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THE REPULSION PROPERTY IN NONLINEAR ELASTICITY AND
A NUMERICAL SCHEME TO CIRCUMVENT IT

PABLO V. NEGRON-MARRERO* AND JEYABAL SIVALOGANATHAN'

Abstract. For problems in the Calculus of Variations that exhibit the Lavrentiev phenomenon, it
is known that a repulsion property may hold, that is, if one approximates the global minimizer in these
problems by smooth functions, then the approximate energies will blow up. Thus, standard numerical
schemes, like the finite element method, may fail when applied directly to these types of problems.
In this paper we prove that a repulsion property holds for variational problems in three dimensional
elasticity that exhibit cavitation. In addition, we propose a numerical scheme that circumvents the
repulsion property, which is an adaptation of the Modica and Mortola functional for phase transitions
in liquids, in which the phase function is coupled, via the determinant of the deformation gradient,
to the stored energy functional. We show that the corresponding approximations by this method
satisfy the lower bound I'-convergence property in the multi-dimensional, non—radial, case. The
convergence to the actual cavitating minimizer is established for a spherical body, in the case of
radial deformations.
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1. Introduction. One-dimensional problems in the Calculus of Variations that
exhibit the Lavrentiev phenomenon [18] have been well studied (see, e.g., [5], [6]). A
typical result in such problems, is that the infimum of a given integral functional

b
1) = [ Lo, ula) (@) do
on the admissible set of Sobolev functions
Ay = {u e W' ((a,b)) | u(a) = a, u(b) = B}, p > 1,

is strictly greater than its infimum on the corresponding set of absolutely continuous
functions

Ar = {ue W ((a,b)) | u(a) = a, u(b) = B},

ie., for p > 1,

inf I(u) < inf I(u).

u€Ay u€Ap
Moreover, it has been shown (see [5, Theorem 5.5]) in a number of cases that if
the Lavrentiev phenomenon occurs, then a“repulsion property” holds when trying
to approximate a minimiser by more regular functions: that is, if ug € Ay is a
minimiser of I on A; and (u,) C Ap, p > 1, satisfies u,, — ¢ almost everywhere,
then I(u,) — oo as n — co. We refer to the interesting paper [10] for results on the
weak repulsion property for multi—-dimensional problems of the Calculus of Variations
that exhibit the Lavrentiev phenomenon. In particular, it is shown in [10] that for
any minimizer of a problem that exhibits the Lavrentiev phenomenon, there exists a
sequence of “smooth” functions converging (strongly) in W'* to the minimizer (for
some p), for which the values of the functional on the sequence tend to infinity. The
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2 P. V. NEGRON-MARRERO AND J. SIVALOGANATHAN

results apply to a general class of functionals but do not take into account the local
invertibility condition (2) which is a central assumption in models of hyperelasticity.
The Lavrentiev phenomenon is also known to arise in problems of hyperelasticity in
which condition (2) is used (cf. [3], [11]).

In the first part of this paper, we prove in Theorem 3 a repulsion property for
variational problems in elasticity in R™ (m = 2 or 3) that exhibit cavitation. Our
result is presented for the class of functionals given by (3), (9) and identifies the
structure of the stored energy function which gives rise to the repulsion property. We
show that, when approximating any finite-energy cavitating deformation u € WhP,
p € (m—1,m) (not necessarily a minimiser) by a sequence of non-cavitating deforma-
tions (u,) converging weakly to u in WP, the energy of the sequence (u,,) necessarily
diverges to infinity. This result does not appear to have been noted previously and
has implications for the design of numerical methods to detect cavitation instabilities
in nonlinear elasticity. In particular, from the proof of Theorem 3, it becomes evident
that the critical term in the stored energy function, in relation to the repulsion prop-
erty, is the compressibility term (the h(-) term in (9)). We also note that our version of
the repulsion property extends previous versions in that the approximating sequence
of more regular deformations is allowed to lie in the same Sobolev space as the limit
cavitating deformation and we only assume weak convergence of the sequence to the
limit deformation.

The numerical aspects of computing cavitated solutions are challenging due to the
singular nature of such deformations. The work of Negrén-Marrero [29] generalized
to the multidimensional case of elasticity a method introduced by Ball and Knowles
[4] for one dimensional problems, which is based on a decoupling technique that
detects singular minimizers and avoids the Lavrentiev phenomenon. The convergence
result in [29] involved a very strong condition on the adjoints of the finite element
approximations which among other things excluded cavitated solutions. The element
removal method introduced by Li ([19], [20]) improves upon this by penalizing or
excluding the elements of the finite element grid where the deformation gradient
becomes very large. We refer also to the works of Henao and Xu [15] and Lian and
Li ([21], [22]).

Motivated by the result in Theorem 3, we propose in Section 4 a numerical scheme
for computing cavitating deformations that avoids or works around the repulsion
property by using nonsingular or smooth approximations. The idea is to introduce
a decoupling or phase function on the determinant of the competing deformations,
together with an extra term in the energy functional that forces the phase function to
assume either small or very large values, and penalizes for the corresponding transition
regions. More specifically, if W (F) = W (F) + h(det F) represents the stored energy
function of the material of the body occupying the region €, where W and h satisfy
certain growth conditions (cf. (10), (11)), then our proposed functional is given by

Jo [W(Vu(x)) + h(det Vu(x) — v(x))} dx

(1) + Jo [SIV0E 2 + 60 (0(x))] ax,

where 7 > 0 and € > 0 are approximation parameters, a > 1, é—l—é =1, and
¢, : R — [0,00) is a C! function such that the support of ¢, is [0,7] and ¢, > 0 on
(0,7).

The interpretation of the phase function in this model is that, in regions in which
the phase function is large, the material can undergo large volume changes without
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THE REPULSION PROPERTY IN NONLINEAR ELASTICITY 3

a significant increase in its stored energy (one could interpret this as energetically
allowing a ‘change of phase,” analogous to the formation of vapour-filled cavities in a
fluid undergoing cavitation under a large negative pressure).

The term in this functional involving the function ¢,, is a variant of the cor-
responding term in the Modica and Mortola functional considered in [25] for phase
transitions in liquids, and it penalizes for regions where the phase function v is posi-
tive but less than 7, but does not penalize for values of v greater than 7. This phase
function, which in addition is required to satisfy the constraints 0 < v < det Vu, is
now coupled to the mechanical energy through the compressibility term A. One major
advantage of the proposed numerical scheme based on this functional is that in the
limit, as 7 — oo and ¢ — 0T, the phase function v marks or detects automatically
those regions where fractures or cavitation may take place. For small €, the second in-
tegral term in (1) approximates the surface area of the boundary between the regions
in which the phase function v is zero or larger than 7, and hence models a ”surface
energy” .

In Theorems 7 and 13 we show that our proposed scheme has the lower bound
I'—convergence property. Moreover, if (u.,,v.,) denotes a minimizer of (1), then for
a subsequence with 7 — oo and € — 07, (u.,) converges weakly in WP to a function
u* whose distributional determinant is a positive Radon measure. The (v.,) converge
in M(€Q) (the space of signed Radon measures on ) to the singular part of this
measure and (det Vu., — v.,) converges in L'(Q2) to det Vu*. The Radon measure
mentioned above characterizes the points or regions in the reference configuration
where discontinuities of cavitation or fracture type can occur.

Further refinements of these results, which includes a result along the lines of
an upper bound I'- convergence property (Theorem 15), are discussed in Section 5
for radial deformations of a spherical body. In Theorem 15 we show that for large
boundary displacements, given a sequence (7;) with 7; — oo, one can construct a
sequence (g;) with €; — 0 and a corresponding sequence of admissible function pairs
of the specialization of (1) to radial functions, such that the corresponding decoupled
energies converge to the energy of the cavitating radial minimizer. Using this together
with our previous lower bound I'-convergence result, we then prove in Theorem 16
that the approximations of the proposed decoupled—penalized method converge to the
radial cavitating solution. We also show that the minimizers of the penalized func-
tionals (cf. (31)) satisfy the corresponding versions of the Euler-Lagrange equations
and present some numerical simulations.

