let Ŵ (F;G) = W (F) + "2G...G; (2.1)where F, G are seond and third order tensors respetively, the triple dots ... denote theinner produt of third order tensors, and W : Lin+ ! R. Now the total energy due tothe deformation f : B ! Rn is given by:E(f) = ZB Ŵ (rf ;r2f) dx:The derivatives S(F) = ddFW (F); C(F) = d2dF2W (F); (2.2)are the usual (Piola{Kirhho�) stress and elastiity tensors, respetively, when " = 0.We assume that C(F) is strongly ellipti, i.e. thatab : C(F)[ab℄ > 0; (2.3)for all a;b 2 R2n f0g and all F 2 Lin+.If v is any smooth admissible variation, we have thatdd�E(f + �v)�����=0 = dd� ZB �W (rf + �rv)+"2(r2f + �r2v)...(r2f + �r2v)� dx�����=0= ZB �S(rf) : rv + "r2f ...r2v� dx:Integrating by parts one we get thatZB S(rf) : rv dx = Z�B (S(rf) � n) � v ds� ZB (divS(rf)) � v dx;6



where n is the outer unit normal to �B. Also integrating by parts twie we get thatZBr2f ...r2v dx = Z�B(r2f � n) : rv ds� Z�B(�(rf) � n) � v ds+ ZB(�2f) � v dx;where �2f = (�2fi)ei and �(rf) = (�fi;j)eiej. Combining all of these results we getthatdd�E(f + �v)�����=0 = ZB �"�2f � divS(rf)� � v dx+ Z�B "(r2f � n) : rv ds + Z�B (S(rf) � n� "�(rf) � n) � v ds:We now work with the seond term of the right hand side of this expression. We anwrite rvt = nn � rvt + (I� nn) � rvt:Hene (r2f � n) : rv = (r2f � n)t : rvt= (r2f � n)t : (nn � rvt) + (r2f � n)t : [(I� nn) � rvt℄= (r2f � n)t : (nn � rvt) + (r2f t � n) : [(I� nn) � rvt℄; (2.4)where the transposition in r2f is done with respet to its �rst two indexes. But(r2f � n)t : (nn � rvt) = (r2f : nn) �Dv;where Dv = rv � n ; r2f : nn � (r2f � n) � n = r2f 1: nn:To simplify the seond term in (2.4) we use the following identity.Lemma 2.1. For any two seond order tensor �elds A;B and vetor �eld v, we havethat A : (B � rvt) = B : r(A � v)� v � (B 2: rA):Proof : With A = Aijeiej ; B = Blkelek ; rv = vp;qepeq;we have thatA : (B � rvt) = (Aijeiej) : (Blpvq;p eleq) = AlqBlpvq;p = Blp(Alqvq;p):Using the identity (Alqvq);p = Alq;pvq + Alqvq;p;7



we have that A : (B � rvt) = Blp(Alqvq);p � BlpAlq;pvq= Blp(A � v)l;p � vq(BlpAlq;p)= B : r(A � v)� v � (B 2: rA):Taking A = (r2f t � n) and B = I� nn in this lemma, we get that(r2f t � n) : [(I� nn) � rvt℄ = (I� nn) : r((r2f t � n) � v)�v � ((I� nn) 2: r(r2f t � n))= rs � ((r2f t � n) � v)� v � ((I� nn) 1: r(r2f � n))= rs � ((r2f t � n) � v)� v � ( 1rs �(r2f � n));where we have used the operators de�ned by (1.1) and introdued the notation1rs �(r2f � n) = (I� nn) 1: r(r2f � n):Using the surfae divergene theorem [6℄, sine the surfae �B is losed, we get now thatZ�Brs � ((r2f t � n) � v) ds = Z�B(rs � n)n � ((r2f t � n) � v) ds= Z�B(rs � n)(r2f : nn) � v ds:We now have thatdd�E(f + �v)�����=0 = ZB �"�2f � divS(rf)� � v dx + Z�B "(r2f : nn) �Dv ds+ Z�B �(S(rf) � n� "�(rf) � n� " 1rs �(r2f � n)+ "(rs � n)(r2f : nn)� � v ds:Sine this has to vanish for any admissible variation v, we have that the following musthold: "�2f � divS(rf) = 0 ; in B: (2.5)As for the boundary onditions, they will depend on whether or not we speify either orboth of f or Df on �B. For example if neither is spei�ed on �B, thenS(rf) � n� "�(rf) � n� " 1rs �(r2f � n)+"(rs � n)(r2f : nn) = 0 ; on �B;"r2f : nn = 0 ; on �B:8



If f = g on �B but Df is not spei�ed, we have thatf = g ; "r2f : nn = 0 ; on �B:If f is not spei�ed but Df = h on �B, then we have thatS(rf) � n� "�(rf) � n� " 1rs �(r2f � n)+"(rs � n)(r2f : nn) = 0 ; on �B;Df = h ; on �B:We ould as well speify omponents of f or Df in the normal and tangent diretions to�B. For example, if f � n and Df � t are spei�ed, where t is any vetor tangent to �B,then the boundary onditions are given byt � �S(rf) � n� "�(rf) � n� " 1rs �(r2f � n)+ "(rs � n)(r2f : nn)� = 0 ; on �B;f � n = g ; Df � t = h ; (r2f : nn) � n = 0 ; on �B:Further, we an have �B be the union of sub{boundaries on eah of whih we an speifyany ombination of f , Df , or any of its normal or tangential omponents.3 The Equations for a Retangular SlabWe now speialize to the ase in whih B � R2 is a retangular slab. Thus we letB = f(x; y) : �R < x < R ; 0 < y < Lg : (3.1)We write �B = Ct [ Cb [ L whereCt = f(x; y) : �R � x � R ; y = Lg ; (3.2a)Cb = f(x; y) : �R � x � R ; y = 0g ; (3.2b)L = f(x; y) : x = �R ; 0 � y � Lg : (3.2)
9
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Figure 1: Possible deformations of a retangular slab, ompressed along its vertial axis,of either barrelling or bukling type.We onsider the speial ase of the boundary value problem of the previous setion for adeformation f = (f1; f2) of B in whih we speify1 f � n and Df � t on Ct [ Cb:"�2f � divS(rf) = 0 ; in B; (3.3a)S(rf) � n� "�(rf) � n� " 1rs �(r2f � n) = 0 ; on L; (3.3b)"r2f : nn = 0 ; on L; (3.3)t � �S(rf) � n� "�(rf) � n� " 1rs �(r2f � n)� = 0 ; on Ct [ Cb; (3.3d)f2 = 0 ; on Cb ; f2 = �L ; on Ct; (3.3e)Df � t = 0 ; " �r2f : nn� � n = 0 ; on Ct [ Cb; (3.3f)where t � n = 0, and � 2 [0;1) � R. Sine n is onstant on eah of Ct; Cb;L, we havethat rs � n = 0 on eah of them. (See Figure (1).)In order to eliminate trivial nonuniqueness of solutions due to translations, we imposethe following additional ondition: ZB f1 dx = 0: (3.4)1The slab is ompressed along the y{axis by a fator of � with the top and bottom free to slide alongthe x diretion. 10



