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PABLO V. NEGRÓN–MARRERO∗ AND JEYABAL SIVALOGANATHAN†3

Abstract. For problems in the Calculus of Variations that exhibit the Lavrentiev phenomenon, it4
is known that a repulsion property may hold, that is, if one approximates the global minimizer in these5
problems by smooth functions, then the approximate energies will blow up. Thus, standard numerical6
schemes, like the finite element method, may fail when applied directly to these types of problems.7
In this paper we prove that a repulsion property holds for variational problems in three dimensional8
elasticity that exhibit cavitation. In addition, we propose a numerical scheme that circumvents the9
repulsion property, which is an adaptation of the Modica and Mortola functional for phase transitions10
in liquids, in which the phase function is coupled, via the determinant of the deformation gradient,11
to the stored energy functional. We show that the corresponding approximations by this method12
satisfy the lower bound Γ–convergence property in the multi-dimensional, non–radial, case. The13
convergence to the actual cavitating minimizer is established for a spherical body, in the case of14
radial deformations.15
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1. Introduction. One-dimensional problems in the Calculus of Variations that
exhibit the Lavrentiev phenomenon [18] have been well studied (see, e.g., [5], [6]). A
typical result in such problems, is that the infimum of a given integral functional

I(u) =

∫ b

a

L(x, u(x), u′(x)) dx,

on the admissible set of Sobolev functions

Ap = {u ∈W 1,p((a, b)) | u(a) = α, u(b) = β}, p > 1,

is strictly greater than its infimum on the corresponding set of absolutely continuous
functions

A1 = {u ∈W 1,1((a, b)) | u(a) = α, u(b) = β},

i.e., for p > 1,
inf

u∈A1

I(u) < inf
u∈Ap

I(u).

Moreover, it has been shown (see [5, Theorem 5.5]) in a number of cases that if18

the Lavrentiev phenomenon occurs, then a“repulsion property” holds when trying19

to approximate a minimiser by more regular functions: that is, if u0 ∈ A1 is a20

minimiser of I on A1 and (un) ⊂ Ap, p > 1, satisfies un → u0 almost everywhere,21

then I(un) → ∞ as n → ∞. We refer to the interesting paper [10] for results on the22

weak repulsion property for multi–dimensional problems of the Calculus of Variations23

that exhibit the Lavrentiev phenomenon. In particular, it is shown in [10] that for24

any minimizer of a problem that exhibits the Lavrentiev phenomenon, there exists a25

sequence of “smooth” functions converging (strongly) in W 1,p to the minimizer (for26

some p), for which the values of the functional on the sequence tend to infinity. The27
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2 P. V. NEGRÓN–MARRERO AND J. SIVALOGANATHAN

results apply to a general class of functionals but do not take into account the local28

invertibility condition (2) which is a central assumption in models of hyperelasticity.29

The Lavrentiev phenomenon is also known to arise in problems of hyperelasticity in30

which condition (2) is used (cf. [3], [11]).31

In the first part of this paper, we prove in Theorem 3 a repulsion property for32

variational problems in elasticity in Rm (m = 2 or 3) that exhibit cavitation. Our33

result is presented for the class of functionals given by (3), (9) and identifies the34

structure of the stored energy function which gives rise to the repulsion property. We35

show that, when approximating any finite-energy cavitating deformation u ∈ W 1,p,36

p ∈ (m−1,m) (not necessarily a minimiser) by a sequence of non-cavitating deforma-37

tions (un) converging weakly to u inW 1,p, the energy of the sequence (un) necessarily38

diverges to infinity. This result does not appear to have been noted previously and39

has implications for the design of numerical methods to detect cavitation instabilities40

in nonlinear elasticity. In particular, from the proof of Theorem 3, it becomes evident41

that the critical term in the stored energy function, in relation to the repulsion prop-42

erty, is the compressibility term (the h(·) term in (9)). We also note that our version of43

the repulsion property extends previous versions in that the approximating sequence44

of more regular deformations is allowed to lie in the same Sobolev space as the limit45

cavitating deformation and we only assume weak convergence of the sequence to the46

limit deformation.47

The numerical aspects of computing cavitated solutions are challenging due to the48

singular nature of such deformations. The work of Negrón–Marrero [29] generalized49

to the multidimensional case of elasticity a method introduced by Ball and Knowles50

[4] for one dimensional problems, which is based on a decoupling technique that51

detects singular minimizers and avoids the Lavrentiev phenomenon. The convergence52

result in [29] involved a very strong condition on the adjoints of the finite element53

approximations which among other things excluded cavitated solutions. The element54

removal method introduced by Li ([19], [20]) improves upon this by penalizing or55

excluding the elements of the finite element grid where the deformation gradient56

becomes very large. We refer also to the works of Henao and Xu [15] and Lian and57

Li ([21], [22]).58

Motivated by the result in Theorem 3, we propose in Section 4 a numerical scheme59

for computing cavitating deformations that avoids or works around the repulsion60

property by using nonsingular or smooth approximations. The idea is to introduce61

a decoupling or phase function on the determinant of the competing deformations,62

together with an extra term in the energy functional that forces the phase function to63

assume either small or very large values, and penalizes for the corresponding transition64

regions. More specifically, if W (F) = W̃ (F) + h(detF) represents the stored energy65

function of the material of the body occupying the region Ω, where W̃ and h satisfy66

certain growth conditions (cf. (10), (11)), then our proposed functional is given by67 ∫
Ω

[
W̃ (∇u(x)) + h(det∇u(x)− v(x))

]
dx68

+
∫
Ω

[
εα

α ∥∇v(x)∥α + 1
qεq ϕτ (v(x))

]
dx,(1)69

where τ > 0 and ε > 0 are approximation parameters, α > 1, 1
α + 1

q = 1, and70

ϕτ : R → [0,∞) is a C1 function such that the support of ϕτ is [0, τ ] and ϕτ > 0 on71

(0, τ).72

The interpretation of the phase function in this model is that, in regions in which73

the phase function is large, the material can undergo large volume changes without74
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THE REPULSION PROPERTY IN NONLINEAR ELASTICITY 3

a significant increase in its stored energy (one could interpret this as energetically75

allowing a ‘change of phase,’ analogous to the formation of vapour-filled cavities in a76

fluid undergoing cavitation under a large negative pressure).77

The term in this functional involving the function ϕτ , is a variant of the cor-78

responding term in the Modica and Mortola functional considered in [25] for phase79

transitions in liquids, and it penalizes for regions where the phase function v is posi-80

tive but less than τ , but does not penalize for values of v greater than τ . This phase81

function, which in addition is required to satisfy the constraints 0 ≤ v < det∇u, is82

now coupled to the mechanical energy through the compressibility term h. One major83

advantage of the proposed numerical scheme based on this functional is that in the84

limit, as τ → ∞ and ε → 0+, the phase function v marks or detects automatically85

those regions where fractures or cavitation may take place. For small ϵ, the second in-86

tegral term in (1) approximates the surface area of the boundary between the regions87

in which the phase function v is zero or larger than τ , and hence models a ”surface88

energy”.89

In Theorems 7 and 13 we show that our proposed scheme has the lower bound90

Γ–convergence property. Moreover, if (uετ , vετ ) denotes a minimizer of (1), then for91

a subsequence with τ → ∞ and ε→ 0+, (uετ ) converges weakly in W 1,p to a function92

u∗ whose distributional determinant is a positive Radon measure. The (vετ ) converge93

in M(Ω) (the space of signed Radon measures on Ω) to the singular part of this94

measure and (det∇uετ − vετ ) converges in L1(Ω) to det∇u∗. The Radon measure95

mentioned above characterizes the points or regions in the reference configuration96

where discontinuities of cavitation or fracture type can occur.97

Further refinements of these results, which includes a result along the lines of98

an upper bound Γ– convergence property (Theorem 15), are discussed in Section 599

for radial deformations of a spherical body. In Theorem 15 we show that for large100

boundary displacements, given a sequence (τj) with τj → ∞, one can construct a101

sequence (εj) with εj → 0 and a corresponding sequence of admissible function pairs102

of the specialization of (1) to radial functions, such that the corresponding decoupled103

energies converge to the energy of the cavitating radial minimizer. Using this together104

with our previous lower bound Γ–convergence result, we then prove in Theorem 16105

that the approximations of the proposed decoupled–penalized method converge to the106

radial cavitating solution. We also show that the minimizers of the penalized func-107

tionals (cf. (31)) satisfy the corresponding versions of the Euler–Lagrange equations108

and present some numerical simulations.109

Our approach contrasts with that of Henao, Mora–Corral, and Xu [14] who employ110

two phase functions v and w, with the v coupled to the mechanical energy as a111

factor multiplying the original stored energy function, and w defined on the deformed112

configuration. The extra terms are of the Ambrosio–Tortorelli [1] type for v and of the113

Modica–Mortola type for w. As the approximation parameter ε in their functional114

goes to zero, these extra terms in the energy functional allow for the approximation115

of deformations that can exhibit cavitation or fracture. Our approach in this paper116

clearly identifies and highlights the role of the compressibility term h in the energy117

functional (3) as the source of the repulsion property in problems exhibiting cavitation.118