Our approach contrasts with that of Henao, Mora—Corral, and Xu [14] who employ
two phase functions v and w, with the v coupled to the mechanical energy as a
factor multiplying the original stored energy function, and w defined on the deformed
configuration. The extra terms are of the Ambrosio—Tortorelli [1] type for v and of the
Modica—Mortola type for w. As the approximation parameter ¢ in their functional
goes to zero, these extra terms in the energy functional allow for the approximation
of deformations that can exhibit cavitation or fracture. Our approach in this paper
clearly identifies and highlights the role of the compressibility term h in the energy
functional (3) as the source of the repulsion property in problems exhibiting cavitation.

2. Background. Let Q C R™ (m = 2 or m = 3) denote the region occupied
by a nonlinearly elastic body in its reference configuration. A deformation of the
body corresponds to a map u : Q — R™ u € WH(Q), that is one-to-one almost
everywhere and satisfies the condition

(2) det Vu(x) > 0 for a.e. x € (.
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4 P. V. NEGRON-MARRERO AND J. SIVALOGANATHAN

In hyperelasticity, the energy stored under such a deformation is given by
3) B(w) = [ W(Va(x) dx
Q

where W : M — [0, 00) is the stored energy function of the material and M’"*™
denotes the set of real m x m matrices with positive determinant. We consider the
displacement problem in which we require

(4) u(x) = u(x) for x € 9Q, u"(x) = Ax,

where A € M"*™ is fixed. Let Q@ CC Q°, where Q° is a bounded, open, connected
set with smooth boundary.

2.1. The distributional determinant. If u € W1?(Q) satisfies (4), then we
define its homogeneous extension u, : 2 — R™ by

[ ux) ifxeq,
5) ue(x) = { Ax  ifxeQ\Q,

and note that u, € W1?(Q¢R™). For p > m?/(m + 1),

(6) DetVu(¢) := —/Q % ([adjVu]u) - Vo dx, V¢ € C5°(0),

is a well-defined distribution. (Here adjVu denotes the adjugate matrix of Vu, that is,
the transposed matrix of cofactors of Vu.) The definition follows from the well-known
formula for expressing det Vu as a divergence. (See, e.g., [26] for further details and
references.)

Next suppose that u € W?(Q), p > m—1, and that u, satisfies condition (INV)
(introduced by Miiller and Spector in [28]) on Q¢. Then u. € L;5.(92°) and hence
Det(Vu) is again a well-defined distribution. Moreover, it follows from [28, Lemma
8.1] that if u further satisfies det Vu > 0 a.e. then DetVu is a Radon measure and

(7) DetVu = (det Vu) L™ + ps,

where ps is singular with respect to Lebesgue measure £™. We first consider the
case when pi, is a Dirac measure! of the form ady, (where a > 0 and xo € ) which
corresponds to u creating a cavity of volume a at the point x3. Note that such a
cavity need not be spherical. Following [33], we fix xg € Q and define the set of
admissible deformations by

(8) Ay, = {u e WHP(Q) : u|pq = u”, u, satisfies (INV) on €,
det Vu > 0 a.e., DetVu = (det Vu)L™ + ay0x, },
where oy, > 0 is a scalar depending on the map u, and dx, denotes the Dirac measure

with support at xg. Thus, Ay, contains maps u that produce a cavity of volume cy
located at xg € Q. We will say that the deformation u € Ay, is singular if o, > 0.

LOther assumptions on the support of the singular measure p® may be relevant for modelling
different forms of fracture. See also [27] for further results on the singular support of the distributional
Jacobian.
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THE REPULSION PROPERTY IN NONLINEAR ELASTICITY 5

3. Singular Minimisers, Deformations and the Repulsion Property. In
this note, for simplicity of exposition, we consider stored energy functions of the form

(9) W(F)=W(F)+ h(detF) for F € M_Txm,
where W >0is Wl’pfquasiconvex and satisfies that
(1) kal[E|P < W(F) < ka[[F|” +1] for F e MP*™, pe (m—1,m),

for some positive constants ki1, k2, and h(-) is a C?(0, 00) convex function such that

(11) h(8) — oo as § — 07, @—M}O&Sé—ﬂ)@.

These hypotheses are typically satisfied by many stored energy functions which exhibit
cavitating minimisers, for example?,

(12) W(F) = pl[F|[” + h(det F), p >0,
where h satisfies (11).

Remark 1. Tt is well known that, under a variety of hypotheses (see, e.g, [34])
on the stored energy function, there exists a minimiser of the energy (given by (3))
on the admissible set Ay,. Moreover, it is also known that if A is sufficiently large,
e.g., A = (B for some B € M with ¢t > 0 sufficiently large, then any minimiser
ug € Ax, must satisfy ay, > 0 (see[35]).

Remark 2. The superlinear growth on the function h in (11), is a standard as-
sumption in the analysis of cavitation (cf. [3]). It guarantees the existence of cavitat-
ing minimizers. The function w by itself, because of the WP quasiconvexity, would
rule out cavitation and thus the Lavrentiev phenomenon. (See also Remark 4.)

We next prove that if we attempt to approximate, even in a weak sense, a singular
deformation ug € Ay, with finite elastic energy E (given by (3)) by a sequence of
non-cavitating deformations in Ay,, then the energy of the approximating sequence
must necessarily diverge to infinity. In particular, this must also hold in the case of
approximating a singular energy minimiser. This phenomenon of the energy diverging
to infinity is essentially due to the presence of the compressibility term A which appears
in the stored energy function (9).

THEOREM 3. Let p € (m —1,m). Suppose, for some A € M"™™, that ug € Ax,
is a deformation with finite energy and with awy, > 0. Suppose further that (u,) C Ay,
satisfies a, = 0, Vn and that u, — ug as n — oo in WHP(Q). Then E(u,) — oo
as n — oo.

Proof. We first note that, since ||u,|| < const. uniformly in n, it follows by (10)
that

constant > / W(Vun) dx uniformly in n.
Q

We next claim that for any R > 0 such that Br(xq) C 2 we have

/ det(Vuy,) dx — det(Vug) dx + oy, >0, as n — oco.
Br(xo)

Br(xo)
2This stored energy function is a special case of a class proposed by Ogden [30, 31] and is used to

model rubber. The Ogden materials include as special cases the Mooney—Rivlin and neo—Hookean
materials.
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6 P. V. NEGRON-MARRERO AND J. SIVALOGANATHAN

This follows from the facts (see [28, Lemma 8.1]) that
(Det(Vug))(Br(x0)) = / det(Vup) dx + an,,
Br(xo0)
(Det(Vu,))(Br(x0)) = / det(Vu,)dx, for all n,
Br(xo)

and that

(Det(Vuy,))(Br(xo)) — (Det(Vug))(Br(xo)) as n — oco.

This last limit follows from classical results on the sequential weak continuity of the
mapping u — adj(Vu) from W7 into L7 (see [2, Corollary 3.5]) and the compact
embedding of W'? into L{ . for every ¢ € [1,00) for functions satisfying the (INV)
condition (see [33, Lemma 3.3]).

Hence, by Jensen’s Inequality, for all n we have

fBR(x(]) det(Vu,, dx)
|Br(xo0)|

E(u,) > /B ( )W(Vun) dx > |Bgr(x0)|h (

Hence

liminf,, - E(u,) dx

Y]

I det(Vu,) dx
lim | Br(xo)|h | 22260
n—)oo‘ R( 0)| < |BR(XO)|

fBR(XO) det(Vug) dx + auy,
| Br(x0)|

|Br(x0)|h (

Since this holds for all R > 0 sufficiently small, and since oy, > 0 by assumption, it
follows by (11) that
O
liminf,,, o F(u,) = co.

Remark 4. If we replace the mode of convergence in the hypotheses of the above
Theorem from weak convergence in WP to strong convergence, then it follows by the
dominated convergence theorem that

(13) /QW(Vun)dx%/QW(Vuo)dx as n — oo.

Hence, this part of the total energy can be well approximated by nonsingular defor-
mations but the compressibility term involving h cannot.?

4. A decoupled method to circumvent the repulsion property. We now
consider an approximation scheme that avoids or works around the repulsion prop-
erty. The idea is to introduce a decoupling or phase function v in such a way that
the difference between the determinant of the approximation and the phase function
remains well behaved. The modified functional includes as well a penalization term

3We note if W is uniformly quasiconvex, then the arguments of Evans and Gariepy [8] show
that the converse is also true, i.e., that weak convergence of the sequence (uy) to u together with
convergence of the energies (13) implies that sequence (u,) converges strongly to u.