Note that on Ct [ Cb we have that n = �e2, and that n = �e1 on L. Thus withS = Sijeiej, i; j = 1; 2, we have that the boundary value problem (3.3) redues to:"�2(fi)� Si1;1 � Si2;2 = 0 ; in B ; i = 1; 2; (3.5a)S11 � "�(f1;1)� "f1;212 = 0 ; on L (3.5b)S21 � "�(f2;1)� "f2;212 = 0 ; on L; (3.5)"f1;11 = 0 ; "f2;11 = 0 ; on L; (3.5d)S12 � "f1;222 = 0 ; on Ct [ Cb; (3.5e)f1;2 = 0 ; "f2;22 = 0 ; on Ct [ Cb; (3.5f)f2 = 0 ; on Cb ; f2 = �L ; on Ct; (3.5g)where the argument of Sij and Sij;k is rf .We assume that the funtion W : Lin+ ! R whih orresponds to the stored energyfuntion (2.1) with " = 0, satis�es the usual frame{indi�erene and isotropy onditionsof nonlinearly elastiity. In that ase it is well known (see e.g. [10℄, [28℄) that there existsa funtion � : R+ � R+ ! R suh thatW (F) = ��12F : F; detF� ; F 2 Lin+: (3.6)We assume � is of lass Cm, m � 5. Under the same onditions as for the ase where" = 0, one an hek now that2 f�(x) = (�(�)x; �y); (3.7)is a solution of (3.5) where �(�) is the unique solution (see [22℄) of the equation:�(�)�; 1 + ��; 2 = 0; (3.8)with �; i = �; i (12(�2 + �2); ��), i = 1; 2.In order to reast our boundary value problem (3.3) as an operator equation betweensuitable spaes, we �rst extend the domain B periodially along the y diretion. Thenwe exploit some of the hidden symmetries in the Piola{Kirhho� stress tensor to showthat the resulting equation is equivalent to the original problem. Thus we letB1 = f(x; y) : �R < x < R; �1 < y <1g : (3.9)For any deformation f = (f1; f2) we writeu = f � f�; (3.10)where f� is given by (3.7). Thus u = (u1; u2) is the displaement vetor. We impose thefollowing even{odd ondition on the omponents of u:u1(x; y) = u1(x;�y); u2(x;�y) = �u2(x; y): (3.11)2The subsript � here does not denote partial di�erentiation.11



We de�ne the following spaes of funtions:Z = �u 2 C4;�(B1;R2) : u is 2L periodi in y and satisfy (3.4), (3.11) and;"r2u : nn = 0 on �B1	 ; (3.12)Y0 = �v 2 C0;�(B1;R2) : v is 2L periodi in y and satisfy (3.11)	 ; (3.13)Y1 = �w 2 C1;�(�B1;R2) : w is 2L periodi in y and satisfy (3.11)	 ; (3.14)Y = Y0 � Y1; (3.15)with orresponding norms:k�kZ = k�k4;�;B ; k�kY = k�k0;�;B + k�k1;�;�B :We de�ne now U = f(�;u) 2 (0;1)�Z : det(rf� +ru) > 0g ; (3.16)and the operator G : U ! Y by:G(�;u) = ("�2u� divS(rf� +ru); B(�;u)); (3.17)where B(�;u) = S(rf� +ru) � n� "�(ru) � n� " 1rs �(r2u � n): (3.18)We now an prove the following:Proposition 3.1. Let u be any solution of the operator equationG(�;u) = 0: (3.19)Then f = f� + u with u restrited to B, is a solution of the boundary value problem(3.3). On the other hand, if f is a solution of (3.3), then u = f � f� an be extendedperiodially in y to a solution of (3.19).Proof : First we observe that an easy omputation using (2.2)1, (3.6), and (3.7), showsthat S12(rf� +ru) = [S(rf� +ru)e2℄ � e1 = �;1u1;2 � �;2u2;1 :>From (3.5g) we have that u2;1 = 0 on Ct [ Cb , and from strong elliptiity, f. (2.3), itan be dedued that, f. [22℄, �;1 > 0. Hene, for any funtion u satisfying u1;2 = 0 onCt [ Cb, the ondition (3.5e):S12(rf� +ru)� "u1;222 = 0; on Ct [ Cb;is equivalent to u1;222 = 0 on Ct [ Cb.Thus learly, if u is a solution of (3.19), then the even{odd onditions (3.11) and theperiodiity in the y diretion imply that u2 = u1;222 = 0 on Ct[Cb and that the boundaryondition (3.5f) is satis�ed. Hene f = f� + u is a solution of (3.3)12