2. Background. Let Ω ⊂ Rm (m = 2 or m = 3) denote the region occupied119

by a nonlinearly elastic body in its reference configuration. A deformation of the120

body corresponds to a map u : Ω → Rm, u ∈ W 1,1(Ω), that is one-to-one almost121

everywhere and satisfies the condition122

(2) det∇u(x) > 0 for a.e. x ∈ Ω.123
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4 P. V. NEGRÓN–MARRERO AND J. SIVALOGANATHAN

In hyperelasticity, the energy stored under such a deformation is given by124

(3) E(u) =

∫
Ω

W (∇u(x)) dx,125

where W : Mm×m
+ → [0,∞) is the stored energy function of the material and Mm×m

+126

denotes the set of real m ×m matrices with positive determinant. We consider the127

displacement problem in which we require128

(4) u(x) = uh(x) for x ∈ ∂Ω, uh(x) ≡ Ax ,129

where A ∈ Mm×m
+ is fixed. Let Ω ⊂⊂ Ωe, where Ωe is a bounded, open, connected130

set with smooth boundary.131

2.1. The distributional determinant. If u ∈ W 1,p(Ω) satisfies (4), then we132

define its homogeneous extension ue : Ω
e → Rm by133

(5) ue(x) =

{
u(x) if x ∈ Ω,
Ax if x ∈ Ωe\Ω,134

and note that ue ∈W 1,p(Ωe;Rm). For p > m2/(m+ 1),135

(6) Det∇u(ϕ) := −
∫
Ω

1

m
([adj∇u]u) · ∇ϕ dx, ∀ϕ ∈ C∞

0 (Ω),136

is a well-defined distribution. (Here adj∇u denotes the adjugate matrix of ∇u, that is,137

the transposed matrix of cofactors of ∇u.) The definition follows from the well-known138

formula for expressing det∇u as a divergence. (See, e.g., [26] for further details and139

references.)140

Next suppose that u ∈W 1,p(Ω), p > m−1, and that ue satisfies condition (INV)141

(introduced by Müller and Spector in [28]) on Ωe. Then ue ∈ L∞
loc(Ω

e) and hence142

Det(∇u) is again a well-defined distribution. Moreover, it follows from [28, Lemma143

8.1] that if u further satisfies det∇u > 0 a.e. then Det∇u is a Radon measure and144

Det∇u = (det∇u)Lm + µs,(7)145

where µs is singular with respect to Lebesgue measure Lm. We first consider the146

case when µs is a Dirac measure1 of the form αδx0
(where α > 0 and x0 ∈ Ω) which147

corresponds to u creating a cavity of volume α at the point x0. Note that such a148

cavity need not be spherical. Following [33], we fix x0 ∈ Ω and define the set of149

admissible deformations by150

Ax0
= {u ∈W 1,p(Ω) : u|∂Ω = uh, ue satisfies (INV) on Ω,(8)151

det∇u > 0 a.e., Det∇u = (det∇u)Lm + αuδx0
},152

where αu ≥ 0 is a scalar depending on the map u, and δx0 denotes the Dirac measure153

with support at x0. Thus, Ax0 contains maps u that produce a cavity of volume αu154

located at x0 ∈ Ω. We will say that the deformation u ∈ Ax0
is singular if αu > 0.155

1Other assumptions on the support of the singular measure µs may be relevant for modelling
different forms of fracture. See also [27] for further results on the singular support of the distributional
Jacobian.
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THE REPULSION PROPERTY IN NONLINEAR ELASTICITY 5

3. Singular Minimisers, Deformations and the Repulsion Property. In156

this note, for simplicity of exposition, we consider stored energy functions of the form157

(9) W (F) = W̃ (F) + h(detF) for F ∈Mm×m
+ ,158

where W̃ ≥ 0 is W 1,p–quasiconvex and satisfies that159

(10) k1∥F∥p ≤ W̃ (F) ≤ k2[∥F∥p + 1] for F ∈Mm×m
+ , p ∈ (m− 1,m),160

for some positive constants k1, k2, and h(·) is a C2(0,∞) convex function such that161

(11) h(δ) → ∞ as δ → 0+,
h(δ)

δ
→ ∞ as δ → ∞.162

These hypotheses are typically satisfied by many stored energy functions which exhibit163

cavitating minimisers, for example2,164

(12) W (F) = µ∥F∥p + h(detF), µ > 0,165

where h satisfies (11).166

Remark 1. It is well known that, under a variety of hypotheses (see, e.g, [34])167

on the stored energy function, there exists a minimiser of the energy (given by (3))168

on the admissible set Ax0
. Moreover, it is also known that if A is sufficiently large,169

e.g., A = tB for some B ∈ Mm×m
+ with t > 0 sufficiently large, then any minimiser170

u0 ∈ Ax0 must satisfy αu0 > 0 (see[35]).171

Remark 2. The superlinear growth on the function h in (11), is a standard as-172

sumption in the analysis of cavitation (cf. [3]). It guarantees the existence of cavitat-173

ing minimizers. The function W̃ by itself, because of the W 1,p quasiconvexity, would174

rule out cavitation and thus the Lavrentiev phenomenon. (See also Remark 4.)175

We next prove that if we attempt to approximate, even in a weak sense, a singular176

deformation u0 ∈ Ax0
with finite elastic energy E (given by (3)) by a sequence of177

non-cavitating deformations in Ax0
, then the energy of the approximating sequence178

must necessarily diverge to infinity. In particular, this must also hold in the case of179

approximating a singular energy minimiser. This phenomenon of the energy diverging180

to infinity is essentially due to the presence of the compressibility term h which appears181

in the stored energy function (9).182

Theorem 3. Let p ∈ (m− 1,m). Suppose, for some A ∈Mm×m
+ , that u0 ∈ Ax0

183

is a deformation with finite energy and with αu0
> 0. Suppose further that (un) ⊂ Ax0

184

satisfies αun
= 0, ∀n and that un ⇀ u0 as n → ∞ in W 1,p(Ω). Then E(un) → ∞185

as n→ ∞.186

Proof. We first note that, since ||un|| < const. uniformly in n, it follows by (10)187

that188

constant ≥
∫
Ω

W̃ (∇un) dx uniformly in n.189

We next claim that for any R > 0 such that BR(x0) ⊂ Ω we have190 ∫
BR(x0)

det(∇un) dx →
∫
BR(x0)

det(∇u0) dx+ αu0
> 0, as n→ ∞.191

2This stored energy function is a special case of a class proposed by Ogden [30, 31] and is used to
model rubber. The Ogden materials include as special cases the Mooney–Rivlin and neo–Hookean
materials.
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This follows from the facts (see [28, Lemma 8.1]) that192

(Det(∇u0))(BR(x0)) =

∫
BR(x0)

det(∇u0) dx+ αu0
,193

(Det(∇un))(BR(x0)) =

∫
BR(x0)

det(∇un) dx, for all n,194

and that195

(Det(∇un))(BR(x0)) → (Det(∇u0))(BR(x0)) as n→ ∞.196

This last limit follows from classical results on the sequential weak continuity of the197

mapping u → adj(∇u) from W 1,p into L
p

m−1 (see [2, Corollary 3.5]) and the compact198

embedding of W 1,p into Lq
loc for every q ∈ [1,∞) for functions satisfying the (INV)199

condition (see [33, Lemma 3.3]).200

Hence, by Jensen’s Inequality, for all n we have201

E(un) ≥
∫
BR(x0)

W (∇un) dx ≥ |BR(x0)|h

(∫
BR(x0)

det(∇un dx)

|BR(x0)|

)
.202

Hence203

liminfn→∞E(un) dx ≥ lim
n→∞

|BR(x0)|h

(∫
BR(x0)

det(∇un) dx

|BR(x0)|

)
204

= |BR(x0)|h

(∫
BR(x0)

det(∇u0) dx+ αu0

|BR(x0)|

)
.205

Since this holds for all R > 0 sufficiently small, and since αu0 > 0 by assumption, it206

follows by (11) that207

liminfn→∞E(un) = ∞.208

Remark 4. If we replace the mode of convergence in the hypotheses of the above209

Theorem from weak convergence in W 1,p to strong convergence, then it follows by the210

dominated convergence theorem that211

(13)

∫
Ω

W̃ (∇un) dx →
∫
Ω

W̃ (∇u0) dx as n→ ∞.212

Hence, this part of the total energy can be well approximated by nonsingular defor-213

mations but the compressibility term involving h cannot.3214

4. A decoupled method to circumvent the repulsion property. We now215

consider an approximation scheme that avoids or works around the repulsion prop-216

erty. The idea is to introduce a decoupling or phase function v in such a way that217

the difference between the determinant of the approximation and the phase function218

remains well behaved. The modified functional includes as well a penalization term219

3We note if W̃ is uniformly quasiconvex, then the arguments of Evans and Gariepy [8] show
that the converse is also true, i.e., that weak convergence of the sequence (un) to u together with
convergence of the energies (13) implies that sequence (un) converges strongly to u.
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THE REPULSION PROPERTY IN NONLINEAR ELASTICITY 7

on v reminiscent of the one used in the theory of phase transitions, that penalizes if220

the function v is not too large or not too small.221

Let the stored energy function be as in (9). For any τ > 0, let ϕτ : R → [0,∞)222

be a continuous function, strictly positive in (0, τ), and vanishing in R \ (0, τ). For223