This manuscript is for review purposes only.
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THE REPULSION PROPERTY IN NONLINEAR ELASTICITY 7

on v reminiscent of the one used in the theory of phase transitions, that penalizes if
the function v is not too large or not too small.

Let the stored energy function be as in (9). For any 7 > 0, let ¢, : R — [0, c0)
be a continuous function, strictly positive in (0,7), and vanishing in R\ (0,7). For
€ > 0, we define now the modified functional:

IZ(u,v) = /Q [W(Vu(x)) + h(det Vu(x) — v(x))} dx
(14) + [ IVl + o060 ax.

where a > 1, é—l— =1, and (u,v) € U where

1
q
(150U = {(u,v) € WHP(Q) x Wh*(Q) : u|sq = u”, u, satisfies (INV) on €,
det Vu > v > 0 a.e., DetVu= (det Vu)L™, v|gq = 0}.

The coupled h term in this functional, because of (11), penalizes for large det Vu and
v small. The term depending on Vv, for € small, allows for large phase transitions
in the function v. On the other hand, the term with the function ¢, for & small,
forces the regions where v is positive but less than 7, to have small measure, i.e. to
“concentrate”.

We now show that for any given 7, > 0, the functional (14) has a minimizer over

u.

LEMMA 5. Assume that W () and h(-) are nonnegative and that (10), (11) hold.
For each T > 0 and € > 0 there exists (ul,vl) € U such that

IZ(ul,v]) = iBf I7 (u,v).

Proof. Since W (-) and h(-) are nonnegative and the pair (u”,0) belongs to U, it
follows that infy, I7 (u,v) exists and (cf. (9))

(16) inf 17 (u,v) < I7(u",0) = / W(Vu")dx = ¢.
Q

Let {(ug,vr)} be an infimizing sequence. From the above inequality, we can assume
that I7 (ug, vx) < £ for all k. It follows that

W(Vug(x))dx < ¢, Vk,
Q

which together with (10) implies that for a subsequence {u} (not relabeled), u — ul
in WHP(Q), with uZ = u” over 9Q and ul satisfying the (INV) condition on €.
From (16) we get as well that

/ h(det Vug(x) — vk(x))dx < ¢, Vk.

Q

This together with (11) and de la Vallée Poussin criteria, imply that for a subsequence
(not relabeled), det Vuy, — vy — w? in LY(Q), with wl > 0 a.e. Once again, (16)

implies (since ¢ is fixed) that {vy} is bounded in W1 (Q), and thus for a subsequence
(not relabeled) that vy — v7 in Wh¥(Q), with v7 > 0 a.e. and vJ = 0 on 9. Thus

This manuscript is for review purposes only.
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8 P. V. NEGRON-MARRERO AND J. SIVALOGANATHAN

we can conclude that det Vug — w?l + v7 in L}(2). Since DetVuy = (det Vug)L™,
we have that (see [36, proof of Lemma (4.5)])

det Vuy, = DetVul in €,

from which it follows that DetVuZl = (wl + v7)L™. Since wl +v7 € L}(Q), we have
from [26, Theorem 1] that

DetVul = (det Vul)L™, detVul =w] + vl.

Thus (ul,v]) € U. Finally, since
up — ul in WhP(Q), v — o7 in Whe(Q),
det Vuy, — v, = wl = det Vul — o7 in L'(9),

we have by the sequential weak lower semi—continuity of I7, that

I7(ul,v]) < lim I7(ug,v) = inf I7 (u,v),
k— o0 u

and thus

€7 7e

IZ(ul,v]) = irbllffg(u, v). 0

Our next result shows that if A in (4) is not too “large”, then the minimizer (uZ,v])
of Lemma 5 must be (u”,0).

PROPOSITION 6. Assume that the function W is quasiconvez. If A in (4) is such
that h'(det A) < 0, then the global minimizer (ul,vl) of IZ(-,-) over U is given by

£ £
u=u" andv=0in Q.

Proof. Note that for any (u,v) € U, we have
I7(u,v) > /Q [W(Vu(x)) + h(det Vu(x) — U(X))} dx.
Since DetVu = (det Vu)£™ and W is quasiconvex, we have that
[ Faeoyex = [ (vut )
In addition, by the convexity of h(-) we get:

h (det Vu(x) — v(x)) > h(det A) + h'(det A) (det Vu(x) — v(x) — det A) .
Hence
/ h (det Vu(x) — v(x)) dx > / h(det A)dx — b (det A) / o(x)dx
Q Q Q
+h'(det A) / (det Vu(x) — det A) dx
Q

Again, since DetVu = (det Vu)L™, we have that

/ (det Vu(x) — det A)dx = 0.
Q

This manuscript is for review purposes only.
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THE REPULSION PROPERTY IN NONLINEAR ELASTICITY 9

Using now that h'(det A) < 0 and that v > 0, we get

/ h (det Vu(x) — v(x)) dx > / h(det A)dx.
Q Q

Combining this with the two inequalities at the beginning of this proof, we get that
) > / [V (V (x)) + h(det V" (x))] dx = 17 (w",0)
Q

Since (u,v) is arbitrary in ¢ and (u”,0) € U, we have that (u”,0) is the global
minimizer in this case. O

Let M(£2) be the space of signed Radon measures on Q. If 4 € M(Q), then

<,u,v>:/vd,u, Yo e Co(),
Q

where Cp(£2) denotes the set of continuous functions with compact support in Q.
Moreover

liellameey = sup {[{p, v)| = v € Co(Q), [vllL=(a) <1}
A sequence {p,} in M(Q) converges weakly * to u € M(Q), denoted p,, — p, if

lim (pn,v) = (u,v), Vove Cy(Q).

n—oo

Note that any function in L'(2) can be regarded as belonging to M(f2) with the
same norm. It follows from this observation and the weak compactness of M(),
that if {v,} is a bounded sequence in L!(Q2), then it has a subsequence {v,, } such
that v, — u where u € M(Q).

For any subset E of , we define its (Caccioppoli) perimeter in Q by

P(E,Q) = sup {/QXE(X) div(x)dx : ¢ € CH(QGR™), ||| o) < 1}.

E is said to have finite perimeter in Q if P(E,Q) < co. For a set of finite perimeter,
it follows from the Gauss—Green Theorem (cf. [9, Thm. 5.16]) that

P(E,Q) = H™ (0. E),

where 9, F is the so called measure theoretic boundary of E.
We now study the convergence of the minimizers in Lemma 5 as ¢ — 0. We
employ the following notation:

Ho(s) = / ity dr.

Using this we can now prove the following:

THEOREM 7. Assume a stored energy of the form (9)—(11) and that p € (m —
1,m). Let (ul,vl) € U be a minimizer of IT over U. Then for any sequence ; — 0,

T T T T T T
the sequences {u} and {vj}, where uj = u;, and v = v, have subsequences

J
{u;k} and {v;k} with vj, — u” in WHP(Q) and v}, S0 in M(Q), where v7 s a

nonnegative Radon measure. Moreover u™|gq = u”, ul satisfies (INV) on Q, and

DetVu™ = (det Vu") L™ 4+ v],

This manuscript is for review purposes only.
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10 P. V. NEGRON-MARRERO AND J. SIVALOGANATHAN

where det Vu™ € LY(Q) with det Vu™ > 0 a.e. in Q and v] is the singular part of
VT with respect to Lebesgue measure. If we let 97 (x) = min {UJTk (x),T}, then {f[}jk}
has a subsequence converging in L*() to a function g™ that assumes only the values
0 and T a.e., and

(17)  lim I7 (u] vl )> /Q [W(VuT(x)) + h(det Vu’ (x) — wT(X))} dx

Jk? “Jk
k—oo F

+ H (1) P(B7, ),

where w™ € LY(Q) is the derivative of v™ with respect to Lebesgue measure and satisfies
that det Vu™ > w™ > 0 a.e., and B, = {x € Q : ¢"(x) = 0}.