On the other hand if f is a solution of (3.3) or equivalently (3.5), then with u = f� f�and by the observation made above, (3.5e) is equivalent to u1;222 = 0 on Ct [ Cb. Thistogether with the boundary onditions (3.5f) and (3.5g) allow us to extend u periodiallyin y aording to (3.11) to a solution of (3.19).A simple modi�ation of the results in Valent [30℄, due to the unboundedness of B1,allows us to get the following:Proposition 3.2. The funtion G : U ! Y is of lass C2 andGu(�;u)[h℄ = ("�2h� divC(rf� +ru)[rh℄; Bu(�;u)[h℄); (3.20a)Gu�(�;u)[h℄ = ��div dCdF (rf� +ru)[rh;rf 0�℄;�dCdF (rf� +ru)[rh;rf 0�℄� � n� ; (3.20b)where f 0� = df�=d� andBu(�;u)[h℄ = C(rf� +ru)[rh℄ � n� "�(rh) � n�" 1rs �(r2h � n):4 The Linearized ProblemSine (3.7) is a solution of (3.5), we have that for the operator (3.17),G(�; 0) = 0; � � 0:We look for nontrivial solutions of (3.19) bifurating from the trivial branh f(�; 0) : � � 0g.For this we need to study the linearized problem about the trivial branh whih by Propo-sition (3.2) is given by:L(�)[h℄ � Gu(�; 0) = ("�2h� divC(rf�)[rh℄; Bu(�; 0)[h℄) = 0; h 2 Z: (4.1)In partiular, we need to determine, for whih values of �, this boundary value problemhas nontrivial solutions h.An elementary but otherwise lengthy omputation shows that the boundary valueproblem (4.1) is equivalent to:" (u1;1111 + 2u1;1122 + u1;2222)�Ku1;11 � Pu1;22 �Mu2;12 = 0; in B; (4.2a)" (u2;1111 + 2u2;1122 + u2;2222)� Pu2;11 �Qu2;22 �Mu1;12 = 0; in B; (4.2b)"u1;11 = 0; Ku1;1 +Nu2;2 � " (u1;111 + 2u1;122) = 0; on L; (4.2)"u2;11 = 0; Pu2;1 + (M �N)u1;2 � " (u2;111 + 2u2;122) = 0; on L; (4.2d)u1;2 = 0; "u1;222 = 0; u2 = 0; "u2;22 = 0; on Ct [ Cb; (4.2e)13



where we have written h = (u1; u2),K = �; 1 +P2i;j=1 �; ij �i�j; N = �; 2 +P2i;j=1 �; ij �i�j; (4.3a)Q = �; 1 +P2i;j=1 �; ij �i�j; M = N � �; 2 ; P = �; 1 ; (4.3b)and �1 = �(�), �2 = �, �1 = �, �2 = �(�). One an show (see [23℄) that the elastiitytensor C(rf�) (.f. (2.2)) satis�es the strong elliptiity ondition:ab : C(rf�)[ab℄ > 0; 8 a;b 2 R2n f0g ;if and only if K > 0; P > 0; Q > 0; P + (KQ)1=2 > jM j :By a proof very similar to that of Proposition (4.2) in [23℄, we get that any (u1; u2) 2C4([�R;R℄ � [0; L℄) satisfying (4.2a){(4.2b) and the boundary onditions (4.2e) musthave a Fourier series representation of the form3:u1(x; y) = 1Xk=1 ak(x) os(qky); u2(x; y) = 1Xk=1 bk(x) sin(qky); (4.4)where qk = k�=L and both of these series onverge uniformly in [�R;R℄� [0; L℄.If we multiply (4.2a) and the seond equation in (4.2) by os(qky), (4.2b) and theseond equation in (4.2d) by sin(qky), and arry the required integration by parts usingthe remaining boundary onditions, then we get that ak; bk are solutions of the boundaryvalue problem:"a(4)k (x)� (2"q2k +K)a00k(x) + ("q4k + Pq2k)ak(x)�Mqkb0k(x) = 0; (4.5a)"b(4)k (x)� (2"q2k + P )b00k(x) + ("q4k +Qq2k)bk(x) +Mqka0k(x) = 0; (4.5b)�R < x < R, with"a00k(�R) = 0; (2"q2k +K)a0k(�R)� "a000k (�R) +Nqkbk(�R) = 0; (4.6a)"b00k(�R) = 0; (2"q2k + P )b0k(�R)� "b000k (�R)� (M �N)qkak(�R) = 0; (4.6b)The solutions of this boundary value problem are haraterized by the roots of the fol-lowing polynomial equation:"2r8 � "(Bk +Dk)r6 + (BkDk � "(Ak + Ck))r4+ (DkAk + E2k +BkCk)r2 + CkAk = 0; (4.7)where Ak = �("q4k + Pq2k); Bk = 2"q2k +K; Ck = �("q4k +Qq2k); (4.8)Dk = 2"q2k + P; Ek =Mqk: (4.9)3One an show that the ondition (3.4) and the seond boundary ondition in (4.2) imply that a0(x)must be identially zero in the series for u1 in (4.4).14



With the substitution $ = r2 this redues to:"2$4 � "(Bk +Dk)$3 + (BkDk � "(Ak + Ck))$2+ (DkAk + E2k +BkCk)$ + CkAk = 0: (4.10)We have now the following:Lemma 4.1. For " suÆiently small the equation (4.10) has four roots (ounting multi-pliity) with positive real part.Proof : When " = 0 the above equation redues to:KP$2 + (M2 � P 2 �KQ)q2k$ + PQq4k = 0; (4.11)with roots $1(0); $2(0) with positive real parts. (See Simpson and Spetor [22℄.) Weseek now solutions of (4.10) of the form$j(") = 1Xl=0 $(l)j (0) "ll! ; j = 1; 2: (4.12)If we substitute $j(") into (4.10), di�erentiate with respet to " one and then set " = 0,we �nd that$0j(0) = �2KP$j(0) + (M2 � P 2 �KQ)q2k��1 � �(K + P )$3j (0)�(3P + 2K +Q)q2k$2j (0) + (3P + 2Q+K)q4k$j(0)� (P +Q)q6k� ;(4.13)for j = 1; 2. Similarly we an ompute higher order derivatives of $j("). If $3("); $4(")are the other two roots of (4.10), then using that$1(") +$2(") +$3(") +$4(") = Bk +Dk" ;$1(")$2(")$3(")$3(") = AkCk"2 ;we �nd that2"$3(") = Bk +Dk � "($1(") +$2("))+ �(Bk +Dk � "($1(") +$2(")))2 � 4 AkCk$1(")$2(")�1=2 ; (4.14)with a similar expression for $4(") with a minus in front of the braketed square root.Sine Bk +Dk = K + P > 0 when " = 0, we an use this and the fat that $1(0); $2(0)have positive real parts, to get the result.Note that Ak; Bk; : : : through K;P;Q, and M , are funtions of �. Thus the roots inthe previous lemma are funtion of � as well. We then have:15



