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Abstract 
 

The classical Brachistochrone Problem consists of the following: given two points A and B on a vertical plane, find 
the shape of the curve along which a particle, under the influence of gravity, can slide from A to B in minimum 
time. This problem was first posed by Johann Bernoulli in 1696 and solved that same year by Newton, Leibniz, the 
Bernoulli brothers, and L’Hopital. They found that the solution to this problem is given by a curve called a 
“cycloid”. For the classical problem we developed a graphical interface in MATLAB where the user can experiment 
with different types of curves, such as the straight line, parabolic type, exponential type, and a cycloid. The user can 
also see an actual animation of the particle sliding through the selected curve and the time that it took for it to reach 
the end point B. We also developed some routines in MATLAB that directly minimize the discretized time integral 
using the method of steepest descent. These routines compute numerically the curve of minimum descent. 
 
   We also studied the Brachistochrone Problem over Surfaces, which consists of finding the curve traced by a 
particle that slides from point A to point B on a given frictionless surface and under the influence of gravity, in the 
shortest time. For this problem we developed some routines in MATLAB that directly minimize the discretized time 
integral. These routines compute numerically the curve of minimum descent over a given surface. As an example, 
we computed curves of minimum descent when the surface is given by an inclined plane, for different angles of 
inclination. We then joined together these curves to construct an envelope or surface of minimum curves. 
Keywords: Calculus of Variation, Optimization, Visualization. 
 
1. Introduction 
 
The Classical Brachistochrone Problem was originally posed by Johann Bernoulli in 1696, as a challenge for the 
most famous mathematicians in that time. This problem consists on finding the shape of the curve traced out by a 
particle that slides from a point A to a point B on a vertical plane, under the influence of gravity, in the shortest time. 
The solution to this problem is the cycloid, which is the curve traced out by a point on the rim of a rolling 
circle . 7,6,5,2

 
   We studied the Classical Brachistochrone Problem and developed a GUI (Graphical User Interface) on MATLAB 
where we were able to experiment with different types of curves and determine the time of descent for each curve by 
calculating the time integral. In addition we developed some routines on MATLAB to minimize the Discretized 
Time Integral by using the method of steepest descent. This involves the minimization of a function of n variables, 
where  is the number of mesh points in the discretization. n
 
   The Brachistochrone Problem over a surface  consists on finding the curve over S traced out by a particle that 
slides from point A to point B in , under the influence of gravity, with no friction, in minimum time. In this case, 
we developed as well some routines on MATLAB to study the numerical aspects of this problem by directly 
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minimizing the corresponding time integral. The function to be minimized is now one of  variables where is as 
before. Note that in the brachistochrone problem over a surface, the solution depends on the surface under 
consideration, contrary to the classical problem in which the solution is given by a cycloid. 

n2 n

 
 
2. The Classical Brachistochrone Problem 
 
We consider the problem of finding the curve traced out by a particle that slides from the origin (   to an end 
point (  on a vertical plane in the shortest time, under the influence of gravity. We assume that the curve is given 
by with .  By conservation of energy we have that the speed of the particle as a function of 

)0,0
)b,a

( )( )xyx, 0 ax ≤≤ ,x is 

given by ( ) ( ),22
0 xgyvxv −= where  is the initial speed and g is the acceleration due to gravity. Since the arc 

length along the curve is given by 

0v

( ) ,'1 2 dxxyds +=  we have that the time that it takes for the particle to slide 
along the curve and reach the final point  is given by the Time Integral: ( b,a )
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   The problem then is to find a function  with ( )xy ( ) ( ) bayy ==  ,00  that minimizes  .T
 
2.1 The graphical user interface 
 
We developed a graphical user interface (GUI) on MATLAB to experiment with the Classical Brachistochrone 
Problem.  
 

 
 

Figure 1. The Graphical User Interface. 
 
   With this interface the user can experiment with different types of curves, such as the straight line, the cycloid, 

 (parabolic type), and (exponential type), where xxxy 2
2

1)( ββ += xx ececxy 2
2

1
1)( ββ += 21  , ββ  are given by the 

user. The user can observe and actual animation of a particle sliding through the selected curve. In addition they can 
also see the time that it takes for the particle to reach the end point. The end point is also given by the user together 
with the initial speed. This way, the user can give the same final point and initial speed to each curve and see on 



which curve, the particle takes the least time to reach the final point. For a given function  the time integral ( ),xy ( )1  

is approximated with the mid-point rule for integrals 1 . 
 
   Here we present the results we obtained using the graphical user interface for the sets of data: final point and initial 
speed. 
 