Proof. The inequality
(18) IZ (u7,07) < / W (Vu") dx,
Q

together with (10) and Poincaré’s inequality, imply the existence of a subsequence

u;k} converging weakly to a function u” in W1?(Q2). Clearly u”|sq = u”, and that
u’ satisfies (INV) on 2 follows from [28, Lemma 3.3]. From (11) and de la Vallée
Poussin criteria, it follows that there is a subsequence (with indexes written as for the
previous one) {det Vui — v}k} such that

k

(19) det Vuj —ovl —w”, in L'(Q).
Since det Vu}, — o7 > 0 a.e. on €, the first condition in (11) implies that we must
have that w™ > 0 a.e. on Q. Now from det Vuj > v7 >0, it follows that

/v}kdxg/detVuJTk dx = [u"(Q)].
Q Q

Thus {v] } is bounded in L'(£2). Hence there exists 7 € M() such that (for a

subsequence denoted the same) v} 507 in M(Q). Since vj, > 0 for all k, the

measure v must be non-negative. Combining this with (19) we get that
(det Vuj )L™ S WL+ vT in Q.
Since DetVuj, = (det Vu] )L™ , we have that (see [36, proof of Lemma 4.5])
(det Vuj )L™ S DetVu”  in €,

from which it follows that DetVu™ = w™L™ + v7. By the Lebesgue decomposition
theorem, v™ = v]_+v] where /], is absolutely continuous with respect to £ and v]
is singular with respect to L. Thus DetVu™ = w™ L™ +v] +v]. Since w™ L™ + ] is
absolutely continuous with respect to £™, it follows by the uniqueness in the Lebesgue
decomposition theorem, that w” L™ + v . is the absolutely continuous part of DetVu”
with respect to £™. Since p > m — 1 and u] satisfies (INV) on €, the conclusions of
Theorem 1 in [26] hold. In particular, from Remark 2 of that theorem, we get that the
absolutely continuous part of DetVu” is (det Vu™)L™. Thus, by the uniqueness in
the Lebesgue decomposition theorem, we must have that (det Vu™)L™ = w™ L™+ ..
Hence DetVu™ = (det Vu™) L™ +v7 and det Vu™ = w” +w” where w7 is the derivative
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of v with respect to £™. Since w™ > 0 and w”™ > 0 a.e., it follows that det Vu™ >
w™ >0 a.e.

Since ¢, is nonnegative and supp(¢,) C (0,7), it follows that {HT(UJTk)} is
bounded in L'(£2). Moreover

J

If we let 97 (x) = min {v}k (x),7}, then

21 T oy L vl (x x T (x x
~ Vo5 ()l + o o (v], ( ))] d Z/QHV[HT( 7. ()] dx.

Jk

/IIV[HT(UJT-,C(X))]HdX=/ IV [H (85, (x))]] dx
Q Q

It follows {H- (@]Tk)} is bounded in BV () (cf. [25]) and thus it has a subsequence
converging in L'(Q). Since o7 : Q — [0,7], we get that 07 — g7 in L'(Q). In

addition !
/Q 6o (07, (X)) dx = /Q 62(67, (x)) dx,
lim /Qd)T(U;k(x))dx = 0, (cf. (18)),

k—o0

from which we get that [, ¢,(97(x))dx = 0, i.e., that ¢g” assumes only the values 0
or 7 a.e. Also

lim
k—oo JQ

5?- T a 1 T

LIV, I + g 0r(0],00)| x>

Jim IVIH- (05, (x))]]| dx > /Q IVIH- (97 (x))]l| dx = H-(7)P(B-, ),
—00

where for the second inequality we used the lower semicontinuity property of the

variation measure (cf. [9, Thm. 5.2]), and the last equality follows from the Fleming—

Rishel formula (cf. [25]). Finally combining this result with those from the first part

of this proof and the weak lower semicontinuity property of the mechanical part of
the functional (14), we get that (17) follows. |

Note that Theorem 7 in a sense falls short of fully characterizing any possible
singular behaviour in a minimizer u* of the energy functional (3). Since the param-
eter 7 is fixed, the phase functions are not “forced” to follow or mimic the singular
behaviour in u* once they have crossed the barrier 7. Moreover, the actual location of
the set of possible singularities in u* has not been fully resolved due to the presence
of the function w™ in the hA—term of the energy functional. Thus we need to study the
behaviour of the functions u”, w”, g7, and the measures v” as 7 — oo.

In the sequel we employ some of the notation within the proof of Theorem 7 as
well as the following: given 7y > 0 and a sequence {¢,} converging to zero, we apply
Theorem 7 to get a subsequence {1} of {¢;} with the corresponding sequences of
functions {uy ..}, {v1,}, etc. We keep denoting the limiting functions and measures by
u™, v, etc. Now given any 7, with k£ > 1, we apply Theorem 7 to the subsequence
{€k—1,-} obtained from 7;_1, to get a new subsequence {ej ,} of {ex_1,}, and so
on. After relabeling, we denote by {uy,}, {vkr}, etc., the sequences obtained from
Theorem 7 by this process for any given 7.
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LEMMA 8. The sequences {g™} and {v™ } have subsequences (not relabelled) such
for some v,v* € M(Q), we have g™ = v and v™ > v* in M(Q).

Proof. Note that
/ O r(x) dx < / vg(x) dx < [u"(Q)],
Q Q

and since of . — g™ in LY(Q) as r — oo, it follows that
(20) / g™ (x)dx < [u"(Q)], VEk.
Q

Thus for some subsequence of {73} (not relabelled), we have that g™ - v in M(f),
for some v € M(9).

Also, since vy, — V™ as r — 00, we get that for any ¢ € Co(9), |l <1,
we have that

lim [ v, (x)p(x)dx = (¥, ).

r—00 Q

/vkyr(x)cb(x)dx §/vkm(x)dx§ lu”(Q)].
Q Q

Letting 7 — oo we get that [(v™, ¢)| < [u" ()], and hence that |17 || pq(0) < [u"(Q)].

Thus by taking a subsequence of {73} (relabeled the same), we have v™ > v* in
M(Q), for some v* € M(Q). 0

From these results and [7, Thm. 5.1], we get the following;:

LEMMA 9. The sequences {0y} and {vi,} have subsequences {0y} and {vi} re-
spectively, where O = O, and vy = vy, with r, — 00, such that Oy A v oand
v = v in M(Q), as T, — oo.

The two measures v and v* in general are not equal. However, we will show that both
are singular with respect to £™ and both are concentrated over the same set. To

show this we need the following assumption on the functions {¢,}: given 0 < a < b,
there exists ¢ > 0 and 7y > b such that

(21) ¢-(v) >0, Va<v<b,

and 7 > 79. This condition rules out the possibility that [, ¢-, (vx)dx — 0 as k — oo,
without the functions {v;} concentrating as k — oc.

PROPOSITION 10. Let condition (21) hold. Then there exist sets B and D disjoint
such that Q = BU D, where |D| =0 and v*(B) = v(B) =0, i.e., both v and v* are
singular with respect to Lebesgue measure L™ .

Proof. For each integer k > 1, let
Ek:{XGQ : Uk(X) >’7'k}.

Provided 71, > k%, we have that |Ej| < 1.% for some positive constant C' independent
of k. Hence ), |Ex| < oo and by the Borel-Cantelli lemma we get that |D| = 0,

where o o
D=1 E
n=1k=n
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The set D, if nonempty, is precisely where the sequence {vg} becomes unbounded. If
we let B = D¢ where D¢ = Q\ D, then B has full measure |{2|. Note that we can
also write D as

D:ﬂ {x€Q: v(x)>n}.
n=1k=n
Thus - -
B:LJCm Cn:n{xeﬂ vp(x) < n}
n=1 k=n

It follows from (14) and (16), that

lim [ ¢, (vi(x))dx = 0.

k—o0 Q

Since on C,,, we have vy < n for all k& > n, it follows from the above limit and
condition (21) that vy — 0 a.e. on C,,. Thus by the Bounded Convergence Theorem,

v*(Cp) = lim vg(x) dx = 0.

k—o0 Ch

Hence

v'(B) <> v (Cn) =0.
n=1

Moreover, as 5, < vy, we get that v(B) < v*(B), and thus that v*(B) = v(B) =0.0

Our next result establishes a connection between the limit (as 7 — o00) of the sets
{B:} in Theorem 7 with the set B in Proposition 10.

PROPOSITION 11. Let By, = {x € Q : g™ (x) = 0} and

) 00 oo o0

v hTmBk - nL:Jl kOan - kOan
Then |B| = |B| = |Q| and B € BUU with |U| = 0. Moreover
(22) P(B,Q) < liTmP(Bk,Q).