ε > 0, we define now the modified functional:224

Iτε (u, v) =

∫
Ω

[
W̃ (∇u(x)) + h(det∇u(x)− v(x))

]
dx225

+

∫
Ω

[
εα

α
∥∇v(x)∥α +

1

qεq
ϕτ (v(x))

]
dx,(14)226

where α > 1, 1
α + 1

q = 1, and (u, v) ∈ U where227

U = {(u, v) ∈W 1,p(Ω)×W 1,α(Ω) : u|∂Ω = uh, ue satisfies (INV) on Ω,(15)228

det∇u > v ≥ 0 a.e., Det∇u = (det∇u)Lm, v|∂Ω = 0}.229

The coupled h term in this functional, because of (11), penalizes for large det∇u and230

v small. The term depending on ∇v, for ε small, allows for large phase transitions231

in the function v. On the other hand, the term with the function ϕτ for ε small,232

forces the regions where v is positive but less than τ , to have small measure, i.e. to233

“concentrate”.234

We now show that for any given τ, ε > 0, the functional (14) has a minimizer over235

U .236

Lemma 5. Assume that W̃ (·) and h(·) are nonnegative and that (10), (11) hold.237

For each τ > 0 and ε > 0 there exists (uτ
ε , v

τ
ε ) ∈ U such that238

Iτε (u
τ
ε , v

τ
ε ) = inf

U
Iτε (u, v).239

Proof. Since W̃ (·) and h(·) are nonnegative and the pair (uh, 0) belongs to U , it240

follows that infU I
τ
ε (u, v) exists and (cf. (9))241

(16) inf
U
Iτε (u, v) ≤ Iτε (u

h, 0) =

∫
Ω

W (∇uh) dx ≡ ℓ.242

Let {(uk, vk)} be an infimizing sequence. From the above inequality, we can assume243

that Iτε (uk, vk) ≤ ℓ for all k. It follows that244 ∫
Ω

W̃ (∇uk(x)) dx ≤ ℓ, ∀k,245

which together with (10) implies that for a subsequence {uk} (not relabeled), uk ⇀ uτ
ε246

in W 1,p(Ω), with uτ
ε = uh over ∂Ω and uτ

ε satisfying the (INV) condition on Ω.247

From (16) we get as well that248 ∫
Ω

h(det∇uk(x)− vk(x)) dx ≤ ℓ, ∀k.249

This together with (11) and de la Vallée Poussin criteria, imply that for a subsequence250

(not relabeled), det∇uk − vk ⇀ wτ
ε in L1(Ω), with wτ

ε > 0 a.e. Once again, (16)251

implies (since ε is fixed) that {vk} is bounded in W 1,α(Ω), and thus for a subsequence252

(not relabeled) that vk ⇀ vτε in W 1,α(Ω), with vτε ≥ 0 a.e. and vτε = 0 on ∂Ω. Thus253
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8 P. V. NEGRÓN–MARRERO AND J. SIVALOGANATHAN

we can conclude that det∇uk ⇀ wτ
ε + vτε in L1(Ω). Since Det∇uk = (det∇uk)Lm,254

we have that (see [36, proof of Lemma (4.5)])255

det∇uk
∗
⇀ Det∇uτ

ε in Ω,256

from which it follows that Det∇uτ
ε = (wτ

ε + vτε )Lm. Since wτ
ε + vτε ∈ L1(Ω), we have257

from [26, Theorem 1] that258

Det∇uτ
ε = (det∇uτ

ε )Lm, det∇uτ
ε = wτ

ε + vτε .259

Thus (uτ
ε , v

τ
ε ) ∈ U . Finally, since260

uk ⇀ uτ
ε in W 1,p(Ω), vk ⇀ vτε in W 1,α(Ω),261

det∇uk − vk ⇀ wτ
ε = det∇uτ

ε − vτε in L1(Ω),262

we have by the sequential weak lower semi–continuity of Iτε , that263

Iτε (u
τ
ε , v

τ
ε ) ≤ lim

k→∞
Iτε (uk, vk) = inf

U
Iτε (u, v),264

and thus265
Iτε (u

τ
ε , v

τ
ε ) = inf

U
Iτε (u, v).266

Our next result shows that if A in (4) is not too “large”, then the minimizer (uτ
ε , v

τ
ε )267

of Lemma 5 must be (uh, 0).268

Proposition 6. Assume that the function W̃ is quasiconvex. If A in (4) is such269

that h′(detA) ≤ 0, then the global minimizer (uτ
ε , v

τ
ε ) of Iτε (·, ·) over U is given by270

u = uh and v = 0 in Ω.271

Proof. Note that for any (u, v) ∈ U , we have272

Iτε (u, v) ≥
∫
Ω

[
W̃ (∇u(x)) + h(det∇u(x)− v(x))

]
dx.273

Since Det∇u = (det∇u)Lm and W̃ is quasiconvex, we have that274 ∫
Ω

W̃ (∇u(x))dx ≥
∫
Ω

W̃ (∇uh(x))dx.275

In addition, by the convexity of h(·) we get:276

h (det∇u(x)− v(x)) ≥ h(detA) + h′(detA) (det∇u(x)− v(x)− detA) .277

Hence278 ∫
Ω

h (det∇u(x)− v(x)) dx ≥
∫
Ω

h(detA)dx− h′(detA)

∫
Ω

v(x)dx279

+h′(detA)

∫
Ω

(det∇u(x)− detA) dx280

Again, since Det∇u = (det∇u)Lm, we have that281 ∫
Ω

(det∇u(x)− detA) dx = 0.282
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Using now that h′(detA) ≤ 0 and that v ≥ 0, we get283 ∫
Ω

h (det∇u(x)− v(x)) dx ≥
∫
Ω

h(detA)dx.284

Combining this with the two inequalities at the beginning of this proof, we get that285

Iτε (u, v) ≥
∫
Ω

[
W̃ (∇uh(x)) + h(det∇uh(x))

]
dx = Iτε (u

h, 0).286

Since (u, v) is arbitrary in U and (uh, 0) ∈ U , we have that (uh, 0) is the global287

minimizer in this case.288

Let M(Ω) be the space of signed Radon measures on Ω. If µ ∈ M(Ω), then289

⟨µ, v⟩ =
∫
Ω

v dµ, ∀ v ∈ C0(Ω),290

where C0(Ω) denotes the set of continuous functions with compact support in Ω.291

Moreover292

∥µ∥M(Ω) = sup
{
|⟨µ, v⟩| : v ∈ C0(Ω), ∥v∥L∞(Ω) ≤ 1

}
.293

A sequence {µn} in M(Ω) converges weakly ∗ to µ ∈ M(Ω), denoted µn
∗
⇀ µ, if294

lim
n→∞

⟨µn, v⟩ = ⟨µ, v⟩, ∀ v ∈ C0(Ω).295

Note that any function in L1(Ω) can be regarded as belonging to M(Ω) with the296

same norm. It follows from this observation and the weak compactness of M(Ω),297

that if {vn} is a bounded sequence in L1(Ω), then it has a subsequence {vnk
} such298

that vnk

∗
⇀ µ where µ ∈ M(Ω).299

For any subset E of Ω, we define its (Caccioppoli) perimeter in Ω by300

P (E,Ω) = sup

{∫
Ω

χE(x) divϕ(x) dx : ϕ ∈ C1
0 (Ω;Rm), ∥ϕ∥L∞(Ω) ≤ 1

}
.301

E is said to have finite perimeter in Ω if P (E,Ω) <∞. For a set of finite perimeter,302

it follows from the Gauss–Green Theorem (cf. [9, Thm. 5.16]) that303

P (E,Ω) = Hm−1(∂∗E),304

where ∂∗E is the so called measure theoretic boundary of E.305

We now study the convergence of the minimizers in Lemma 5 as ε → 0. We306

employ the following notation:307

Hτ (s) =

∫ s

0

ϕ1/qτ (t) dt.308

Using this we can now prove the following:309

Theorem 7. Assume a stored energy of the form (9)–(11) and that p ∈ (m −310

1,m). Let (uτ
ε , v

τ
ε ) ∈ U be a minimizer of Iτε over U . Then for any sequence εj → 0,311

the sequences
{
uτ
j

}
and

{
vτj
}
, where uτ

j = uτ
εj and vτj = vτεj , have subsequences312 {

uτ
jk

}
and

{
vτjk
}
with uτ

jk
⇀ uτ in W 1,p(Ω) and vτjk

∗
⇀ ντ in M(Ω), where ντ is a313

nonnegative Radon measure. Moreover uτ |∂Ω = uh, uτ
e satisfies (INV) on Ω, and314

Det∇uτ = (det∇uτ )Lm + ντs ,315
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10 P. V. NEGRÓN–MARRERO AND J. SIVALOGANATHAN

where det∇uτ ∈ L1(Ω) with det∇uτ > 0 a.e. in Ω and ντs is the singular part of316