Table 1. results of the GUI, using the end point ( )4,5  and the initial speed 3 
 

Curve End Point Initial Speed Total Time 
Straight Line (5,4) 3 1.037 

Parabola (5,4) 3 1.006 
Exponential (5,4) 3 0.998 

Cycloid (5,4) 3 0.985 
 
Table2. results of the GUI, using the end point ( )7,4  and the initial speed 0.1 
 

Curve End Point Initial Speed Total Time 
Straight Line (4,7) 0.1 1.425 

Parabola (4,7) 0.1 1.421 
Exponential (4,7) 0.1 1.402 

Cycloid (4,7) 0.1 1.393 
 
   In each case we can see that the cycloid yields the minimum time of descent. 
 
2.2 The discretized problem 
 
In this section we discuss the problem of computing the curve y(x) that minimizes the time integral (1). Let  

 and define 1 ,/ ≥= nnah
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   We denote by  an approximation of jy ( ) .0 , njxy j ≤≤  With the following approximations 
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and the mid-point rule for approximating integrals 1  we can approximate ( )1  with 
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where  We call  the Discretized Time Integral. To simplify, we write  with 

 instead of .    The discretized minimization problem is now: 
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   In our calculations we used the method of steepest descent (MSD) for approximating a solution of ( . The (MSD) 
is given by the iteration: 

)3
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where 0≥kα  is a line search parameter chosen to approximate the minimum of along the line containing 

with direction  and is the gradient (vector) of  For the function (  the gradient is given by 

f

kyv ( ),kyf v∇− f∇ .f 3 )2
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   We developed some routines on MATLAB that implement the method ( )4  using ( )5 . For the case 

, we show in Figure 2 the behavior of the errors and functional values in the (MSD), and in 
Figure 3  we show the approximate minimum computed by the (MSD). Note that the approximate minimum 
resembles very well a section of a cycloid. 
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Figure 2. Function values and error iterations in the method of steepest descent. 
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Figure 3. The minimum curve computed by the method of steepest descent. 

 
3. The Brachistochrone Problem Over Surfaces 
 
We study now the problem of the curve of quickest descent but over a surface. We assume that the surface S is 
given as a function of (  that is ),, yx
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where  is open a  A curve in is given by 2RD ⊂ .2Cf ∈ S ( ) ( )( ) ( ) ( ) ( )( ) [ ]1,0  , , , , ∈= ττττττ zyxzuv  where 
 
 
      ( ) ( )( ) [ ]1,0  , ∈= tufz ττ v . 

 
 

   An argument similar to the one leading to equation ( )1  based on conservation of energy and the formula for arc 

length, shows that the time it takes for a particle to slide from ( )( )afa vv,  to ( )( ) , ,  ,, Dbabfb ∈
vvvv

 under the influence of 
gravity with no friction, is given by the time integral: 
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where  is the initial speed, and gravity is along the vertical 0

2
0   ),(2 vagfv +=α z - direction. 

 
      The problem then is to find a function ( )τuv  with ( ) au vv

=0  and ( ) bu
vv

=1  that minimizes the time integral ( )6 . 
 
3.1 The discretized problem 
 
Let    and define 1 ,/1 ≥= nnh
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   We let  be an approximation of juv ( ) .0  , nju j ≤≤τv  With the approximations 
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and the mid-point rule for approximating integrals, we can approximate ( )6  with: 
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 where  We call  the Discretized Time Integral. Note that   is a function of 
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3.2.  Numerical results 
 
We developed some routines on MATLAB to study the numerical aspects of the Brachistochrone Problem Over 
Surfaces. These routines compute numerically the curve of minimum descent over a given surface. As in section 

 we used the method of steepest descent to find approximate solutions of ( 2.2 ) ( )8 .  For the function , given by 
, the gradient vector is given by the following equations: 
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   We consider the special case where  is a non-vertical plane, that is when S
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   For the case where the initial and final points are given by (1, 2, 3) and (6, 2, 8), and the initial speed is 60 =v , we 
show in Figure 4 (left) the curves of minimum descent computed by the (MSD) for different initial angles of 
inclination. In Figure 4 (right) the curves are joined together to form a surface or envelope of curves of minimum 
descent. 
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Figure 4. Curves of minimum descent (left). Envelope of the curves of minimum descent (right). 

 
7. Comments and conclusions 
 
Even though the Classical Brachistochrone Problem is a more than three hundred years old problem,. it is still a very 
interesting problem to study, both from the physical and mathematical point of views. This problem provides a 
playground to experiment with advanced mathematics like calculus of variations, numerical methods and 
simulations. For the Classical Problem we developed various numerical routines to solve the problem directly, and 
developed a GUI to experiment with different candidate curves. For the problem over a surface we developed as 
well various numerical routines to approximate the curves of minimum descent and constructed an envelope of 
curves of minimum descent. We do not know of any mathematical properties of this surface or envelope.  
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