Proof. Since g™ assumes only the values 0 or 75, we have from (20), and provided
7 > k2, that |B¢| = 0 and thus that B has full measure |€).

From [24, Prop. 1] we have that the sequence {¢g™ } converges to zero a.e. on €.
In particular, {g™} converges to zero a.e. on each C,,, where C,, is as in the proof of
Proposition 10. Recall that on C,, we have that vy < n for all k > n. If we let k,, be
such that 7, > n for all k > k,,, then we have that ¢ = 0 a.e. on C,, for all k > k,,
that is C,, \ U,, C C, where |U,| = 0 and

Cr, = () Bs-
k=kn,

From this we get that C,, C C’kn U U,, from which it follows that B C BUU with
|U| = 0.
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14 P. V. NEGRON-MARRERO AND J. SIVALOGANATHAN

For the last part of the proposition, since B = lim, By, it follows that x5 =
lim; xp,. Thus for any ¢ € C}(Q;R"), with l@llz~() < 1, we have that (cf. [32,
Ex. 12, Pag. 90])

/XB(x)diqu(x)dx = /XB(x)diqu(x)dx
Q Q
< m/ X, (%) div ¢(x) dx < lim P(B, Q),
k Ja k

from which we get (22). 0
We now give the corresponding convergence results for the sequences {u™} and {w™}.

PROPOSITION 12. Let {7} be a sequence such that 1, — oo. Then the se-
quences {u™} and {w™} have subsequences relabeled the same, such that u™ — u*
in WHP(Q), det Vu™ — det Vu* in L'(Q), and w™ — 0 in L*(2). Moreover, the
function u* is such that u*|pq = u”, u? satisfies (INV) on Q, and

(23) DetVu* = (det Vu*) L™ + v*,

with det Vu* € LY(Q) and det Vu* > 0 a.e. in Q.

Proof. Since, by Lemma 8, v™ - v*| we have that v™(B) — v*(B) = 0, where
B is as in Proposition 10. As w™ is the derivative of v+, we get that

/ w™dx < v (B).
B
As w™ > 0 a.e., the above implies that

lim w™ dx =0,
k—oo Jp

which implies that w™ — 0 in L(Q), where we used that |B| = |€|.

From (10), (17), (18), and Poincaré’s inequality, we get that for a subsequence of
{u™} (not relabeled), we have u™ — u* in W1P(Q) for some function u* € Wh?(Q).
Clearly u*|spq = u”, and that u} satisfies (INV) on € follows from [28, Lemma 3.3]
and the fact that each uy, satisfies (INV).

From (11) and de la Vallée Poussin criteria, it follows that there is a subsequence
(with indexes written as for the previous one) {det Vu™ — w™ } such that

det Vu™ —w™ — w*, in L'(9Q).

Since det Vu™ — w™ > 0 a.e. on (2, the first condition in (11) implies that we must
have that w* > 0 a.e. on 2. Now det Vu™ > w™ > 0 a.e. on 2, and since w™ — 0
in L(Q), we get from the previous convergence that

det Vu™ — w*, in L'(Q).

It follows now from [28, Theorem 4.2], that det Vu* = w*. From the proof of Theorem
7, we have that det Vu™ = w™ +w™ from which it follows that w™ — w*, in L}(Q).
Also DetVu™ = w™ L™ +v™ and since DetVu™ - DetVu*, we get that (23) holds.O

We now have one of the main results of this paper.
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THEOREM 13. Let {1} and {e,} be sequences such that 7, — oo and g, — 0T,
and let (U, vy,) be a minimizer of I7% over U. Then there exist a subsequence of
{7} relabelled the same, and a subsequence {&,, }, such that if (ug, vi) = (W rp s Viry ) s
then uy — u* in W'P(Q) and vy — v* in M(Q) as k — oco. Moreover, with
B ={x€Q: g™ (x) =0}, we have that

(24) Lm I7* (ug,ve) > / W(Vu*(x))dx + ¢,
Q

k— o0 k

where
Cc = m I{,,-,C (Tk)P(Bk, Q)
k—o0

Proof. The existence and the convergence of the subsequence {vg} with v, =
Vk,ry» follows from the boundedness of {vy,} in L'(2), Theorem 7, Lemma 8, and
[7, Thm. 5.1]. For the existence and the convergence of the subsequence {uy} with
U, = Ug,,, it follows from the boundedness of this sequence in W1P(Q) (cf. (18)),
Theorem 7, Proposition 12, and [7, Thm. 5.1].

Without loss of generality, we can assume that for each k, the rj is chosen so that

1

I;—:,rk (ukﬂ"k’vkvrk) > m I;—:,T(uk,’rka,r) - E
r—00

We get now using (17) that

Ek,ry

I (ug,vp) > /Q [W(Vuﬂ“(x))+h(detVuT‘”/(x)—w”(x))} dx

(25) +H,, (1) P(Be, Q) — %

As the energies {I;’; . (ug,v) ¢ are bounded, the constant ¢ in the statement of

the theorem must be finite. The result (24) now follows from this, (25), and the
convergence results in Proposition 12 for the sequences {u™}, {det Vu™}, and {w™ }.0

The measure v* in this theorem, according to Proposition 10, is concentrated
on the set D which is the complement of B. In addition, by the extended Lebesgue
Decomposition Theorem (cf [12], [16]), v* is the sum of a discrete measure and a
continuous one, both singular with respect to Lebesgue measure. The discrete part of
v* corresponds to points in the reference configuration where singularities of cavitation
type may occur, while the continuous part corresponds to lower dimensional surfaces
in the reference configuration where fractures or other type of nonzero dimensional
singularities might take place. We should mention that by [28, Thm. 8.4], if the
perimeter P(im(u*(£2))) is finite, then v* must be discrete.

5. The radial problem. For ease of exposition we limit ourselves in this section
to the case where m = 3. We recall that if W is frame indifferent and isotropic then
there is a symmetric function ® such that

(26) W(F) = @(’l}l,vg,vg),

where vy, vq, v3 are the singular values of the matrix F. For the function h(-) in (11)
we assume that it is strictly convex so that it has a unique minimum at dy, and that

(27) h(d) ~Cd?, d— oo,
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where v > 1 and C' is some positive constant.
For € equal to the unit ball with center at the origin, the radial deformation

(28) ux) = S x R=x,

has energy (up to a constant) given by:

$ (w(R), r(lf), T(If)) +h (w(R) (T(}J;)f)

1
It is well known (cf. [3], [37]) that for p € (1,3) in (10), there exists A\, > di such
that for A > A., the minimizer r. of E,,q(-) over the set

dR.

(29) FEraa(r) = /O R?

(30) Arad = {r € WHH0,1) : #/(R) > 0 ae., 7(0) > 0, (1) = A},

exists and has r.(0) > 0.
With v a radial function now, the modified functional (14) reduces up to a constant

to:
& (r’(R), ’"(}]j), Tg?) +h (w(R) (@)2 - U(R)>

(31) -/ R S+ o] ar

dR

1
IZ(r,v) = /0R2

and the set U/ becomes

Upag = {(r,v) € WH(0,1) x WH*(0,1) : r(0) = 0, (1) = \,
(32) r(R)(r(R)/R)? > v(R) > 0 a.e., v(1) =0

—

As a special case of Proposition 6, we now have the following result:
PROPOSITION 14. Assume that the stored enery function (26) is quasiconvez.

Then for A < dé, the global minimizer of I7(-,-) over Uraa is given by r(R) = AR and
v(R) =0 for all R.

Note that if (r,0) € Uraa, then r(0) = 0, and quasiconvexity implies that
(33) IZ(r,0) > IZ (AR, 0).

Moreover, since I7(r,0) = Eyaq(r), we have that

(34) IZ(AR,0) > Eraa(re), A> A

In our next result we show that for large boundary displacements A, given a
sequence (7;) with 7, — oo, one can construct a sequence (¢;) with ¢, — 0 and
a corresponding sequence of admissible function pairs for (29) over A;aq, such that
the corresponding decoupled energies converge to the energy of the cavitating radial
minimizer. Using this together with the lower bound I'-convergence result of Section
4, we then prove in Theorem 16 that the approximations of the proposed decoupled—
penalized method, converge to the radial cavitating solution.

