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ABSTRACT. The main result of this investigation is the estimation of the minimum distance of BCH

codes of length n = 2m +1. We prove that for some designed distances, the generating set A = {βi} of

those codes, where β is a primitive n-th root of unity and the βis are roots of the generating polynomial

g(x) = m1(X)m2(X) . . .m2k−1(X) contains three consecutive subsets of roots. This fact permits the

use of Hartman-Tzeng (HT) bound to obtain substancial improvement over results obtained by the use

of the BCH bound.

INTRODUCTION. A cyclic code C of length n over Fq is defined as an ideal in the quotient ring

Fq[X]/(Xn − 1). This ideal is generated by a polynomial g(X) which is a divisor of Xn − 1. If β is

a primitive n-th root of unity in an extension field Fqm of Fq then some powers βi of β are roots of

g(X). Let mi(X) be the minimal polynomial of βi over Fq and g(X) be the product of polynomials

mi(X). For any integer k > 0, βipk

is also a root of mi(X). The sets Ci = {ipk (mod n)} are

called cyclotomic cosets modulo n. λ ∈ Ci ⇐⇒ βλ is a root of mi(X).A set of n-th roots of unity

A = {βi1 , βi2 , . . . , βin} defines a cyclic code C by setting c ∈ C ⇐⇒ c(ξ) = 0,∀ξ ∈ A.

By the Van Lint-Wilson notation [2], we call A the defining set of C, M = {βi, βi+1, . . . , βi+λ−1}
a consecutive set of length λ and dA the minimum distance of the code. A BCH code of designed

distance δ has a consecutive set M = {β1, β2, . . . , β1+δ−2} as defining set. We invoke the following

well known results as they appear in [1] and [2].

Proposition 1. (BCH bound) If a defining set A of a cyclic code contains a consecutive set of length

δ − 1, then δA ≥ δ

Proposition 2. (HT bound) If A = {αi1 , αi2 , . . . , αil} is a defining set for a cyclic code and if β is a

primitive n-th root of unity such that A contains the consecutive sets {βi+ja, βi+1+ja, . . . , β1+δ−2+ja},
0 ≤ j ≤ s and if gcd(a, n) < δ, then dA ≥ δ + s.

Lemma 1. For n = 2m + 1, m > 3, the union of cyclotomic cosets modulo n, C1 ∪ C3 contains

s + 1 = 3 consecutive subsets of length δ − 1 = 4.

Proof : C1 = {1, 2, 4, . . . , 22m−1}, C3 = {3, 6, 12, . . . , 3(22m−1)}, modulo n = 2m + 1. C1 ∪C3 contains
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a first consecutive subset {1, 2, 3, 4} of length 4. Since a code of length 2m + 1 is reversible (see [2],

page 268) C1 ∪ C3 contains also the subset {2m − 3, 2m − 2, 2m − 1, 2m, }. For any k, 0 ≤ k ≤ m,

2k ∈ C1, hence 2m−1 ∈ C1. By reversibility 2m−1 + 1 ∈ C1. Since 2m−1 − (2m + 1) = 2m−1 − 1,

3 · 2m−1 ≡ 2m−1 − 1 (mod ()2m + 1), i.e.,2m−1 − 1 ∈ C3. By reversibilty 2m−1 + 2 ∈ C3. Therefore

{2m−1 − 1, 2m−1, 2m−1 + 1, 2m−1 + 2} is the third “middle” consecutive subset of C1 ∪ C3.

To satisfy the condition gcd(a, n) < δ of the HT bound we must exclude some cases.