ντ with respect to Lebesgue measure. If we let v̂τjk(x) = min
{
vτjk(x), τ

}
, then

{
v̂τjk
}

317

has a subsequence converging in L1(Ω) to a function gτ that assumes only the values318

0 and τ a.e., and319

320

(17) lim
k→∞

Iτεjk
(uτ

jk
, vτjk) ≥

∫
Ω

[
W̃ (∇uτ (x)) + h(det∇uτ (x)− ωτ (x))

]
dx321

+Hτ (τ)P (Bτ ,Ω),322323

where ωτ ∈ L1(Ω) is the derivative of ντ with respect to Lebesgue measure and satisfies324

that det∇uτ > ωτ ≥ 0 a.e., and Bτ = {x ∈ Ω : gτ (x) = 0}.325

Proof. The inequality326

(18) Iτεj (u
τ
j , v

τ
j ) ≤

∫
Ω

W (∇uh) dx,327

together with (10) and Poincaré’s inequality, imply the existence of a subsequence328 {
uτ
jk

}
converging weakly to a function uτ in W 1,p(Ω). Clearly uτ |∂Ω = uh, and that329

uτ
e satisfies (INV) on Ω follows from [28, Lemma 3.3]. From (11) and de la Vallée330

Poussin criteria, it follows that there is a subsequence (with indexes written as for the331

previous one)
{
det∇uτ

jk
− vτjk

}
such that332

(19) det∇uτ
jk

− vτjk ⇀ wτ , in L1(Ω).333

Since det∇uτ
jk

− vτjk > 0 a.e. on Ω, the first condition in (11) implies that we must334

have that wτ > 0 a.e. on Ω. Now from det∇uτ
jk
> vτjk ≥ 0, it follows that335 ∫

Ω

vτjk dx ≤
∫
Ω

det∇uτ
jk
dx = |uh(Ω)|.336

Thus
{
vτjk
}

is bounded in L1(Ω). Hence there exists ντ ∈ M(Ω) such that (for a337

subsequence denoted the same) vτjk
∗
⇀ ντ in M(Ω). Since vτjk ≥ 0 for all k, the338

measure ντ must be non–negative. Combining this with (19) we get that339

(det∇uτ
jk
)Lm ∗

⇀ wτLm + ντ in Ω.340

Since Det∇uτ
jk

= (det∇uτ
jk
)Lm , we have that (see [36, proof of Lemma 4.5])341

(det∇uτ
jk
)Lm ∗

⇀ Det∇uτ in Ω,342

from which it follows that Det∇uτ = wτLm + ντ . By the Lebesgue decomposition343

theorem, ντ = ντac+ ν
τ
s where ντac is absolutely continuous with respect to Lm and ντs344

is singular with respect to Lm. Thus Det∇uτ = wτLm+ντac+ν
τ
s . Since w

τLm+ντac is345

absolutely continuous with respect to Lm, it follows by the uniqueness in the Lebesgue346

decomposition theorem, that wτLm+ντac is the absolutely continuous part of Det∇uτ347

with respect to Lm. Since p > m− 1 and uτ
e satisfies (INV) on Ω, the conclusions of348

Theorem 1 in [26] hold. In particular, from Remark 2 of that theorem, we get that the349

absolutely continuous part of Det∇uτ is (det∇uτ )Lm. Thus, by the uniqueness in350

the Lebesgue decomposition theorem, we must have that (det∇uτ )Lm = wτLm+ντac.351

Hence Det∇uτ = (det∇uτ )Lm+ντs and det∇uτ = wτ+ωτ where ωτ is the derivative352
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of ντ with respect to Lm. Since wτ > 0 and ωτ ≥ 0 a.e., it follows that det∇uτ >353

ωτ ≥ 0 a.e.354

Since ϕτ is nonnegative and supp(ϕτ ) ⊂ (0, τ), it follows that
{
Hτ (v

τ
jk
)
}

is355

bounded in L1(Ω). Moreover356 ∫
Ω

[
εαjk
α

∥∇vτjk(x)∥
α +

1

qεqjk
ϕτ (v

τ
jk
(x))

]
dx ≥

∫
Ω

∥∇[Hτ (v
τ
jk
(x))]∥ dx.357

If we let v̂τjk(x) = min
{
vτjk(x), τ

}
, then358 ∫

Ω

∥∇[Hτ (v
τ
jk
(x))]∥ dx =

∫
Ω

∥∇[Hτ (v̂
τ
jk
(x))]∥ dx359

It follows
{
Hτ (v̂

τ
jk
)
}
is bounded in BV (Ω) (cf. [25]) and thus it has a subsequence360

converging in L1(Ω). Since v̂τjk : Ω → [0, τ ], we get that v̂τjk → gτ in L1(Ω). In361

addition362 ∫
Ω

ϕτ (v
τ
jk
(x)) dx =

∫
Ω

ϕτ (v̂
τ
jk
(x)) dx,363

lim
k→∞

∫
Ω

ϕτ (v
τ
jk
(x)) dx = 0, (cf. (18)),364

from which we get that
∫
Ω
ϕτ (g

τ (x)) dx = 0, i.e., that gτ assumes only the values 0365

or τ a.e. Also366
367

lim
k→∞

∫
Ω

[
εαjk
α

∥∇vτjk(x)∥
α +

1

qεqjk
ϕτ (v

τ
jk
(x))

]
dx ≥368

lim
k→∞

∫
Ω

∥∇[Hτ (v̂
τ
jk
(x))]∥ dx ≥

∫
Ω

∥∇[Hτ (g
τ (x))]∥ dx = Hτ (τ)P (Bτ ,Ω),369

370

where for the second inequality we used the lower semicontinuity property of the371

variation measure (cf. [9, Thm. 5.2]), and the last equality follows from the Fleming–372

Rishel formula (cf. [25]). Finally combining this result with those from the first part373

of this proof and the weak lower semicontinuity property of the mechanical part of374

the functional (14), we get that (17) follows.375

Note that Theorem 7 in a sense falls short of fully characterizing any possible376

singular behaviour in a minimizer u∗ of the energy functional (3). Since the param-377

eter τ is fixed, the phase functions are not “forced” to follow or mimic the singular378

behaviour in u∗ once they have crossed the barrier τ . Moreover, the actual location of379

the set of possible singularities in u∗ has not been fully resolved due to the presence380

of the function ωτ in the h–term of the energy functional. Thus we need to study the381

behaviour of the functions uτ , ωτ , gτ , and the measures ντ as τ → ∞.382

In the sequel we employ some of the notation within the proof of Theorem 7 as383

well as the following: given τ1 > 0 and a sequence {εj} converging to zero, we apply384

Theorem 7 to get a subsequence {ε1,r} of {εj} with the corresponding sequences of385

functions {u1,r}, {v1,r}, etc. We keep denoting the limiting functions and measures by386

uτ1 , ντ1 , etc. Now given any τk with k > 1, we apply Theorem 7 to the subsequence387

{εk−1,r} obtained from τk−1, to get a new subsequence {εk,r} of {εk−1,r}, and so388

on. After relabeling, we denote by {uk,r}, {vk,r}, etc., the sequences obtained from389

Theorem 7 by this process for any given τk.390
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12 P. V. NEGRÓN–MARRERO AND J. SIVALOGANATHAN

Lemma 8. The sequences {gτk} and {ντk} have subsequences (not relabelled) such391

for some ν, ν∗ ∈ M(Ω), we have gτk
∗
⇀ ν and ντk

∗
⇀ ν∗ in M(Ω).392

Proof. Note that393 ∫
Ω

v̂k,r(x) dx ≤
∫
Ω

vk,r(x) dx ≤ |uh(Ω)|,394

and since v̂τk,r → gτk in L1(Ω) as r → ∞, it follows that395

(20)

∫
Ω

gτk(x) dx ≤ |uh(Ω)|, ∀k.396

Thus for some subsequence of {τk} (not relabelled), we have that gτk
∗
⇀ ν in M(Ω),397

for some ν ∈ M(Ω).398

Also, since vk,r
∗
⇀ ντk as r → ∞, we get that for any ϕ ∈ C0(Ω), ∥ϕ∥L∞(Ω) ≤ 1,399

we have that400

lim
r→∞

∫
Ω

vk,r(x)ϕ(x) dx = ⟨ντk , ϕ⟩.401

But402 ∣∣∣∣∫
Ω

vk,r(x)ϕ(x) dx

∣∣∣∣ ≤ ∫
Ω

vk,r(x) dx ≤ |uh(Ω)|.403

Letting r → ∞ we get that |⟨ντk , ϕ⟩| ≤ |uh(Ω)|, and hence that ∥ντk∥M(Ω) ≤ |uh(Ω)|.404

Thus by taking a subsequence of {τk} (relabeled the same), we have ντk
∗
⇀ ν∗ in405