Corollary 4.2. The roots of equation (4.7) are given by �!1;k(�; "); �!2;k(�; ");�!3;k(�; "); �!4;k(�; ") where the !'s have positive real part.Notation: To emphasize when some of the arguments �, ", or k are �xed, we will dropits dependene from !i;k(�; "). For example if we hold " �xed while � and k are variable,we write !i;k(�). On the other hand if � and k are �xed while " is variable, we write!i("), et..If the f!i;k(�)g are all distint, then (4.5) has the eight linearly independent solutions:� ak;i(x)bk;i(x) � = � F (!i;k(�)) sinh(!i;k(�)x)osh(!i;k(�)x) � ; i = 1; : : : ; 4; (4.15)� ak;i+4(x)bk;i+4(x) � = � F (!i;k(�)) osh(!i;k(�)x)sinh(!i;k(�)x) � ; i = 1; : : : ; 4; (4.16)where F (r) = Ekr"r4 �Bkr2 � Ak :If some of the f!i;k(�)g are equal, say !3;k(�) = !4;k(�) with the other two distint, then(4.5a){(4.5b) has the eight linearly independent solutions:� ak;i(x)bk;i(x) � = � F (!i;k(�)) sinh(!i;k(�)x)osh(!i;k(�)x) � ; i = 1; 2; 3; (4.17)� ak;4(x)bk;4(x) � = � xF (!3;k(�)) osh(!3;k(�)x) + F 0(!3;k(�)) sinh(!3;k(�)x)x sinh(!3;k(�)x) � ; (4.18)� ak;i+4(x)bk;i+4(x) � = � F (!i;k(�)) osh(!i;k(�)x)sinh(!i;k(�)x) � ; i = 1; 2; 3; (4.19)� ak;8(x)bk;8(x) � = � xF (!3;k(�)) sinh(!3;k(�)x) + F 0(!3;k(�)) osh(!3;k(�)x)x osh(!3;k(�)x) � ; (4.20)The solutions (4.15) or (4.17) and (4.18), when substituted into (4.4) represents solutionsof the linearized problem of barrelling type, while those obtained from (4.16) or (4.19)and (4.20), are of bukling type.In the ase f!i;k(�)g are all distint, we de�ne the matries:Mak (�) = [wa(!1;k(�));wa(!2;k(�));wa(!3;k(�));wa(!4;k(�))℄ ; (4.21)M sk(�) = [ws(!1;k(�));ws(!2;k(�));ws(!3;k(�));ws(!4;k(�))℄ ; (4.22)wherewa(!) = �F (!)!2 osh(!R); !2 sinh(!R);�(!) sinh(!R);�(!) osh(!R)�t ;ws(!) = �F (!)!2 sinh(!R); !2 osh(!R);�(!) osh(!R);�(!) sinh(!R)�t ;�(!) = (Bk! � "!3)F (!) +Nqk;�(!) = Dk! � "!3 � (M �N)qkF (!):16



If !3;k(�) = !4;k(�) with the other two distint, then the orresponding matries aregiven by Mak (�) = [wa(!1;k(�));wa(!2;k(�));wa(!3;k(�));w0a(!3;k(�))℄ ; (4.23)M sk(�) = [ws(!1;k(�));ws(!2;k(�));ws(!3;k(�));w0s(!3;k(�))℄ ; ; (4.24)where w0s(!) = dws(!)d! ;et.. Sine the general solution of (4.5) is given by a linear ombination of (4.15){(4.16)or (4.17){(4.20), it follows that (4.6) implies that (4.5){(4.6) has nontrivial solutions ifand only if detM sk(�) = 0; (4.25)or detMak (�) = 0: (4.26)We summarize our results in the following:Proposition 4.3. The boundary value problem (4.1) or equivalently (4.2) has nontrivialsolutions if and only if � is a root of either (4.25) or (4.26). The nontrivial solutionsare given by (4.4) where the sum is taken over all k's suh that detM sk(�) = 0 with theoeÆients given by (4.15) or (4.17) and (4.18), and over all k's suh that detMak (�) = 0with the oeÆients given by (4.16) or (4.19) and (4.20).In the following disussion we are going to �x the values of � and qk and study thelimiting behavior of (4.25) as "! 0+, the analysis for (4.26) been similar. From equation(4.14) we get that !i(") � ip"; "! 0+; i = 3; 4; (4.27)where 22i = K + P � �(K + P )2 � 4 PQq4k$1(0)$2(0)�1=2 ;= K + P � jK � P j :Thus 23 = K; 24 = P; or vieversa, if K � P 6= 0; (4.28a)23 = 24 = K + P; if K � P = 0: (4.28b)We onsider only the ase in whih K � P 6= 0. That of K � P = 0 would orrespondto a repeated root of (4.10), and (4.25) would have to be modi�ed with the matrix in(4.24). Using (4.27) and the identity("r4 �Bkr2 � Ak)("r4 �Dkr2 � Ck) + E2kr2 = 0;17



whih holds for any of the roots r in Corollary (4.2), one an show now that the followingasymptoti estimates hold:F (!3(")) = O("�1=2); �(!3(")) = O(1); �(!3(")) = O("�1=2); (4.29a)F (!4(")) = O(p"); �(!4(")) = O(1); �(!4(")) = O(p"); (4.29b)as "! 0+. It follows now thatdetM sk(")�4j=1 osh(!j(")R) � 1"5=2 (�(!1("))�(!2(")) tanh(!2(")R)��(!2("))�(!1(")) tanh(!1(")R)) ;� 1"5=2 q2k (p1(!1(0))p2(!2(0)) tanh(!2(0)R)�p1(!2(0))p2(!1(0)) tanh(!1(0)R)) ; (4.30)as "! 0+, for some nonzero onstant 1, and wherep1(r) = KMr2 +N(P �Kr2)P �Kr2 ;p2(r) = P (P � Lr2)r � (M �N)MrP �Kr2 :If we let f s" (�; qk) = "5=2 detM sk(")1q2k�4j=1 osh(!j(")R) ; (4.31)f s(�; qk) = p1(!1(0))p2(!2(0)) tanh(!2(0)R)�p1(!2(0))p2(!1(0)) tanh(!1(0)R); (4.32)then the same analysis leading to (4.30) shows that:f s" (�; qk) = f s(�; qk) + "g(�; qk; ");where  > 0 and g is a ontinuous funtion over (0; 1℄� (0;1)� [0;1). Thus we have:Proposition 4.4. Let �0; Æ1; Æ2 be suh that 0 < �0 � 1, 0 < Æ1 < Æ2 <1. Thenf s" ! f s; as "! 0;uniformly over [�0; 1℄� [Æ1; Æ2℄.Remark 4.5. After multipliation by the denominators in p1; p2, the equationf s(�; qk) = 0; (4.33)redues to the same equation found in Simpson and Spetor [22℄ for the ritial loads ofbarrelling type. 18