Lemma 2. For m > 3 and 5|(2m−1 − 2) then gcd(2m + 1, 2m−1 − 2) = 1

Proof : 2m + 1 = 2(2m−1 − 2 + 5 and for m > 3, 5 < 2m−1 − 2. Then the hypothesis 5|(2m−1 − 2)

implies gcd(2m + 1, 2m−1 − 2) = gcd(2m + 1, 5) = 1

Theorem 1. Let n = 2m + 1, m > 3 and 5|(2m−1 − 2). The BCH code C of length 2m + 1 and

designed distance δ = 5 has minimum distance d ≥ 7

Proof : Given the designed distance δ = 5 we can write the defining set A = {βk : k ∈ C1∪C3}, which

as in Lemma 1 contains the following consecutive subsets of roots:

{β1+j(2m−1−2), β2+j(2m−1−2), β3+j(2m−1−2), β4+j(2m−1−2)}

for j = 0, 1, 2. Here a = 2m−1− 2 and δ− 1 = 4, since 5|(2m−1− 2), we have gcd(2m + 1, 2m−1− 2) =

1 < δ. Now by HT Bound and BCH distance we obtain d ≥ dBCH + s ≥ 7.

Theorem 2. A BCH code of length n = 2m + 1, where m ≡ 0, 1, 3 (mod 4) and designed distance

δ = 5 has minimum distance d ≥ 7.

Proof : 5|(2m−1 − 2) if and only if m− 2 ≡ 0 (mod 4), if and only if m ≡ 2 (mod 4)

We generalize these resultsto BCH codes of larger designed distances. Indeed, as we take more

roots and enlarge the defining set , the three consecutive subsets also grow by 2.

Lemma 3. Let n = 2m + 1, m > 3 and 2k − 1 < 2[m/2] + 1. The union of cyclotomic cosets

M = C1 ∪ C3 ∪ . . . ∪ C2k−1 contains 3 consecutive subsets of length 2k.

Proof : We know by [3] that under the hypothesis on k the cyclotomic cosets C1, C3, . . . C2k−1 are all

different, hence disjoint. Reflecting on the Lemma 1, M contains the consecutive subset {1, 2, . . . , 2k}
and by reversibility the subset {2m + 1 − i : i = 1, 2, . . . , 2k}, both of length 2k. We will prove that

the “middle” subset

{2m − (k − 1), 2m − (k − 2), . . . , 2m−1, 2m−1 + 1, . . . , 2m−1 + k}

is also contined in M . It is clear that 2m−1 ∈ C1. We will prove that for 1 ≤ i ≤ k, 2m−1 + i ∈ C2i−1.

i.e., the elements to the right of 2m−1 are in M . Indeed

(2i− 1)22m−1 − (22m−1 + i) = [2m−1(2i− 1)− i](2m + 1)

which means that 2m−1 + i ≡ (2i− 1) (mod ()2m + 1). Now to the left, for every 2m−1 + i ∈ C2i−1,

since both add up to 2m + 1
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Lemma 4. Let m > 3, 2k+1 < 2m−1−k and (2k+1)|(2m−1−k. Then gcd(2m+1, 2m−1−k) < 2k−1.

Proof : By the division algorithm 2m + 1 = 2(2m−1 − k) + (2k + 1). Both hypothesis on k imply the

result.

Theorem 3. Let m > 3, n = 2m + 1, (2k + 1)|(2m−1 − k and 2[m/2] + 1. The BCH code of length n

and designed distance 2k − 1, has distance d ≥ 2k + 3

Proof : The defining set of C ia A = {βk : k ∈ C1 ∪ C3 ∪ . . . ∪ C2k−1 which by Lemma 3 contains the

following s + 1 = 3 consecutive sets of length δ − 1 = 2k,

{βi+j(2m−1−k) : i = 1, 2, . . . , 2k; j = 0, 1, 2}

By Lemma 4, gcd(2m + 1, 2m−1 − k) < δ, and invoking HT bound for a = 2m−1 − k, we obtain

d ≥ dBCH + s ≥ 2k + 1 + 2 = 2k + 3

There are two extremal cases on which we can improve the distance eve further, since the union

of cyclotomic cosets contains consecutive subsets of greater length. for m even, the improvement is

by 2; for m odd it is by 4.

Lemma 5. Let n = 2m +1, m¿3, m even and 2k−1 = 2m/2−1. The union M = C1∪C3∪ . . .∪C2k−1

contains 3 consecutive sets of length δ − 1 = 2k + 2.