M(Ω), for some ν∗ ∈ M(Ω).406

From these results and [7, Thm. 5.1], we get the following:407

Lemma 9. The sequences {v̂k,r} and {vk,r} have subsequences {v̂k} and {vk} re-408

spectively, where v̂k = v̂k,rk and vk = vk,rk with rk → ∞, such that v̂k
∗
⇀ ν and409

vk
∗
⇀ ν∗ in M(Ω), as τk → ∞.410

The two measures ν and ν∗ in general are not equal. However, we will show that both411

are singular with respect to Lm and both are concentrated over the same set. To412

show this we need the following assumption on the functions {ϕτ}: given 0 < a < b,413

there exists ϱ > 0 and τ0 > b such that414

(21) ϕτ (v) ≥ ϱ, ∀ a ≤ v ≤ b,415

and τ ≥ τ0. This condition rules out the possibility that
∫
Ω
ϕτk(vk) dx → 0 as k → ∞,416

without the functions {vk} concentrating as k → ∞.417

Proposition 10. Let condition (21) hold. Then there exist sets B and D disjoint418

such that Ω = B ∪D, where |D| = 0 and ν∗(B) = ν(B) = 0, i.e., both ν and ν∗ are419

singular with respect to Lebesgue measure Lm.420

Proof. For each integer k ≥ 1, let421

Ek = {x ∈ Ω : vk(x) > τk} .422

Provided τk ≥ k2, we have that |Ek| ≤ C
k2 for some positive constant C independent423

of k. Hence
∑

k |Ek| < ∞ and by the Borel–Cantelli lemma we get that |D| = 0,424

where425

D =

∞⋂
n=1

∞⋃
k=n

Ek.426
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The set D, if nonempty, is precisely where the sequence {vk} becomes unbounded. If427

we let B = Dc, where Dc = Ω \ D, then B has full measure |Ω|. Note that we can428

also write D as429

D =

∞⋂
n=1

∞⋃
k=n

{x ∈ Ω : vk(x) > n} .430

Thus431

B =

∞⋃
n=1

Cn, Cn =

∞⋂
k=n

{x ∈ Ω : vk(x) ≤ n} .432

It follows from (14) and (16), that433

lim
k→∞

∫
Ω

ϕτk(vk(x)) dx = 0.434

Since on Cn, we have vk ≤ n for all k ≥ n, it follows from the above limit and435

condition (21) that vk → 0 a.e. on Cn. Thus by the Bounded Convergence Theorem,436

ν∗(Cn) = lim
k→∞

∫
Cn

vk(x) dx = 0.437

Hence438

ν∗(B) ≤
∞∑

n=1

ν∗(Cn) = 0.439

Moreover, as v̂k ≤ vk, we get that ν(B) ≤ ν∗(B), and thus that ν∗(B) = ν(B) = 0.440

Our next result establishes a connection between the limit (as τ → ∞) of the sets441

{Bτ} in Theorem 7 with the set B in Proposition 10.442

Proposition 11. Let Bk = {x ∈ Ω : gτk(x) = 0} and443

B̂ = lim
k
Bk =

∞⋃
n=1

∞⋂
k=n

Bk = lim
n

∞⋂
k=n

Bk.444

Then |B̂| = |B| = |Ω| and B ⊂ B̂ ∪ U with |U | = 0. Moreover445

(22) P (B,Ω) ≤ lim
k
P (Bk,Ω).446

Proof. Since gτk assumes only the values 0 or τk, we have from (20), and provided447

τk ≥ k2, that |B̂c| = 0 and thus that B̂ has full measure |Ω|.448

From [24, Prop. 1] we have that the sequence {gτk} converges to zero a.e. on Ω.449

In particular, {gτk} converges to zero a.e. on each Cn, where Cn is as in the proof of450

Proposition 10. Recall that on Cn we have that vk ≤ n for all k ≥ n. If we let kn be451

such that τk > n for all k ≥ kn, then we have that gτk = 0 a.e. on Cn for all k ≥ kn,452

that is Cn \ Un ⊂ Ĉkn
where |Un| = 0 and453

Ĉkn
=

∞⋂
k=kn

Bk.454

From this we get that Cn ⊂ Ĉkn
∪ Un, from which it follows that B ⊂ B̂ ∪ U with455

|U | = 0.456
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14 P. V. NEGRÓN–MARRERO AND J. SIVALOGANATHAN

For the last part of the proposition, since B̂ = limk Bk it follows that χB̂ =457

limk χBk
. Thus for any ϕ ∈ C1

0 (Ω;Rn), with ∥ϕ∥L∞(Ω) ≤ 1, we have that (cf. [32,458

Ex. 12, Pag. 90])459 ∫
Ω

χB(x) divϕ(x) dx =

∫
Ω

χB̂(x) divϕ(x) dx460

≤ lim
k

∫
Ω

χBk
(x) divϕ(x) dx ≤ lim

k
P (Bk,Ω),461

from which we get (22).462

We now give the corresponding convergence results for the sequences {uτk} and {ωτk}.463

Proposition 12. Let {τk} be a sequence such that τk → ∞. Then the se-464

quences {uτk} and {ωτk} have subsequences relabeled the same, such that uτk ⇀ u∗465

in W 1,p(Ω), det∇uτk ⇀ det∇u∗ in L1(Ω), and ωτk → 0 in L1(Ω). Moreover, the466

function u∗ is such that u∗|∂Ω = uh, u∗
e satisfies (INV) on Ω, and467

(23) Det∇u∗ = (det∇u∗)Lm + ν∗,468

with det∇u∗ ∈ L1(Ω) and det∇u∗ > 0 a.e. in Ω.469

Proof. Since, by Lemma 8, ντk
∗
⇀ ν∗, we have that ντk(B) → ν∗(B) = 0, where470

B is as in Proposition 10. As ωτk is the derivative of ντk , we get that471 ∫
B

ωτk dx ≤ ντk(B).472

As ωτk ≥ 0 a.e., the above implies that473

lim
k→∞

∫
B

ωτk dx = 0,474

which implies that ωτk → 0 in L1(Ω), where we used that |B| = |Ω|.475

From (10), (17), (18), and Poincaré’s inequality, we get that for a subsequence of476

{uτk} (not relabeled), we have uτk ⇀ u∗ in W 1,p(Ω) for some function u∗ ∈W 1,p(Ω).477

Clearly u∗|∂Ω = uh, and that u∗
e satisfies (INV) on Ω follows from [28, Lemma 3.3]478

and the fact that each uk satisfies (INV).479

From (11) and de la Vallée Poussin criteria, it follows that there is a subsequence480

(with indexes written as for the previous one) {det∇uτk − ωτk} such that481

det∇uτk − ωτk ⇀ w∗, in L1(Ω).482

Since det∇uτk − ωτk > 0 a.e. on Ω, the first condition in (11) implies that we must483

have that w∗ > 0 a.e. on Ω. Now det∇uτk > ωτk ≥ 0 a.e. on Ω, and since ωτk → 0484

in L1(Ω), we get from the previous convergence that485

det∇uτk ⇀ w∗, in L1(Ω).486

It follows now from [28, Theorem 4.2], that det∇u∗ = w∗. From the proof of Theorem487

7, we have that det∇uτk = wτk +ωτk from which it follows that wτk ⇀ w∗, in L1(Ω).488

Also Det∇uτk = wτkLm+ντk and since Det∇uτk ∗
⇀ Det∇u∗, we get that (23) holds.489

We now have one of the main results of this paper.490
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Theorem 13. Let {τk} and {εr} be sequences such that τk → ∞ and εr → 0+,491

and let (uk,r, vk,r) be a minimizer of Iτkεr over U . Then there exist a subsequence of492

{τk} relabelled the same, and a subsequence {εrk}, such that if (uk, vk) = (uk,rk , vk,rk),493

then uk ⇀ u∗ in W 1,p(Ω) and vk
∗
⇀ ν∗ in M(Ω) as k → ∞. Moreover, with494

Bk = {x ∈ Ω : gτk(x) = 0}, we have that495

(24) lim
k→∞

Iτkεrk
(uk, vk) ≥

∫
Ω

W (∇u∗(x)) dx+ c,496

where497

c = lim
k→∞

Hτk(τk)P (Bk,Ω).498

Proof. The existence and the convergence of the subsequence {vk} with vk =499

vk,rk , follows from the boundedness of {vk,r} in L1(Ω), Theorem 7, Lemma 8, and500

[7, Thm. 5.1]. For the existence and the convergence of the subsequence {uk} with501

uk = uk,rk , it follows from the boundedness of this sequence in W 1,p(Ω) (cf. (18)),502

Theorem 7, Proposition 12, and [7, Thm. 5.1].503

Without loss of generality, we can assume that for each k, the rk is chosen so that504

Iτkεk,rk
(uk,rk , vk,rk) > lim

r→∞
Iτkεk,r

(uk,r, vk,r)−
1

k
.505

We get now using (17) that506

Iτkεk,rk
(uk, vk) ≥

∫
Ω

[
W̃ (∇uτk(x)) + h(det∇uτk(x)− ωτk(x))

]
dx507

+Hτk(τk)P (Bk,Ω)−
1

k
.(25)508

As the energies
{
Iτkεk,rk

(uk, vk)
}

are bounded, the constant c in the statement of509

the theorem must be finite. The result (24) now follows from this, (25), and the510

convergence results in Proposition 12 for the sequences {uτk}, {det∇uτk}, and {ωτk}.511

The measure ν∗ in this theorem, according to Proposition 10, is concentrated512

on the set D which is the complement of B. In addition, by the extended Lebesgue513