Remark 4.6. A similar result holds for the equation of bukling type (4.26).We lose this setion with a result about the dimension of the kernel of the matriesM sk(");Mak ("). We use the notation M rk (�; "), r 2 fs; ag, to emphasize the dependeneof M rk on both � and ".Proposition 4.7. Let �k(") be a root of either (4.25) or (4.26). Then for " suÆientlysmall, dimkerM rk (�k("); ") = 1 where r 2 fs; ag.Proof : We do the analysis for the ase r = s the other one been similar. We letM̂ sk(�; ") = �(�; ")M sk(�; "); �(�; ") = diag �osh(!j(�; ")R)�1� :Sine �(�; ") is nonsingular, thendimkerM sk(�; ") = dimker M̂ sk(�; "):If �k(") is a root of (4.25), then dimkerM sk(�k("); ") � 1. Using the asymptoti expan-sions (4.29), we get that as "! 0+,M̂ sk(�k("); ") = 2664 O(1) O(1) O("�3=2) O("�1=2)O(1) O(1) O("�1) O("�1)O(1) O(1) O(1) O(1)O(1) O(1) O("�1=2) O(p") 3775 :A simple inspetion of the powers of " in the last two olumns of this matrix shows thatthese last two olumns must be linearly independent as "! 0+. Similarly neither olumnone or olumn two an be a linear ombination of the last two olumns for " suÆientlysmall. Hene rank M̂ sk(�k("); ") � 3, but sine dimker M̂ sk(�k("); ") � 1, the rank mustbe exatly three, i.e., dimker M̂ sk(�k("); ") = 1.5 The Complementing ConditionIn this setion we show that the linearized problem (4.1) satis�es the omplementingondition for every value of �. The omplementing ondition is an algebrai onditionbetween the oeÆients of the prinipal part of a di�erential operator and that of anassoiated boundary operator, that among other things guarantees ertain apriory esti-mates on the solutions of the orresponding boundary value problem. We say that theomplementing ondition holds if the only exponentially deaying solution to a ertainauxiliary boundary value problem on a half spae, is the zero solution. Thompson in [26℄made the observations that in the ontext of linearized elastiity the omplementing on-dition is equivalent to the ondition that all Rayleigh waves travel with nonzero veloity(see also [25℄). 19



For the problem (4.1) the orresponding auxiliary boundary value problem on a halfspae is given by (see eg. [21℄) "�2h = 0; in H; (5.1a)�"�(rh) � n� " 1rs �(r2h � n) = 0; "r2h : nn = 0; on �H; (5.1b)where H = �x 2 R2 : (x� x0) � n < 0	 ;x0 2 �B1 is arbitrary but otherwise �xed, and n = �e1 is the unit normal to �B1. Welook for exponentially bounded solutions of this boundary value problem, i.e. solutionsof the partiular form h(x) = z(t)ei��(x�x0); (5.2)where � 2 R2 is nonzero and perpendiular to n, t = �(x�x0) �n, and z : [0;1)! R2 ,with kz(�)k bounded. Writing z(t) = (z1(t); z2(t)), after some simpli�ations we get thatthe above boundary value problem redues to:z(4)1 (t)� 2�2z001 (t) + �4z1(t) = 0; z(4)2 (t)� 2�2z002 (t) + �4z2(t) = 0; t > 0;z001 (0) = 0; z0001 (0)� 2�2z01(0) = 0;z002 (0) = 0; z0002 (0)� 2�2z02(0) = 0;where � 2 R, � 6= 0. This problem deouples to:z(4)(t)� 2�2z00(t) + �4z(t) = 0; t > 0;z00(0) = 0; z000(0)� 2�2z0(0) = 0:An easy omputation shows that the bounded solutions of this problem have the form:z(t) = 1e�j�jt + 2xe�j�jt:Applying the boundary onditions we get that 1; 2 must satisfy� �2 �2 j�jj�j�2 �2 �� 12 � = � 00 � :Sine the determinant of the oeÆient matrix is 3�4 6= 0, we get that 1 = 2 = 0 is theonly solution, and thus that the only exponentially bounded solution of (5.1) is the zerosolution. Hene (4.1) satis�es the omplementing ondition for any value of �.6 Loal BifurationWe disuss now onditions for the existene of nontrivial solutions for the problem (3.19).The presentation in this setion is greatly simpli�ed as ompared to that of the usual20



mixed tration{displaement boundary value problem of nonlinear elastiity ([14℄), be-ause by the presene of the seond order gradient term in the stored energy funtion(2.1), the operator in (3.19) automatially satis�es both the strong elliptiity and theomplementing onditions (see [16℄).In referene to the linear operator L(�) in equation (4.1), we have that standardresults for ellipti systems (see [1℄, [2℄, [4℄, and [16℄) imply thatkhkZ � C �kL(�)[h℄kY + khkY0� ;for any � � 0 and for some onstant C > 0 independent of h but depending on ". By aLemma of Peetre and a now standard homotopy argument (see [14℄), we get:Theorem 6.1. The operator L(�) : Z ! Y is a self{adjoint Fredholm operator of indexzero.Using the Fredholm property in this theorem, the proof of the following result is wellknown (see e.g. [7℄):Theorem 6.2 (Loal Bifuration). Let the operator G : U ! Y be given by (3.17)and assume that �� 2 (0; 1) is suh thati) dimkerL(��) = 1,ii) if kerL(��) = span fh�g, and M = Gu�(��; 0), thenMh� =2 rangeL(��):Then (��; 0) is a bifuration point of a loal ontinuous branh of nontrivial solutions of(3.19).Remark 6.3. Remember that kerL(��) 6= f0g if and only if �� is a root of equations(4.25) or (4.26) for some k 2 N.We look now for an alternate haraterization of ondition (ii) in this theorem. Forthat we use the following identity whih follows from the results in Setion (2):ZB �"r2f ...r2v +rv : C(rf�)[rf ℄� dx =ZB �"�2f � divC(rf�)[rf ℄� � v dx + ZL(Bu(�; 0)[rf ℄) � v ds; (6.1)for all f ;v 2 Z, with Bu(�; 0) given in Proposition (3.2), and L is given in (3.2)4. Wenow an prove the following:4The boundary terms on Cb [Ct are zero by the even{odd onditions (3.11) and the periodiity alongthe y diretion. 21