Proof : By Theorem 3 we know that 1, 2, . . . , 2k ∈ M . Also 2k + 2 ∈ Ck+1 ⊆ M . The identity

(2m/2 − 1)23m/2 − (2m/2 + 1) = (2m + 1)(2m − 2m/2 − 1)

proves that 2k + 1 = 2m/2 + 1 ∈ C2k−1. Again by reversibility, the set of negatives modulo 2m + 1

is also part of M . Now we prove that the “middle” set increases by the element 2m−1 + k + 1 =

2m−1 + 2m/2−1 + 1 to the right and 2m−1 − k to the left. Indeed both elements belong to C2k−1 as

the following identity shows for the firs one

(2m/2 − 1)23m/2−1 − (2m−1 + 2m/2−1 + 1) = (2m + 1)(2m−1 − 2m/2−1 − 1).

Reversibility is used for the second one.

Theorem 4. Let n = 2m + 1, m > 3, (2[m/2] + 3)|(2m−1 − 2[m/2] − 1) and 2k − 1 = 2[m/2] − 1. The

BCH code of length n and designed distance 2k − 1, has distance d ≥ 2k + 5.

Proof : In order to fulfill the HT-Bound conditions we observe from the division algorithm that 2m+1 =

2(2m−1− 2[m/2]− 1) + (2m/2 + 3) and by divisibility hypothesis gcd(n, 2m−1− 2[m/2]− 1) < 2m/2 + 3.

The previous Lemma exhibits s + 1 = 3 consecutive subsets of length δ − 1 = 2k + 2. Then, again by

HT-Bound d ≥ dBCH + s ≥ 2k + 3 + 2 = 2k + 5.

The second case considers m odd.

Lemma 6. Let n = 2m +1, m > 3, m odd 2k− 1 = 2[m/2]− 3. The union M = C1 ∪C3 ∪ . . .∪C2k−1

contains 3 consecutive sets of length δ − 1 = 2k + 4
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Proof : Similar to Lemma 5, 1, 2, . . . , 2k ∈ M . Also 2k + 2 ∈ Ck+1 ⊆ M and 2k + 4 ∈ Ck+2 ⊆ M .

The identities below show that 2k + 1 = 2(m+1)/2 − 1 ∈ Ck where k + 2 = 2(m−1)/2 + 1 and 2k + 3 =

2(m+1)/2 + 1 ∈ Ck, where k = 2(m−1)/2 − 1.

(2(m−1)/2 + 1)2(m+1)/2 − (2(m+1)/2 − 1) = 2m + 1

(2m/2 − 1)2(3m+1)/2 − (2(m+1)/2 + 1) = (2m + 1)[(22m + 1)(2m + 1)− 2(m+1)/2]

and hence the set is four elements longer. As before, inversibility produces the second set. The middle

set of Lemma 3 is augmented also by 4 elements, 2m−1 + k + 1 and 2m−1 − k in Cj ⊆ M where

j = 2(m+1)/2 + 1 and also 2m−1 − (k + 1) and 2m−1 + (k + 2), in Cj ⊆ M , where j = 2(m−1)/2 + 1.

The following identities prove the first facts for each cyclotomic coset.

(2(m−1)/2 + 1) · 2(m−1)/2 = 2m−1 + 2(m−1)/2 and (2(m−1)/2 − 1) · 2(m−1)/2 = 2m−1 − 2(m−1)/2

The other facts are given by reversibility.

Theorem 5. Let n = 2m + 1, m > 3,m odd and 2k − 1 = 2[m/2] − 3. The BCH code of length n and

designed distance 2k − 1, has distance d ≥ 2k + 7.

Proof : According to Lemma 6. the generating set containing s + 1 = 3 sets of roots of length

δ − 1 = 2k + 4. In order to satisfy the gcd condition observe that

2m + 1 = 2 · (2m−1 − 2m/2−1 − 1) + 2(m+1)/2 + 2.

Clearly 2(m+1)/2 + 2 does not divide 2m−1 − 2m/2−1 − 1, hence gcd < 2(m+1)/2 + 2.

As in Theorem 4, d ≥ dBGH + s ≥ 2k + 5 + 2 = 2k + 7.
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