Decomposition Theorem (cf [12], [16]), ν∗ is the sum of a discrete measure and a514

continuous one, both singular with respect to Lebesgue measure. The discrete part of515

ν∗ corresponds to points in the reference configuration where singularities of cavitation516

type may occur, while the continuous part corresponds to lower dimensional surfaces517

in the reference configuration where fractures or other type of nonzero dimensional518

singularities might take place. We should mention that by [28, Thm. 8.4], if the519

perimeter P (im(u∗(Ω))) is finite, then ν∗ must be discrete.520

5. The radial problem. For ease of exposition we limit ourselves in this section521

to the case where m = 3. We recall that if W̃ is frame indifferent and isotropic then522

there is a symmetric function Φ̃ such that523

(26) W̃ (F) = Φ̃(v1, v2, v3),524

where v1, v2, v3 are the singular values of the matrix F. For the function h(·) in (11)525

we assume that it is strictly convex so that it has a unique minimum at d0, and that526

(27) h(d) ∼ Cdγ , d→ ∞,527
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16 P. V. NEGRÓN–MARRERO AND J. SIVALOGANATHAN

where γ > 1 and C is some positive constant.528

For Ω equal to the unit ball with center at the origin, the radial deformation529

(28) u(x) =
r(R)

R
x, R = ∥x∥,530

has energy (up to a constant) given by:531

(29) Erad(r) =

∫ 1

0

R2

[
Φ̃

(
r′(R),

r(R)

R
,
r(R)

R

)
+ h

(
r′(R)

(
r(R)

R

)2
)]

dR.532

It is well known (cf. [3], [37]) that for p ∈ (1, 3) in (10), there exists λc > d
1
3
0 such533

that for λ > λc, the minimizer rc of Erad(·) over the set534

(30) Arad =
{
r ∈W 1,1(0, 1) : r′(R) > 0 a.e., r(0) ≥ 0, r(1) = λ

}
,535

exists and has rc(0) > 0.536

With v a radial function now, the modified functional (14) reduces up to a constant537

to:538

Iτε (r, v) =

∫ 1

0

R2

[
Φ̃

(
r′(R),

r(R)

R
,
r(R)

R

)
+ h

(
r′(R)

(
r(R)

R

)2

− v(R)

)]
dR539

+

∫ 1

0

R2

[
εα

α
|v′(R)|α +

1

qεq
ϕτ (v(R))

]
dR,(31)540

and the set U becomes541

Urad = {(r, v) ∈W 1,1(0, 1)×W 1,α(0, 1) : r(0) = 0, r(1) = λ,542

r′(R)(r(R)/R)2 > v(R) ≥ 0 a.e., v(1) = 0}.(32)543

As a special case of Proposition 6, we now have the following result:544

Proposition 14. Assume that the stored enery function (26) is quasiconvex.545

Then for λ ≤ d
1
3
0 , the global minimizer of Iτε (·, ·) over Urad is given by r(R) = λR and546

v(R) = 0 for all R.547

Note that if (r, 0) ∈ Urad, then r(0) = 0, and quasiconvexity implies that548

(33) Iτε (r, 0) ≥ Iτε (λR, 0).549

Moreover, since Iτε (r, 0) = Erad(r), we have that550

(34) Iτε (λR, 0) > Erad(rc), λ > λc.551

In our next result we show that for large boundary displacements λ, given a552

sequence (τj) with τj → ∞, one can construct a sequence (εj) with εj → 0 and553

a corresponding sequence of admissible function pairs for (29) over Arad, such that554

the corresponding decoupled energies converge to the energy of the cavitating radial555

minimizer. Using this together with the lower bound Γ–convergence result of Section556

4, we then prove in Theorem 16 that the approximations of the proposed decoupled–557

penalized method, converge to the radial cavitating solution.558
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Theorem 15. Let λ > λc and γ > 1 be as in (27). Assume that559

(35)

∫ τ

0

ϕτ (u) du = O(τa) as τ → ∞,560

for some a > 1. Then for any τ sufficiently large, there exists ε(τ) > 0 with ε(τ) → 0+561

as τ → ∞, and an admissible pair (r̃τ , ṽτ ) ∈ Urad with ṽτ non–constant, such that562

lim
τ→∞

Iτε(τ)(r̃τ , ṽτ ) = Erad(rc).563

In particular, any minimizer (rτ , vτ ) of I
τ
ε(τ) must have vτ non–constant, and564

(36) lim
τ→∞

Iτε(τ)(rτ , vτ ) ≤ Erad(rc).565

Proof. We now construct (r̃, ṽ), ṽ non constant such that566

Iτε (r̃, ṽ) < Iτ(ε)ε (λR, 0),567

for τ sufficiently large and ε sufficiently small. For any δ > 0 we let568

(37) τ =

(
rc(δ)

δ

)3

− d0.569

Since rc(0) > 0, we have that τ → ∞ as δ → 0+. For δ sufficiently small, we let570

η ∈ (0, δ) and define:571

r̃(R) =

{ [
rc(δ)
δ

]
R , 0 ≤ R ≤ δ,

rc(R) , δ ≤ R ≤ 1,
572

573

ṽ(R) =


τ , 0 ≤ R ≤ δ − η,

τ
η (δ −R) , δ − η ≤ R ≤ δ,

0 , δ ≤ R ≤ 1.

574

For this test pair we have that575

Iτε (r̃, ṽ) =

∫ δ−η

0

R2

[
Φ̃

(
r̃′(R),

r̃(R)

R
,
r̃(R)

R

)
+ h

(
r̃′(R)

[
r̃(R)

R

]2
− ṽ(R)

)]
dR576

+

∫ δ

δ−η

R2

[
Φ̃

(
r̃′(R),

r̃(R)

R
,
r̃(R)

R

)
+ h

(
r̃′(R)

[
r̃(R)

R

]2
− ṽ(R)

)]
dR577

+

∫ 1

δ

R2

[
Φ̃

(
r̃′(R),

r̃(R)

R
,
r̃(R)

R

)
+ h

(
r̃′(R)

[
r̃(R)

R

]2
− ṽ(R)

)]
dR578

+

∫ δ

δ−η

R2

[
εα

α
|ṽ′(R)|α +

1

qεq
ϕτ (ṽ(R))

]
dR ≡ I1 + I2 + I3 + I4.579

From the definition of (r̃, ṽ), it follows that:580

1.

I1 =

∫ δ−η

0

R2

[
Φ̃

(
rc(δ)

δ
,
rc(δ)

δ
,
rc(δ)

δ

)
+ h(d0)

]
dR581
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18 P. V. NEGRÓN–MARRERO AND J. SIVALOGANATHAN

=
(δ − η)3

3

[
Φ̃

(
rc(δ)

δ
,
rc(δ)

δ
,
rc(δ)

δ

)
+ h(d0)

]
.582

By taking583

(38) η = δβ1 , β1 > 1,584

we get from that I1 can be made arbitrarily small with δ.585

2. For the term I2, first note that since586

ṽ(R) ≤ τ =

(
rc(δ)

δ

)3

− d0.587

we have that588

d0 ≤
(
rc(δ)

δ

)3

− ṽ(R) ≤
(
rc(δ)

δ

)3

.589

Since h(·) is increasing on (d0,∞), it follows that590

h

((
rc(δ)

δ

)3

− ṽ(R)

)
≤ h

((
rc(δ)

δ

)3
)
.591

Thus592

I2 =

∫ δ

δ−η

R2

[
Φ̃

(
rc(δ)

δ
,
rc(δ)

δ
,
rc(δ)

δ

)
+ h

((
rc(δ)

δ

)3

− ṽ(R)

)]
dR593

≤
∫ δ

δ−η

R2

[
Φ̃

(
rc(δ)

δ
,
rc(δ)

δ
,
rc(δ)

δ

)
+ h

((
rc(δ)

δ

)3
)]

dR.594

Now595 ∫ δ

δ−η

R2Φ̃

(
rc(δ)

δ
,
rc(δ)

δ
,
rc(δ)

δ

)
dR ≤ ηδ2Φ̃

(
rc(δ)

δ
,
rc(δ)

δ
,
rc(δ)

δ

)
.596

It follows from (10) and (38) that the right hand side of the above inequality597

goes to zero with δ. For the other term in I2 we have:598 ∫ δ

δ−η

R2h

((
rc(δ)

δ

)3
)
dR ≤ C

ηδ2

δ3γ
,599

for some constant C > 0 and where γ > 1 is the growth rate of h(d) as d→ ∞600

(cf. (27)). If we further assume that β1 > 3γ−2, then I2 goes to zero with δ.601

3. Since r̃(R) = rc(R) and ṽ(R) = 0 for δ ≤ R ≤ 1, we have that602

I3 =

∫ 1

δ

R2

[
Φ̃

(
r′c(R),

rc(R)

R
,
rc(R)

R

)
+ h

(
r′c(R)

[
rc(R)

R

]2)]
dR603

= Erad(rc)−
∫ δ

0

R2

[
Φ̃

(
r′c(R),

rc(R)

R
,
rc(R)

R

)
+ h

(
r′c(R)

[
rc(R)

R

]2)]
dR.604

But R2

[
Φ̃
(
r′c(R),

rc(R)
R , rc(R)