This manuscript is for review purposes only.
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559 THEOREM 15. Let A > A\; and v > 1 be as in (27). Assume that
560 (35) / or(u)du =0O(t") as T — o0,
0

561 for some a > 1. Then for any T sufficiently large, there exists (1) > 0 with e(7) — 0%
562 as T — 0o, and an admissible pair (7, ;) € Urag with U, non—constant, such that

563 7_1i_>Holo IET(T) (777, ’5.,.) = Fraa (Tc).

564 In particular, any minimizer (r,,v;) of IET(T) must have v, non—constant, and

565 (36) lim IET(T) (rr,v7) < Erad(re)-
T—r00

566 Proof. We now construct (7,9), ¥ non constant such that

567 IT(7,0) < IT® (AR, 0),

568 for 7 sufficiently large and e sufficiently small. For any § > 0 we let

569 (37) T = (rc§6)>3 — do.

570 Since r.(0) > 0, we have that 7 — oo as § — 07. For ¢§ sufficiently small, we let
571 1 € (0,6) and define:

577 +/:17 R | & (f’(R), f(lf), F(}f)) +h (F’(R) r(lf)r - f)(R)) dR
578 +/61 R? |® <f’(R), ’Z(If), F?) +h <F/(R) [f(ff)r — ~(R)) dR
579 + /:n R? F: (R)|* + Tiq ¢T(6(R))] dR=5L+ L+ I3+ I4.
580 From the definition of (7, ), it follows that:

1.
581 L = /O o R? [é (TC((;S), TC((;S), Tcy)) + h(do)} dR
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(6—n)3 [z (1e(8) 7c(6) 7c(6)
= 3 <I>( 5 s )+h(d0)]
By taking
(38) n=206%", p1L>1,

we get from that I; can be made arbitrarily small with §.

. For the term I, first note that since

syeen (B0)' g,

o (40) -ums (4

Since h(-) is increasing on (dg, 00), it follows that

()= (12)
Thus 5
I, = /67 R?

we have that

IN
o\%
4

<,

Now

/:n o () ) 0y (1) 1) ),

It follows from (10) and (38) that the right hand side of the above inequality
goes to zero with 4. For the other term in Iy we have:

5 3 2
e [ (F9) ) ag < o™
5 5 53

for some constant C' > 0 and where v > 1 is the growth rate of h(d) as d — oo
(cf. (27)). If we further assume that $; > 3y — 2, then I3 goes to zero with d.

. Since 7(R) = r.(R) and 9(R) =0 for § < R < 1, we have that

I; = R |0 dR

& (s1(), 0, 0 ) <r;<R> = )
; <ré<R), ”E%R), TCE%R)> +h< o(R) [ch,f)r)

~ . . 2
But R? [(I) (r’ (R), =l “9) +h(r(R) [“1@} )] € L'(0,1). Hence

& (r1(m, 0, ) (4(3) = )

can be made arbitrarily small with §.

dR.

dR
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4. For the last term in I7 (7, 0):

Iy

/ : R | R L oot | an

2 e* 02’17
"76 |:Cl 530417(1 + €q63(a—1):| .

IN

Here we used (37), condition (35), and that

0

¢-(5(R))dR = Z/OT - (u) du.

5—n
We set

«

€ _ n
53&7704 - ca§3(a—1)’
so that both terms on the right hand side of the inequality for I, above are
of the same order, which upon recalling (38), leads to

(39) Ea+q = 6(614‘3)04-5‘51—3(01—1)_

Thus provided 1 > 3a, we have that given § > 0, if € is chosen according to
(39), then ¢ — 0" and 7 — oo (cf. (37)) as § — 0. Thus

no2 L = §2P12- 3 (Bitd)ath) _ 5355 B0+ (a-D)
ed ’

and both terms in I, go to zero with § provided 8; > max{q, 3a}.
Thus we can conclude that

IZ ) (F,0) = Eraa(re), as 1 — oo.

g

If (r,, v,;) is a minimizer of I7,), then IET(T)(TT7 vr) < IT(T)(F7 ), and (36) follows upon

7—)7 £
taking liminf on both sides of this inequality. If the minimizing pair (r,,v,) would

have v, = 0 for 7 sufficiently large, then
Erad(rc) < Erad(T'H) § Erad('r‘r) = ‘;r(-,—) (rTyo) S I;r(T) (7;7 6)3

where the inequality Fraq(rg) < Frada(rr), follows from the fact that r-(0) = 0 and
that rg(R) = AR is the global minimizer among such functions. Letting 7 — oo in
the inequality above leads to a contradiction. Hence v, must be non—constant for 7
sufficiently large. ]

Now, in the radial case, the limiting function u* of Theorem 13 must be radial,
and the limiting measure v* must be a non—negative multiple of the Dirac delta
distribution centered at the origin. Since u* is radial we must have, with Q the unit
ball, that

/ W (VW) dx > Braa (re).
Q

Thus, combining this with (24) and (36), we get that the constant ¢ in Theorem 13
must be zero, and that

Bualr) = [ W(Vu')dx= lim nf I, (o).
[9) T—00 Yrad

where u* is given by (28) using r.. Thus we have proved the following:
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THEOREM 16. Assume that (35) holds. Fix A > . and let (rI,v]) be a minimizer
of IT over Uaa and ul be the radial map (28) corresponding to rl. Let {;} be a
sequence such that 7; — oco. Then for a subsequence of {;}, there exists a sequence
{&;} with ¢; — 0%, such that the sequences {u;} and {v;}, where u; = uZ and
v; = ve’, have subsequences (relabeled the same) {u;} and {v;} with u; — u* in
WhP(Q) and v; = v in M(), where u* is given by (28) using r. (the minimizer of
Eraa(+) over the set (30)) and v = kdo with k > 0. Moreover

Erad(rc) = @ I:;j (rj,vj).
J‘)OO

5.1. The Euler—Lagrange equations. In this section we show that the mini-
mizers of (31) over (32), satisfy the Euler-Lagrange equations for this functional. The
analysis is not straightforward, basically due to the singular behaviour of the function
h(-) (cf. (11)), and the inequality constraints involving the phase function v, that is,
its non—negativity and the inequality involving the determinant of the deformation r.
The proof is a variation of that in [3].

For the following discussion we use the notation:

(40) B (v, va,v3,v4) = D(v1, v2,v3) + h(v1v203 — V4).

Also we shall write

The functional (31) can now be written as:

o) = /()R%(T(R),U(R))dR
() [ R Seme s om) ar

where (7,v) € Uraq (cf. (32)). 3
For the analysis in this section we take ® in (40) as

3

(42) ®(v1,09,03) = ) P(v),

i=1

where 1 is a non-negative convex C® function over (0,00), and for some positive
constants K >0 and 0 <y < 1:

(43) vy (cv)] < K9(v),
for all v > 0 and ¢ € [1 -7y, 149]. However, our results hold as well for more general
stored energy functions under suitable assumptions. We now have:

THEOREM 17. Let (r,v) be any minimizer of IT over (32). Assume that the
functions h(-) and () in (40) together with (42), satisfy (11) and (43) respectively.
Then (r,v) € C1(0,1] x C1(0,1], #'(R) > 0 for all R € (0,1], R2®,(r(R),v(R)) is
C1(0,1], and

(44a) < [R% 1(7«(3),@(3))} — 2R$ 5(r(R),v(R)), 0<R<1,
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1 a d 20,7 a—1 /
v (B) (=L B () sen ()

qe?

(44D) _R? [éA(r(R),U(R)) + L ¢;(U(R))] ) =0, 0<R<1,

with boundary conditions:

Nl
—~
=y
~—
I
<o
<
—~
—_
~
Il
)

(45) 7(0)=0, r(1)=A, Rh—g)l+ R*|v'(R)|* ' sgn(v/(R))v

Proof. If we let v = u?, then our problem is equivalent to that of minimizing

1
IZ(r,u) = / R%® (r(R),v*(R)) dR

0
(16) [ B[Sl + o) ar,
over
Ueaq = {(r,u) € WH1(0,1) x WH(0,1) : 7(0) = 0, r(1) = A,
(47) ' (R)(r(R)/R)* > u*(R) a.e., u(l) = 0}.