Lemma 6.4. Let �� be as in Theorem (6.2). Then ondition (ii) of Theorem (6.2) isequivalent to dd� �ZBrh� : C(rf�)[rh�℄ dx������=�� 6= 0; (6.2)whih in turn is equivalent to �� being a simple root of either of the harateristi equa-tions (4.25) or (4.26).Proof : Consider the linear funtional  : Y ! R given by: (w; g) = ZB h� �w dx+ ZL h� � g ds:If (w; g) 2 rangeL(��), then there exists h 2 Z suh that (.f. (4.1)):"�2h� divC(rf��)[rh℄ = w;Bu(��; 0)[h℄ = g:It follows now that (w; g) = ZB h� � �"�2h� divC(rf��)[rh℄� dx+ ZL h� �Bu(��; 0)[h℄ ds= ZB �"r2h ...r2h� +rh� : C(rf�)[rh℄� dx;where we used formula (6.1) with v = h� and f = h. Sine the tensorC has the symmetryproperty: H : C(F)[G℄ = G : C(F)[H℄;for any seond order tensors F;G;H with detF > 0, we an use (6.1) again to get that (w; g) = ZB �"r2h ...r2h� +rh� : C(rf�)[rh℄� dx= ZB �"r2h ...r2h� +rh : C(rf�)[rh�℄� dx= ZB h � �"�2h� � divC(rf��)[rh�℄� dx+ ZL h �Bu(��; 0)[h�℄ ds = 0;where for the last equality we used that h� is a solution of (4.1) for � = ��. This resulttogether with Theorem (6.1) and ondition (i) of Theorem (6.2) imply that rangeL(��) =22



ker . It follows now that ondition (ii) in Theorem (6.2) is equivalent to� ZB h� � div dCdF (rf��)[rh�;rf 0�� ℄ dx+ ZL h� � �dCdF (rf��)[rh�;rf 0�� ℄� � n 6= 0 ;or equivalently dd� �� ZB h� � divC(rf�)[rh�℄ dx+ ZL h� � (C(rf�)[rh�℄) � n������=�� 6= 0 ;whih after an integration by parts yields ondition (6.2).For the seond part of the lemma, let nu(i)� : i = 1; : : : ; 4o be a set of four linearlyindependent funtions that satisfy (4.2a), (4.2b), (4.2e), depending ontinuously on �,and suh that h� = 4Xi=1 �iu(i)�� ;with the f�ig not all zero. The funtions nu(i)� : i = 1; : : : ; 4o are given byu(i)� (x; y) = (ak;i(x) os(qky); bk;i(x) sin(qky))t; i = 1; : : : ; 4;where k is the mode orresponding to h� and fak;i : i = 1; : : : ; 4g are given by (4.15)if h� is of barrelling type and the roots in Corollary (4.2) are all distint. The otherpossibilities, namely barrelling type with repeated roots, or bukling type with distintroots, or bukling type with repeated roots, are handled similarly.Let  : (�� � Æ; �� + Æ)! R4 be a smooth urve, to be hosen below, suh that(��) = (�1; �2; �3; �4)t = �;and de�ne h� = 4Xi=1 i(�)u(i)� :Using formula (6.1), the symmetry property of C(rf�℄, and that h� is a solution of (4.1)for � = ��, we get thatdd� �ZBrh� : C(rf�)[rh�℄ dx������=��= dd� �ZB �"r2h�...r2h� +rh� : C(rf�)[rh�℄� dx������=��23



The funtion h� satisfy the even{odd onditions (3.11), is 2L periodi in y but need notsatisfy the boundary ondition "r2u : nn = 0 on L. Thus a modi�ation of formula(6.1) taking this into onsideration yields thatZB �"r2h�...r2h� + rh� : C(rf�)[rh�℄� dx= ZB �"�2h� � divC(rf�)[rh�℄� � h� dx+ ZL �(Bu(�; 0)[h�℄) � h� + "(r2h� : nn) �Dh�� ds= ZL �(Bu(�; 0)[h�℄) � h� + "(r2h� : nn) �Dh�� ds;where for the last equality we have used that sine h� satis�es (4.2a), (4.2b), (4.2e), then"�2h� � divC(rf�)[rh�℄ = 0; in B:Hene dd� �ZBrh� : C(rf�)[rh�℄ dx������=��= dd� �ZL �(Bu(�; 0)[h�℄) � h� + "(r2h� : nn) �Dh�� ds������=��An easy omputation now based on formulas (4.15) and (4.23) gives that:ZL [(Bu(�; 0)[h�℄) � h� + "(r2h� : nn) �Dh�� ds= 2 Z L0 [(Bu(�; 0)[h�℄) � h�+"(r2h� : nn) �Dh�� jx=R dy= Lt(�)A(�)(�); (6.3)where A(�) = �tk(�)Mak (�); �k(�) = 2664 ak;1(R) ak;2(R) ak;3(R) ak;4(R)bk;1(R) bk;2(R) bk;3(R) bk;4(R)a0k;1(R) a0k;2(R) a0k;3(R) a0k;4(R)b0k;1(R) b0k;2(R) b0k;3(R) b0k;4(R) 3775 :The matrix �k(�) is nonsingular by the linear independene of the fu�g. Note that sineL(��)[h�℄ = 0, then � is an eigenvetor of A(��) orresponding to the eigenvalue zero.We take the urve (�) to satisfy:A(�)(�) = �1(�)(�); � 2 (�� � Æ; �� + Æ);24