R

)
+ h

(
r′c(R)

[
rc(R)
R

]2)]
∈ L1(0, 1). Hence605

∫ δ

0

R2

[
Φ̃

(
r′c(R),

rc(R)

R
,
rc(R)

R

)
+ h

(
r′c(R)

[
rc(R)

R

]2)]
dR606

can be made arbitrarily small with δ.607
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4. For the last term in Iτε (r̃, ṽ):608

I4 =

∫ δ

δ−η

R2

[
εα

α
|ṽ′(R)|α +

1

qεq
ϕτ (ṽ(R))

]
dR609

≤ ηδ2
[
C1

εα

δ3αηα
+

C2η

εqδ3(a−1)

]
.610

Here we used (37), condition (35), and that611 ∫ δ

δ−η

ϕτ (ṽ(R)) dR =
η

τ

∫ τ

0

ϕτ (u) du.612

We set613
εα

δ3αηα
=

η

εqδ3(a−1)
,614

so that both terms on the right hand side of the inequality for I4 above are615

of the same order, which upon recalling (38), leads to616

(39) εα+q = δ(β1+3)α+β1−3(a−1).617

Thus provided β1 > 3a, we have that given δ > 0, if ε is chosen according to618

(39), then ε→ 0+ and τ → ∞ (cf. (37)) as δ → 0+. Thus619

ηδ2
η

εq
= δ2β1+2− q

α+q ((β1+3)α+β1) = δ
α

α+q (β1−q)+ 3q
α+q (a−1),620

and both terms in I4 go to zero with δ provided β1 > max {q, 3a}.621

Thus we can conclude that622

Iτε(τ)(r̃, ṽ) → Erad(rc), as τ → ∞.623

If (rτ , vτ ) is a minimizer of Iτε(τ), then I
τ
ε(τ)(rτ , vτ ) ≤ Iτε(τ)(r̃, ṽ), and (36) follows upon624

taking lim inf on both sides of this inequality. If the minimizing pair (rτ , vτ ) would625

have vτ ≡ 0 for τ sufficiently large, then626

Erad(rc) < Erad(rH) ≤ Erad(rτ ) = Iτε(τ)(rτ , 0) ≤ Iτε(τ)(r̃, ṽ),627

where the inequality Erad(rH) ≤ Erad(rτ ), follows from the fact that rτ (0) = 0 and628

that rH(R) = λR is the global minimizer among such functions. Letting τ → ∞ in629

the inequality above leads to a contradiction. Hence vτ must be non–constant for τ630

sufficiently large.631

Now, in the radial case, the limiting function u∗ of Theorem 13 must be radial,632

and the limiting measure ν∗ must be a non–negative multiple of the Dirac delta633

distribution centered at the origin. Since u∗ is radial we must have, with Ω the unit634

ball, that635 ∫
Ω

W (∇u∗) dx ≥ Erad(rc).636

Thus, combining this with (24) and (36), we get that the constant c in Theorem 13637

must be zero, and that638

Erad(rc) =

∫
Ω

W (∇u∗) dx = lim
τ→∞

inf
Urad

Iτε(τ)(r, v),639

where u∗ is given by (28) using rc. Thus we have proved the following:640
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Theorem 16. Assume that (35) holds. Fix λ > λc and let (rτε , v
τ
ε ) be a minimizer641

of Iτε over Urad and uτ
ε be the radial map (28) corresponding to rτε . Let {τj} be a642

sequence such that τj → ∞. Then for a subsequence of {τj}, there exists a sequence643

{εj} with εj → 0+, such that the sequences {uj} and {vj}, where uj = u
τj
εj and644

vj = v
τj
εj , have subsequences (relabeled the same) {uj} and {vj} with uj ⇀ u∗ in645

W 1,p(Ω) and vj
∗
⇀ ν in M(Ω), where u∗ is given by (28) using rc (the minimizer of646

Erad(·) over the set (30)) and ν = κδ0 with κ > 0. Moreover647

Erad(rc) = lim
j→∞

Iτjεj (rj , vj).648

5.1. The Euler–Lagrange equations. In this section we show that the mini-649

mizers of (31) over (32), satisfy the Euler–Lagrange equations for this functional. The650

analysis is not straightforward, basically due to the singular behaviour of the function651

h(·) (cf. (11)), and the inequality constraints involving the phase function v, that is,652

its non–negativity and the inequality involving the determinant of the deformation r.653

The proof is a variation of that in [3].654

For the following discussion we use the notation:655

(40) Φ̂(v1, v2, v3, v4) = Φ̃(v1, v2, v3) + h(v1v2v3 − v4).656

Also we shall write657

Φ̂(r(R), v(R)) = Φ̂

(
r′(R),

r(R)

R
,
r(R)

R
, v(R)

)
, etc.658

The functional (31) can now be written as:659

Iτε (r, v) =

∫ 1

0

R2Φ̂ (r(R), v(R)) dR660

+

∫ 1

0

R2

[
εα

α
|v′(R)|α +

1

qεq
ϕτ (v(R))

]
dR,(41)661

where (r, v) ∈ Urad (cf. (32)).662

For the analysis in this section we take Φ̃ in (40) as663

(42) Φ̃(v1, v2, v3) =
3∑

i=1

ψ(vi),664

where ψ is a non-negative convex C3 function over (0,∞), and for some positive665

constants K > 0 and 0 < γ0 < 1:666

(43) |v ψ′(cv)| ≤ Kψ(v),667

for all v > 0 and c ∈ [1−γ0, 1+γ0]. However, our results hold as well for more general668

stored energy functions under suitable assumptions. We now have:669

Theorem 17. Let (r, v) be any minimizer of Iτε over (32). Assume that the670

functions h(·) and ψ(·) in (40) together with (42), satisfy (11) and (43) respectively.671

Then (r, v) ∈ C1(0, 1] × C1(0, 1], r′(R) > 0 for all R ∈ (0, 1], R2Φ̂1(r(R), v(R)) is672

C1(0, 1], and673

d

dR

[
R2Φ̂,1(r(R), v(R))

]
= 2RΦ̂,2(r(R), v(R)), 0 < R < 1,(44a)674
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v
1
2 (R)

(
εα

d

dR
[R2|v′(R)|α−1 sgn(v′(R))]675

−R2
[
Φ̂,4(r(R), v(R)) +

1
qεq ϕ

′
τ (v(R))

])
= 0, 0 < R < 1,(44b)676

with boundary conditions:677

(45) r(0) = 0, r(1) = λ, lim
R→0+

R2|v′(R)|α−1 sgn(v′(R))v
1
2 (R) = 0, v(1) = 0.678

Proof. If we let v = u2, then our problem is equivalent to that of minimizing679

Îτε (r, u) =

∫ 1

0

R2Φ̂
(
r(R), u2(R)

)
dR680

+

∫ 1

0

R2

[
εα

α
|2u(R)u′(R)|α +

1

qεq
ϕτ (u

2(R))

]
dR,(46)681

over682

Ûrad = {(r, u) ∈W 1,1(0, 1)×W 1,α(0, 1) : r(0) = 0, r(1) = λ,683

r′(R)(r(R)/R)2 > u2(R) a.e., u(1) = 0}.(47)684

Note that since u ∈W 1,α(0, 1), then u is continuous in [0, 1]. Hence both u2 and uu′685

belong to Lα(0, 1).686

Let (r, u) be any minimizer of Îτε over (47). We first consider variations only in r,687

keeping u fixed. We make the change of variables w = r3(R) and ρ = R3. It follows688

now that689

ẇ(ρ) =
dw

dρ
(ρ) = r′(R)

(
r(R)

R

)2

.690

The first part of the functional (46) can now be written as691 ∫ 1

0

f(ρ,w, ẇ, u2) dρ,692

where693

3f(ρ,w, ẇ, u2) = Φ̃((ρ/w)
2
3 ẇ, (w/ρ)

1
3 , (w/ρ)

1
3 ) + h(ẇ − u2).694

For k ≥ 1 we define695

Sk =

{
ρ ∈

(
1

k
, 1

)
:
1

k
≤ ẇ(ρ)− u2(ρ) ≤ k

}
,696

and let χk be its characteristic function. Let ω ∈ L∞(0, 1) be such that697 ∫
Sk

ω(s) ds = 0,698

and for any γ > 0, define the variations699

wγ(ρ) = w(ρ) + γ

∫ ρ

0

χk(s)ω(s) ds.700

Note that wγ(0) = 0 and wγ(1) = λ3. The rest of the proof, using (43), is as in [3],701

from which it follows (after changing back to R and r) that r ∈ C1(0, 1], r′(R) > 0702
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for all R ∈ (0, 1], R2Φ̂1(r(R), u(R)) is C
1(0, 1], and that equations (44a) and the first703

two boundary conditions in (45) hold.704

We now consider variations in u keeping r fixed. For any k ≥ 1, let z ∈W 1,∞(0, 1)705

have support in ( 1k , 1). and let706

uγ = u+ γz.707

Note that uγ(1) = 0. Moreover, since r ∈ C1(0, 1] and u ∈ C[0, 1], it follows that708

r′(R)

(
r(R)