Note that since u € W1(0,1), then u is continuous in [0, 1]. Hence both u? and uu’
belong to L*(0,1).

Let (r,u) be any minimizer of I7 over (47). We first consider variations only in
keeping u fixed. We make the change of variables w = r3(R) and p = R®. It follows

now that 5
ilo) = o) =) (G

The first part of the functional (46) can now be written as

1
/ f(p,w, b, u?) dp,
0

where ~ , ) )
8F(pw, i, u?) = B((p/w) S, (] p), (w/p)}) + hwb — u?).
For k > 1 we define

si={pe (§1) 1 <) <},

and let yj be its characteristic function. Let w € L>(0,1) be such that

Lg@@=m

and for any v > 0, define the variations
P
w () = w(p) 7 [ (sl ds.
0

Note that w~(0) = 0 and w, (1) = A3. The rest of the proof, using (43), is as in [3],
from which it follows (after changing back to R and r) that r € C1(0,1], r'(R) >
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)3 for all R € (0,1], R2®, (r(R),u(R)) is C*(0,1], and that equations (44a) and the first
)4 two boundary conditions in (45) hold.

705 We now consider variations in u keeping r fixed. For any k > 1, let z € W1°°(0, 1)
)6 have support in (,1). and let

)7 Uy = U+ V2.

708 Note that u, (1) = 0. Moreover, since r € C*(0, 1] and u € C|0, 1], it follows that

709 ' (R) (@)2 >uw(R), Re {;1] ,

710 for ~ sufficiently small. It follows now, upon setting §(R) = r'(R)(r(R)/R)?, that

Ir —Ir 1t
711 e(ruy) —Ie(nw) —/ R? [h(5 —u2) — h(6 — u®)] AR
v Y Jo
712 +l /1 e [2uyul |* = |2ud'|*] AR
YJo @ T
- 2 [ LR s.) - o] aR
(g% - T (U
7 Jo ng
714  Now
715
1
716 f/ R*[h(6 —u2) — h(§ —u?)] AR =
Y Jo
7 / / (t2 + (1~ t)u))] didR =
dt
1
718 - / R?2(2u + 72)/ W (8 — (tu2 + (1 —t)u®)) dtdR
i 0
' 1
719 — —/ 21’ (6 — u?)uzR*dR,
720 *
721 as v — 0. Similarly
722 / —Rz (12w LY = 2| ] dR—>/ e 2un’|* ! sgn(2un)2(uz)' R? dR,
1 /1 )
723 - R? [¢,(u )— | dR — —(b H2uzR? dR,
724 7)o gt
725 as 7y — 0. Since R R
726 lim Z2(0t) =12 (nY) 0,
v—0 vy
727  we get, combining our previous results that
! 1
728 / [—1/ (6 — u®)uz + ¥ 2un’|* ! sgn(2uu) (uz) + EQS;(uQ)uz]RQdR =0,
1
®

729 or after collecting terms,

730
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1
/ [e|2un’| >  sgn(2uu yuz’ + (% |2un’|* ! sgn(2un)u'+
1
*

1
—q(bg.(uz)u — 16 —u*)u)z]R*dR = 0,
qe
for all z € W1°°(0, 1) with support in (%, 1). The coefficient of z in this expression is
in Ll(%, 1). Hence the above equation is equivalent to

1 1
/ [50‘|2uu’|“_1 sgn(2uu’)uR? +/ (e |2un |t sgn(2uu)u'+
1 R
k
1
—quS’T(uQ)u — B (0 —u?)u)e? d¢| 2/dR = 0.
qe
The arbitrariness of z implies now that for some constant C independent of k, we
have

1
£%|2un’ | sgn(2uu ) uR? + / (e |2un |t sgn(2uu)u'+
R
1 / 2 / 2 2 _
E¢r(u Ju—h (6 —u)u)§”d§ = C,
over (0,1). It follows from this equation that over the intervals where u # 0, the
function |2uw/|*~1sgn(2uu’)R? is absolutely continuous. Hence after differentiating
and simplifying, the equation above yields that

d 1
<€adR [|2un/|* ! sgn(2uu’)R?] — (nggb'r(uz) — B - u2)> R2> u=0,
i.e., that (44b) holds after reverting the substitution v = u?. A standard argument
now using variations z not vanishing at R = 0, yields the third boundary condition
in (45). a0
Remark 18. Note that the pair r(R) = AR and v(R) = 0 is a solution of (44)-(45)
1

for all A. By Proposition 14, this pair is a global minimizer for A < dj. However for
A > A, € sufficiently small, and 7 sufficiently large, we get from Theorems 15 and
17, that the minimizer must have v non—constant, with segments in which v vanishes,
and (non—trivial) segments in which the differential equation

o d / a— / _ z 1 /
€ @[RQIU (R)[*~sgn(v'(R))] = R? <I>,4(T(R),U(R))+q§¢f(v(R)) ;

holds.

5.2. Numerical results. To approximate the minimum of (31) over (32), let
AR =1/n and R; = ih, 0 < i < n, where n > 1. We write (r;,v;) for any approxi-
mation of (r(R;,v(R;))), 0 <i <mn, and

R.

i—

R+ R sr Ty Tl (1) it
N 2 ’ -3 AR R/i-1 B Ri+ Ry’

Nl
Nl

Now we discretize I7 as follows:
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’ 62 ‘ I;h ‘ 57‘% ‘ Umax
107 | 6.101645 | 5.412 169.2
107% | 6.105267 | 1.560 0.0020
107 | 6.105291 | 1.590 | 8.008 x 10~*
1078 | 5.634048 | 32.85 | 3.606 x 10*
1072 | 4.771748 | 50.47 | 1.499 x 10°
10719 | 4.535530 | 49.91 | 1.455 x 10°

TABLE 1
Convergence of the decoupled penalized scheme in the radial case using (50) and (51) with data
(52).

o m=aryw o (o (5 (5))
i=1 2 2

2 m @ 1
+h<6ri; (%) l—vié>}+ARZRfé [Zléviglquq@(vi;) :

i-3 i=1
subject to ro =0, r, = A, v, = 0 and

r 2
1 (E) w0, 1<i<n

2 i—1
We compute (relative) minimizers of (48) over (49) using the function fmincon of
MATLAB with the option for an interior point algorithm. With this routine the first
set of conditions in (49) can be directly specified as lower bounds on the v;’s, while
the second set of constraints is specified with the option for inequality constraints.
The strict sign in the second set of conditions in (49) is indirectly handled by the
interior point algorithm with the h playing the role of an interior penalty function
(since h(d) — oo as d N\, 0). For the various functions in the functional above we used
the following:

(50) vy, v9,v3) = pW +0h+08), h(d) = crd + cod ™,
_ Kv?(v—1)* , vel0r],
(51) ¢-(v) = { 0 , elsewhere,

where p € [1,3), p,c1,¢2 > 0, 4,0 > 1, and K > 0. One can easily check now that
conditions (21) and (35) hold for ¢,. In the calculations below we use n = 100 and
the following values for the various constants:

(52) w=10, ¢ =10, p=20, =20, y=20, § =20, 7=3.0, A=1.5,

with ca = (pp 4 ve1)/d so as to make the reference configuration stress free. In this
case the minimizer r. of (29) over (30) has Fraq(r:) &~ 4.5396 with r.(0) ~ 1.222,
while the affine deformation r"(R) = AR has energy E.q(r") ~ 6.1053.

In Table 1 we show the computed minimum energies for different values of 2.
In each case the iterations were started from the discretized versions of the affine
deformation " and v = 0. From the values in the table we see that the approximations
of r for €2 = 107°,1075,107 stay “close” to the affine deformation r" but developing
a steep slope close to R = 0. This process picks up after €2 = 10~%, where the energies
get very close to the energy E,.q(r:) ~ 4.5396 of the cavitated solution, and with very
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v(R)

I3

Fic. 1. Numerical results for the data in (52).

large slopes close to R = 0. The last column in Table 1 shows the maximum value
of computed phase functions v for the different values of 2. In Figure 1 (left) we
show the computed r approximations for €2 = 1078,107?,10719 which are clearly
converging to the cavitated solution 7.. On the other hand, Figure 1 (right) shows
the corresponding approximations of v restricted to the interval [0,0.04], which are
clearly developing a singularity close to R = 0 to match the corresponding singular
behaviour of the determinants corresponding to the r approximations.