where �1 : (���Æ; ��+Æ)! R is smooth, �1(��) = 0, and (��) = �. With this seletionof (�) and using (6.3) we get thatdd� �ZBrh� : C(rf�)[rh�℄ dx������=�� = L dd� ��1(�)t(�)(�)��=��= �01(��)t(��)(��)Thus (6.2) is equivalent to �01(��) 6= 0. If zero is an eigenvalue of A(��) of multipliitym � 1 then detA(�) = g(�) mYi=1 �i(�); g(��) 6= 0;with g and f�i(�)g smooth (�1(�) as above), and �i(��) = 0, i = 1; : : : ; m. Thusdd� detA(�)j�=�� = g(��) mXi=1 �0i(��)Yj 6=i �j(��);whih is nonzero if and only if m = 1 and �01(��) 6= 0. Hene (6.2) is equivalent todd� detA(�)j�=�� 6= 0;whih in turn is equivalent to dd� detMak (�)j�=�� 6= 0;by the nonsingularity of �k(�).7 An Example: Blatz{Ko Type MaterialsAs we mentioned before, the presene of the seond order gradient term in the storedenergy funtion (2.1) simpli�es greatly the global analysis, beause the operator in (3.19)automatially satis�es both the strong elliptiity and the omplementing onditions.However the loal bifuration analysis beomes extremely diÆult due to the omplexityof the harateristi equations (4.25) and (4.26). (Eah determinant has 36 terms to beaounted for!) This is so even for spei� materials like the Blatz{Ko type, f. [5℄,onsidered in this setion making it neessary to hek the loal bifuration onditionsnumerially.We assume that the stored energy funtion W in (2.1), whih orresponds to theproblem with " = 0, is of Blatz{Ko type, i.e., is given by:W (F) = 12 F : F + 1m (detF)�m; (7.1)25



where m > 0. In this ase (4.3) redues to:K = m+ 2; N = m�1=2; Q = 1 + (m + 1)�; P = 1; M = (m + 1)�1=2; (7.2)where � = ��4[m+1m+2 ℄:We have as well that (4.8) and (4.9) simplify to:Ak = �("q4k + q2k); Bk = 2"q2k +m+ 2;Ck = �("q4k + (1 + (m + 1)�)q2k); Dk = 2"q2k + 1; Ek = (m + 1)�1=2qk:The roots of (4.10) are given now by $j = q2k%j, j = 1; 2; 3; 4 where%1 = 1; %2 = 1 + m + 22"q2k � [(m + 2)2 + 4"(m+ 1)(1� �)q2k℄1=22"q2k ;%3 = 1 + m + 22"q2k + [(m+ 2)2 + 4"(m+ 1)(1� �)q2k℄1=22"q2k ;%4 = 1 + 1"q2k :Note that %4 > %1 and1. %2 = %1 at � = 1,2. %2 = %4 at �u = �1 + 1"q2k �� (m+2)4(m+1) ;3. %3 = %2 at �d = �1 + (m+ 2)24"(m+ 1)q2k �� (m+2)4(m+1) ; (7.3)with �d < �u.For " and qk �xed, we have that %1; %4 are onstant. As we let � derease from oneto �u, we get that %2 inreases from %1 to %4. As we further derease � from �u to �d,%2 inreases from %4 to %3 = 1 + (m + 2)=(2"q2k). As � derease from one to �d, %3dereases from its maximum value down to 1 + (m + 2)=(2"q2k). As we further derease� from �d to zero, both %2; %3 beome omplex onjugates, with onstant real part givenby 1 + (m + 2)=(2"q2k), and going to in�nity in modulus as �& 0. We summarize theseobservations in the diagram in Figure (2). In fat witha = 1 + m+ 22"q2k ; b = [j(m + 2)2 + 4"(m+ 1)(1� �)q2kj℄1=22"q2k ;26
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Figure 2: Diagram of %j, j = 1; 2; 3; 4 as �& 0 from � = 1.then for � < �d we an write %2 = a � b{; %3 = a + b{. Thus with r = pa2 + b2 we havethat %1=22 =rr + a2 � {rr � a2 ; %1=23 =rr + a2 + {rr � a2 :It follows now that%1=22 �r b2 (1� {) ; %1=23 �r b2 (1 + {) ; as �& 0;where we have used the prinipal part of the square root funtion.If we view �d as a funtion of qk, this urve divides the (qk; �) plane in two regions: onein whih %3; %4 are real (to the left of the urve), and another in whih they are omplex(to right of the urve). (See Figure (3).) Thus above this urve the determinants in (4.25)and (4.26) are real{valued funtions and below the urve they are purely imaginary valuedfuntions. Thus from the numerial point of view, when looking for the roots of (4.25)or (4.26), we are essentially dealing with real{valued funtions.Let M sk(�) be given by the matrix (4.22) for those values of � 6= �d; �u; 1, and bythe orresponding formula (4.24) if � = �d or � = �u or � = 1. A similar de�nition isgiven for Mak (�) using (4.21) and (4.23). The funtions detM sk(�); detMak (�) need not beontinuous. However if we let 27
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M̂ sk(�) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
detM sk(�)�j 6=2(!j;k(�)� !2;k(�)) ; � 6= �d; �u; 1;detM sk(�)(!1;k(�)� !2;k(�))(!4;k(�)� !2;k(�)) ; � = �d;detM sk(�)(!1;k(�)� !2;k(�))(!3;k(�)� !2;k(�)) ; � = �u;detM sk(�)(!4;k(�)� !2;k(�))(!3;k(�)� !2;k(�)) ; � = 1;

(7.4)
with a similar de�nition for M̂ak (�), then these funtions are ontinuous funtions of �and the ritial loads or possible bifuration points for the problem (3.5) for Blatz{Kotype materials are given by the roots of M̂ sk(�) (barrelling type) or M̂ak (�) (bukling type).Note that the dependene of M̂ak (�), M̂ sk(�) on the mode index k omes through qk.Thus we let qk to vary ontinuously on (0;1) and letM̂a(�; qk) = M̂ak (�); M̂s(�; qk) = M̂ sk(�); (�; qk) 2 (0; 1℄� (0;1):28



