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ABSTRACT. MacWilliams-Sloane Research Problem (9.5) in The Theory of Error Correcting Codes,

viewed under the light of new results about exponential sums and weights of codes, is a call to strengthen

the Carlitz-Uchiyama Bound. In this paper we give account of a new bound which falls between the

MacWilliams-Sloane proposal and the Carlitz-Uchiyama one. We show an example that meets this

bound proving it is tight, and as a consequence proves that MacWilliams-Sloane is not true.

1. INTRODUCTION

The minimum distance of duals of BCH codes is estimated by the use of the Carlitz-Uchiyama

bound for exponential sums. In Research problem (9.5), MacWilliams and Sloane [MS], propose the

strenghtening of this estimation from

2m−1 − (t− 1)2m/2 ≤ w ≤ 2m−1 + (t− 1)2m/2

to

2m−1 − (t− 1)2[m/2] ≤ w ≤ 2m−1 + (t− 1)2[m/2]

where (2t − 1) is the designed distance of the original BCH code and w is the weight of codewords

of its dual. By use of an example we prove that in general this is not possible. This was also found

independently by F. Rodier [R], who furthermore obtained an infinite sequence of duals of binary BCH

codes that also proves false the proposed strenghtening. On improving the Carlitz-Uchiyama bound,

O. Moreno, S. Litsyn and C. Moreno [MLM] have established a new bound for duals of cyclic codes

which our example and Rodier’s meet. We prove that this new bound is tight and hence determine

the actual minimum distance of duals of binary BCH codes.

2. CHARACTERIZATION OF DUALS AND THE NEW BOUND

In order to prove our claim we need to invoke a Delsarte type of result characterizing duals of

cyclic codes in terms of traces of polynomials. Computing the weights of codewords will be done by

means of exponetial sums. C. Moreno and V. Kumar [MK] have proven the Propositions 1 and 2 and

its Corollary.
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Let F = GF (2m) be the Galois field of 2m elements and N = 2m − 1 the block length of cyclic

codes, α a primitive element of F and T the trace function from F down to F = GF (2), then

Proposition 1. The dual code of the cyclic code C with zeroes αi1 , . . . , αis is given by C⊥ = T (C#),

where

T (C#) = {(T (f(αi1), (T (f(αi2), . . . , (T (f(αN ))f ∈ P (C)}

in which P (C) consists of every polynomial f in F [x] such that the monomial terms in f have degrees

lying in {i1, i2, . . . , is}.

Proposition 2. The weights of C⊥ are given by W (C⊥) =

{
2m −

∑
x∈F (−1)Tr(f(x))

2
: f ∈ P (C)

}

Corollary.

∣∣∣∣∣∑
x∈F

(−1)Tr(f(x))

∣∣∣∣∣ ≤ W ∀f ∈ P (C) if and only if dmin ≥ 2m−W
2

This equivalence shows that the MacWilliams-Sloane proposal on weights of codewords of duals

of BCH codes is a call to strenghten the Carlitz-Uchiyama bound. Recently O. Moreno, S. Litsyn

and C. Moreno [MLM] have found an improvement of this bound for the binary case according to the

following proposition.

Proposition 3. Let f ∈ F [X] be a polynomial whose terms have degrees lying in i1, i2, . . . , is, let

j = maxw(ik) : k = 1, . . . , s, where w(i) is the number of ones in the binary expression of i, λ = [m
j ],

the ceiling of m
j , then

∣∣∣∣∣∑
x∈F

(−1)Tr(f(x))

∣∣∣∣∣ ≤ degf − 1
2

2λ−1 · [2 · 2m/2−λ−1].

If degt = 7, λ− 1 can be substituted by λ

3. APPLICATION TO BCH CODES

Proposition 3 provides a new bound for duals of cyclic codes. As a direct application consder the

(t = 4)-error correcting BCH code over GF (29). Its zeroes are α1, α3, α5, α7,

j = max{w(1), w(2), w(5), w(7)} = 3, [λ = 9
3 ] = 3. By Proposition 2, correpsonding polynomials will

have monomial terms in {1, 3, 5, 7} and will satisfy∣∣∣∣∣∑
x∈F

(−1)Tr(f(x))

∣∣∣∣∣ ≤ 7− 1
2

23 · [2 · 29/2−3] = 120

estimating the minimum disstance greater than or equal to 196. MacWilliams-Sloane proposal will

give 208. This new bound is actually met by polynomial f(X) = X7 as we prove in the following

Theorem. Let F = GF (29). For f(X) = X7,

∣∣∣∣∣∑
x∈F

(−1)Tr(f(x))

∣∣∣∣∣ = 120
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Proof : Since the basis is equal to −1 we can use the convenient identity∣∣∣∣∣∑
x∈F

(−1)Tr(f(x))

∣∣∣∣∣ = |F | − 2
∑
x∈F

(−1)Tr(X7).

Being |F | = 512 we prove that the last sum
∑

x∈F (−1)Tr(X7) = 196

If α ∈ F is a primitive element, (αi)7 = (αj)7 implies 7i ≡ 7j (mod 511), i.e., 7(i− j) = 511k =

7 × 73k, hence i ≡ j (mod 73) which means that after x = 0, the first 73 powers of α will repeat

seven times. That reduces the sum to

∑
x∈F

Tr(x7) = Tr(0) + 7
73∑

i=1

Tr(α7i)

Every element α7i is the a 73-root of unity and satisfies the polynomial X73 − 1 which factors as

follows:

X73 − 1 = (1 + X)(1 + X8 + X9)(1 + X3 + X6 + X8 + X9)(1 + X5 + X7 + X8 + X9)

(1 + X + X9)(1 + X + X2 + X4 + X9)(1 + X3 + X1 + X6 + X9)

(1 + X2 + X5 + X6 + X9)(1 + X3 + X4 + X7 + X9)

The 73-th root of unity which are also roots of the first four irreducible factors are 1+9+9+9 = 28

in number. Those are the only irreducible factors with a significative term of degree one less than the

factors degree, i.e., non null trace term. Hence they are the only 73-th roots of unity with trace equal

to 1. Any other 73-th root of unity must then have trace equal to zero. Since Tr(0) = 0 our sum

becomes: ∑
x∈F

Tr(x7) = 0 + 7× 28 = 196

The rest of Rodier’s codes also meet the bound of 120.
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