6. Concluding Remarks. From the proof of Theorem 3 it becomes clear that
the critical term in the stored energy function, in relation to the repulsion property,
is the compressibility term, i.e., the function A(:) in (9). This result is the main idea
behind the method proposed in Section 4 and might explain why previous numerical
schemes, such as the element removal method developed by Li and coworkers (see,
e.g., [20]) or the use of “punctured domains” (see, e.g., [36]), have been successful.

As a practical matter, we mention that the numerical routine that one employs to
solve the discrete versions of the minimization of (14) over (15), must be “aggressive”
enough, specially during the early stages of the minimization, to allow for actual
increases in the intermediate approximate energies, which rules out the use of strictly
descent methods. The reason for this is that, when needed, the scheme has to increase
the phase function v in regions where the determinant of the deformation gradient
might become large. To do so, it might be necessary to increase v past 7 in the penalty
function ¢, (cf. (14)), resulting in an increase in the computed energy. One could
try to avoid this by taking initial candidates for v large, but this requires identifying
regions where this is to be done, which in turn presumes knowledge of the location of
the singularities. Although in general one can not assume such knowledge, it might
be the case if the locations of possible flaws in the material are known before hand.

The results in the paper for non-radial problems can be extended to more general
displacement type boundary conditions and for mixed type boundary conditions. We
refer to [28] or [33] for the corresponding technical details.
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Finally we did not address the question of the convergence of the minimizers of the

discretized versions of (14) over (15). Also we need to test the method on more general
problems, like the one for non radially symmetric deformations, and in problems in
which the Lavrentiev phenomenon takes place for boundary value problems in two
dimensional elasticity among admissible continuous deformations. (See [11].) These
questions shall be pursued elsewhere.

Acknowledgement. PNM and JS thank Amit Acharya for helpful discussions in the
course of this work.

REFERENCES

Ambrosio, L., Tortorelli, V.M., Approzimation of functionals depending on jumps by elliptic
functionals via I'~convergence, Commun. Pure Appl. Math. 43(8), 999-1036, 1990.

Ball, J.M., Constitutive inequalities and existence theorems in nonlinear elastostatics, in R.J.
Knops, editor, Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Vol. 1. Pit-
man, 1977.

Ball, J. M., Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity, Phil.
Trans. Royal Soc. London A 306, 557-611, 1982.

Ball, J.M. and Knowles, G., A Numerical Method for Detecting Singular Minimizers, Numer.
Math., 51, 181-197, 1987.

Ball, J.M. and Mizel, V.J., One-dimensional variational problems whose minimizers do not
satisfy the FEuler—Lagrange equations, Arch. Rat. Mech. Anal., 90 (1985),325-388.

Buttazzo, G. and Belloni, M. (1995). A Survey on Old and Recent Results about the
Gap Phenomenon in the Calculus of Variations. In: Lucchetti, R., Revalski, J. (eds),
Recent Developments in Well-Posed Variational Problems, Mathematics and Its Applica-
tions, vol 331. Springer, Dordrecht.

Conway, J. B., A course in functional analysis, Spinger Verlag, New York, 1990.

Evans, L.C and Gariepy, R.F., Some remarks concerning quasiconvezxity and strong conver-
gence, Proc. R. Soc. Ed. 106 (2011), 53-61.

Evans, L.C and Gariepy, R.F., Measure theory and fine properties of functions, CRC Press,
Taylor and Francis Group, New York, 2016.

Ferriero, A., The weak repulsion property, J. Math. Pures Appl. 88, 379-388, 2007.

Foss, M., Hrusa, W. J., and Mizel, V. J., The Lavrentiev gap phenomenon in nonlinear elas-
ticity, Arch. Rational Mech. Anal., 167, 337-365, 2003.

Halmos, P. R., Measure theory, Springer-Verlag, New York, 1974.

Hecht, F., New development in FreeFem++-, J. Numer. Math., 20, No. 3-4, 251-265, 2012.

Henao, D., Mora-Corral, C. and Xu, X., I'-convergence approximation of fracture and cavita-
tion in nonlinear elasticity, Arch. Rational Mech. Anal. 216, 813-879, 2015.

Henao, D. and Xu, .X., An efficient numerical method for cavitation in nonlinear elasticity,
Mathematical Models and Methods in Applied Sciences, 21, 1733-1760, 2011.

Hewitt, E. and Stromberg, K., Real and abstract analysis, Springer-Verlag, New York, 1975.

Horgan, C., Void nucleation and growth for compressible non-linearly elastic materials: An
example, International Journal of Solids and Structures, 29, 279-291, 1992.

Lavrentiev, M., Sur quelques problemes du calcul des variations, Ann. Mat. Pura Appl. 4,
107-124, 1926.

Li, Z., Element Removal Method for Singular Minimizers in Variational Problems Involving
Lavrentiev Phenomenon, Proc. Roy. Soc. Lond., A, 439, 131-137, 1992.

Li, Z., Element Removal Method for Singular Minimizers in Problems of Hyperelasticity, Math.
Models and Methods in Applied Sciences, Vol. 5, No. 3, 387-399, 1995.

Lian, Y. and Li, Z., A dual-parametric finite element method for cavitation in nonlinear elas-
ticity, Journal of Computational and Applied Mathematics, Vol. 236, 834—842, 2011.
Lian, Y. and Li, Z., A numerical study on cavitations in nonlinear elasticity — defects and
configurational forces, Mathematical Models and Methods in Applied Sciences, 21, 2551—

2574, 2011.

Lieb, E. M. and Loss, M., Analysis, Graduate Studies in Mathematics, American Mathematical
Society, 2001.

Lopes Filho, M. C. and Nussenzveig Lopes, H. J., Pointwise Blow-up of Sequences Bounded in
L', Journal of Mathematical Analysis and Applications 263, 447-454, 2001.

This manuscript is for review purposes only.



878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898

THE REPULSION PROPERTY IN NONLINEAR ELASTICITY 27

Modica, L., The gradient theory of phase transitions and the minimal interface criterion, Arch.
Rational Mech. Anal., 123-142, 1987.

Miiller, S., A remark on the distributional determinant, C. R. Acad. Sci. Paris, Ser. I, 311
(1990) 13-17.

Miiller, S., On the singular support of the distributional determinant, Inst. H. Poincare Anal.
Non Lineaire, 10 (1993) 657-696.

Miiller, S. and Spector, S. J., An existence theory for monlinear elasticity that allows for
cavitation, Arch. Rational Mech. Anal. 131 (1995), 1-66.

Negrén-Marrero, P. V., A Numerical Method for Detecting Singular Minimizers of Multidi-
mensional Problems in Nonlinear Elasticity, Numerische Mathematik, 58, 135-144, 1990.

Ogden, R. W., Large deformation isotropic elasticity: on the correlation of theory and experi-
ment for incompressible rubberlike solids], Proc. Roy. Soc. London, A326:565-584, 1972.

Ogden, R. W., Large deformation isotropic elasticity: on the correlation of theory and experi-
ment for compressible rubberlike solids], Proc. Roy. Soc. London, A328:567-583, 1972.

Royden, H. L., Real Analysis, Macmillan Publishing CO., Inc., New York, 1968.

Sivaloganathan, J. and Spector, S. J., On the existence of minimisers with prescribed singular
points in nonlinear elasticity, J. Elasticity 59 (2000), 83-113.

Sivaloganathan, J. and Spector, S. J., On the optimal location of singularities arising in vari-
ational problems of nonlinear elasticity, J. Elasticity 58 (2000), 191-224.

Sivaloganathan, J. and Spector, S. J., A wvariational approach to modelling initiation of frac-
ture in nonlinear elasticity, in Asymptotics, singularities and homogenisation in problems
of mechanics, Proceedings of the IUTAM Symposium in Liverpool, July 2002, ed. A.B.
Movchan, Kluwer 2003.

Sivaloganathan, J., Spector, S. J. and Tilakraj, V., The convergence of regularised minimisers
for cavitation problems in nonlinear elasticity, SITAM Journal of Applied Mathematics, 66,
736-757, 2006.

Spector, S. J., Linear deformations as global minimizers in nonlinear elasticity, Q. Appl. Math.,
32, 59-64, 1994.

This manuscript is for review purposes only.