We show in Figure (4) the zero ontour plots for the surfaes M̂a(�; qk) (solid urve) andM̂s(�; qk) (dotted urve), and the urve � = �1 (dashed urve) in the (�; qk) plane forthe ase m = 13:3, R = 1 and values of " = 10�j, j = 4; 5; 6; 7. Based on these �gureswe an onjeture the following:i) For any given " > 0 and L > 0, there are only a �nite number of barrelling orbukling type ritial loads given by the intersetions of the vertial lines qk = k�=L,k = 1; 2; : : :, with the ontour urves.ii) As "& 0, the number of barrelling or bukling type ritial loads inreases.iii) As "& 0, both ontour urves of bukling and barrelling type, beome horizontallyasymptotial to the line � = �1, where �1 is the value at whih the omplementingondition for the problem with " = 0 is violated5, f. [24℄.
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Figure 4: Zero ontour plots for the surfaes M̂a(�; qk) (solid urve) and M̂s(�; qk) (dottedurve), and the urve � = �1 (dashed urve) as funtions of qk for the ase m = 13:3,R = 1 and values of " = 10�j, j = 4; 5; 6; 7.In Simpson and Spetor [24℄ it is shown that equation (4.33) and the orrespondingone for bukling type deformations, has a unique solution whih is simple for eah mode5�1 = 0:5339 approximately for the Blatz{Ko type material with m = 13:3.29



qk = k�=L, k = 1; 2; : : :. We let �sk and �ak be the orresponding solutions of (4.33) andthe equation for bukling type solutions respetively. Using Proposition (4.4) and theresults in Simpson and Spetor [24℄ we have the following:Theorem 7.1. Let the material of the slab be given by (7.1) for " = 0. For any integerk � 1 let �sk and �ak be as above. Then there exists "k > 0 suh that equations (4.25)and (4.26) with qk = k�=L, both have at least one solution �sk;" and �ak;" respetively foreah " 2 (0; "k℄. Moreover if f�jg is suh that �j ! 0, �j 2 (0; "k℄ for all j, then theorresponding sequenes of solutions n�sk;�jo and n�ak;�jo have subsequenes onvergingto �sk and �ak respetively.Proof : Sine �sk is a simple root of f s(�; qk) = 0, there exist 0 < �1 < �2 � 1 suhthat f s(�1; qk)f s(�2; qk) < 0. It follows from (7.3) that we an hoose "k;1 > 0 suh that�d � �1 for any " � "k;1. Thus f s" assumes real values over the set f(�; qk) : �1 � � � �2g.Moreover, sine f s" (�; qk)! f s(�; qk) uniformly as "! 0 over [�1; �2℄, it follows that thereexists "k < "k;1 suh that f s" (�1; qk)f s" (�2; qk) < 0 for 0 < " � "k. Hene f s" (�; qk) = 0has at least one solution �sk;" 2 (0; 1℄ for any " 2 (0; "k℄. The result on the onvergeneto �sk of the subsequene of solutions, follows as well from the uniform onvergene offf s" (�; qk)g to f s(�; qk) and the fat that �sk is the only solution of f s(�; qk) = 0. Theorresponding result for (4.26) an be shown similarly.Remark 7.2. In general we an not onlude that the root �sk;" of f s" (�; qk) = 0 preditedby the theorem, is simple (or even unique). This is an important ondition for the analysisof loal bifuration. Our numerial results for the ase m = 13:3 of (7.1) together withProposition (4.7) show that for this partiular ase, the bukling{type roots are indeedsimple and those of barrelling{type are generially simple, for " small enough.Remark 7.3. The numerial results desribed in (i){(iii) above indiate that the sequenef"kg in the theorem tends to zero as k !1.8 Final RemarksWe have notied that in the ontext of elastiity there is a reurrent relation betweenviolation of the omplementing ondition and bifuration that has not yet been study indepth. In elastiity and many other areas of appliations, the problems under onsider-ation often an be written abstratly asG(�;u) = 0; � 2 (0;1);where u denotes the displaement from the orresponding trivial solution, � is somephysial parameter, and G is a di�erentiable nonlinear operator between appropriateBanah spaes with G(�; 0) = 0. Reall that a neessary ondition for bifuration at30



� = �� is that the linearized problem Gu(��; 0) � v = 0 has nontrivial solutions v. Wehave observed for some boundary value problems (eg. [24℄, [18℄, [12℄, and [19℄) that if� is an aumulation point of f� : Gu(�; 0) � v = 0 has nontrivial solutionsg , then thelinearized boundary value problem Gu(�; 0) � v = 0 fails to satisfy the omplementingondition, f. Setion 5 above. This implies that if (�n) is a sequene of values of theparameter � in a ompat interval, suh that for eah n, G(�;u) = 0 has a branhof nontrivial solutions bifurating from (�n; 0), then those branhes loally aumulateat points where the linearized problem fails to satisfy the omplementing ondition.This is atually onsistent with previous physial interpretations of the omplementingondition as assoiated with osillatory instabilities at the boundary, but it may alsosuggest a limitation in the theory of elastiity based on �rst order gradients to modelsuh phenomena.We showed, in Setion 5 above, that the orresponding linearization along the trivialsolution of the problem studied in this paper satis�es the omplementing ondition forall values of � � 0. Hene, we expet that there exists only a �nite number of possiblebifuration points, (�; 0), with � 2 [0; 1℄. Indeed, our numerial results for Blatz{Ko typematerials, f. Setion 7, indiate that when a quadrati seond{gradient term is addedto the stored{energy funtion, there are only a �nite number of possible bifurationpoints in the interval � 2 [0; 1℄. Furthermore, we observed that for this example thenumber of possible bifuration points, (�; 0), were � 2 [0; 1℄, inreases monotoniallyas " ! 0 and they aumulate preisely at a point (�; 0) at whih the omplementingondition ondition for the problem with " = 0 fails along the trivial solution branh,f. [22℄. Therefore, our analysis provides more evidene that suggests that failure ofthe omplementing ondition indues the existene of an in�nite number of bifuratingbranhes aumulating at the value of the parameter � at whih the omplementingondition fails.In general it would be interesting to study and larify the relationship between bi-furating branhes of nontrivial solutions and violation of the omplementing onditionin the ontext of more general boundary value problems. For example, it would be in-teresting to study the following: if � is a value of � at whih the linearized boundaryvalue problem fails to satisfy the omplementing ondition, is it true that there exists anin�nite sequene of bifuration points that aumulates at � ? We shall pursue thesequestions in a future work.Our analysis of this problem also indiates that for higher order gradient modelsthe funtional analyti aspets are greatly simpli�ed due to the non{violation of theomplementing ondition. This has impliations for a global analysis that we shall explorein a forthoming paper. However the veri�ation of the onditions for loal bifurationbeomes extremely diÆult due to the omplexity of the orresponding harateristiequations (4.25) and (4.26).The problem of the onvergene of the loal branhes of nontrivial solutions as "! 0remains as a major open problem. The solution of this problems would require ertainapriori estimates on the solutions of (3.3) uniform in ". However there are serious teh-31
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