R

)2

> u2γ(R), R ∈
[
1

k
, 1

]
,709

for γ sufficiently small. It follows now, upon setting δ(R) = r′(R)(r(R)/R)2, that710

Îτε (r, uγ)− Îτε (r, u)

γ
=

1

γ

∫ 1

0

R2
[
h(δ − u2γ)− h(δ − u2)

]
dR711

+
1

γ

∫ 1

0

εα

α
R2
[
|2uγu′γ |α − |2uu′|α

]
dR712

+
1

γ

∫ 1

0

1

qεq
R2
[
ϕτ (u

2
γ)− ϕτ (u

2)
]
dR.713

Now714
715

1

γ

∫ 1

0

R2
[
h(δ − u2γ)− h(δ − u2)

]
dR =716

1

γ

∫ 1

0

R2

∫ 1

0

d

dt
[h(δ − (tu2γ + (1− t)u2))] dtdR =717

−
∫ 1

1
k

R2z(2u+ γz)

∫ 1

0

h′(δ − (tu2γ + (1− t)u2)) dtdR718

→ −
∫ 1

1
k

2h′(δ − u2)uzR2dR,719

720

as γ → 0. Similarly721

1

γ

∫ 1

0

εα

α
R2
[
|2uγu′γ |α − |2uu′|α

]
dR→

∫ 1

1
k

εα|2uu′|α−1 sgn(2uu′)2(uz)′R2 dR,722

1

γ

∫ 1

0

1

qεq
R2
[
ϕτ (u

2
γ)− ϕτ (u

2)
]
dR→

∫ 1

1
k

1

qεq
ϕ′τ (u

2)2uzR2 dR,723

724

as γ → 0. Since725

lim
γ→0

Îτε (r, uγ)− Îτε (r, u)

γ
= 0,726

we get, combining our previous results that727 ∫ 1

1
k

[−h′(δ − u2)uz + εα|2uu′|α−1 sgn(2uu′)(uz)′ +
1

qεq
ϕ′τ (u

2)uz]R2dR = 0,728

or after collecting terms,729

730
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1
k

[εα|2uu′|α−1 sgn(2uu′)uz′ + (εα|2uu′|α−1 sgn(2uu′)u′+731

1

qεq
ϕ′τ (u

2)u− h′(δ − u2)u)z]R2dR = 0,732
733

for all z ∈W 1,∞(0, 1) with support in ( 1k , 1). The coefficient of z in this expression is734

in L1( 1k , 1). Hence the above equation is equivalent to735

736 ∫ 1

1
k

[
εα|2uu′|α−1 sgn(2uu′)uR2 +

∫ 1

R

(εα|2uu′|α−1 sgn(2uu′)u′+737

1

qεq
ϕ′τ (u

2)u− h′(δ − u2)u)ξ2 dξ

]
z′dR = 0.738

739

The arbitrariness of z implies now that for some constant C independent of k, we740

have741
742

εα|2uu′|α−1 sgn(2uu′)uR2 +

∫ 1

R

(εα|2uu′|α−1 sgn(2uu′)u′+743

1

qεq
ϕ′τ (u

2)u− h′(δ − u2)u)ξ2 dξ = C,744
745

over (0, 1). It follows from this equation that over the intervals where u ̸= 0, the746

function |2uu′|α−1 sgn(2uu′)R2 is absolutely continuous. Hence after differentiating747

and simplifying, the equation above yields that748 (
εα

d

dR

[
|2uu′|α−1 sgn(2uu′)R2

]
−
(

1

qεq
ϕ′τ (u

2)− h′(δ − u2)

)
R2

)
u = 0,749

i.e., that (44b) holds after reverting the substitution v = u2. A standard argument750

now using variations z not vanishing at R = 0, yields the third boundary condition751

in (45).752

Remark 18. Note that the pair r(R) = λR and v(R) = 0 is a solution of (44)-(45)753

for all λ. By Proposition 14, this pair is a global minimizer for λ < d
1
3
0 . However for754

λ > λc, ε sufficiently small, and τ sufficiently large, we get from Theorems 15 and755

17, that the minimizer must have v non–constant, with segments in which v vanishes,756

and (non–trivial) segments in which the differential equation757

εα
d

dR
[R2|v′(R)|α−1 sgn(v′(R))] = R2

[
Φ̂,4(r(R), v(R)) +

1

qεq
ϕ′τ (v(R))

]
,758

holds.759

5.2. Numerical results. To approximate the minimum of (31) over (32), let760

∆R = 1/n and Ri = ih, 0 ≤ i ≤ n, where n ≥ 1. We write (ri, vi) for any approxi-761

mation of (r(Ri, v(Ri))), 0 ≤ i ≤ n, and762

Ri− 1
2
=
Ri +Ri−1

2
, δri− 1

2
=
ri − ri−1

∆R
,
( r
R

)
i− 1

2

=
ri + ri−1

Ri +Ri−1
, i = 1, . . . , n.763

Now we discretize Iτε as follows:764

765
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ε2 Iτε,h δr 1
2

vmax

10−5 6.101645 5.412 169.2
10−6 6.105267 1.560 0.0020
10−7 6.105291 1.590 8.008× 10−4

10−8 5.634048 32.85 3.606× 104

10−9 4.771748 50.47 1.499× 105

10−10 4.535530 49.91 1.455× 105

Table 1
Convergence of the decoupled penalized scheme in the radial case using (50) and (51) with data

(52).

(48) Iτε,h = ∆R

n∑
i=1

R2
i− 1

2

[
Φ̃

(
δri− 1

2
,
( r
R

)
i− 1

2

,
( r
R

)
i− 1

2

)
766

+ h

(
δri− 1

2

( r
R

)2
i− 1

2

− vi− 1
2

)]
+∆R

m∑
i=1

R2
i− 1

2

[
εα

α
|δvi− 1

2
|α +

1

qεq
ϕτ (vi− 1

2
)

]
,767

768

subject to r0 = 0, rn = λ, vn = 0 and769

(49) vi ≥ 0, 0 ≤ i ≤ n, δri− 1
2

( r
R

)2
i− 1

2

− vi− 1
2
> 0, 1 ≤ i ≤ n.770

We compute (relative) minimizers of (48) over (49) using the function fmincon of771

MATLAB with the option for an interior point algorithm. With this routine the first772

set of conditions in (49) can be directly specified as lower bounds on the vi’s, while773

the second set of constraints is specified with the option for inequality constraints.774

The strict sign in the second set of conditions in (49) is indirectly handled by the775

interior point algorithm with the h playing the role of an interior penalty function776

(since h(d) → ∞ as d↘ 0). For the various functions in the functional above we used777

the following:778

Φ̃(v1, v2, v3) = µ (vp1 + vp2 + vp3) , h(d) = c1d
γ + c2d

−δ,(50)779

ϕτ (v) =

{
Kv2(v − τ)2 , v ∈ [0, τ ],

0 , elsewhere,
(51)780

where p ∈ [1, 3), µ, c1, c2 ≥ 0, γ, δ ≥ 1, and K > 0. One can easily check now that781

conditions (21) and (35) hold for ϕτ . In the calculations below we use n = 100 and782

the following values for the various constants:783

(52) µ = 1.0, c1 = 1.0, p = 2.0, α = 2.0, γ = 2.0, δ = 2.0, τ = 3.0, λ = 1.5,784

with c2 = (pµ + γc1)/δ so as to make the reference configuration stress free. In this785

case the minimizer rc of (29) over (30) has Erad(rc) ≈ 4.5396 with rc(0) ≈ 1.222,786

while the affine deformation rh(R) = λR has energy Erad(r
h) ≈ 6.1053.787

In Table 1 we show the computed minimum energies for different values of ε2.788

In each case the iterations were started from the discretized versions of the affine789

deformation rh and v = 0. From the values in the table we see that the approximations790

of r for ε2 = 10−5, 10−6, 10−7 stay “close” to the affine deformation rh but developing791

a steep slope close to R = 0. This process picks up after ε2 = 10−8, where the energies792

get very close to the energy Erad(rc) ≈ 4.5396 of the cavitated solution, and with very793
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Fig. 1. Numerical results for the data in (52).

large slopes close to R = 0. The last column in Table 1 shows the maximum value794

of computed phase functions v for the different values of ε2. In Figure 1 (left) we795

show the computed r approximations for ε2 = 10−8, 10−9, 10−10 which are clearly796

converging to the cavitated solution rc. On the other hand, Figure 1 (right) shows797

the corresponding approximations of v restricted to the interval [0, 0.04], which are798

clearly developing a singularity close to R = 0 to match the corresponding singular799

behaviour of the determinants corresponding to the r approximations.800

6. Concluding Remarks. From the proof of Theorem 3 it becomes clear that801

the critical term in the stored energy function, in relation to the repulsion property,802

is the compressibility term, i.e., the function h(·) in (9). This result is the main idea803

behind the method proposed in Section 4 and might explain why previous numerical804

schemes, such as the element removal method developed by Li and coworkers (see,805

e.g., [20]) or the use of “punctured domains” (see, e.g., [36]), have been successful.806

As a practical matter, we mention that the numerical routine that one employs to807

solve the discrete versions of the minimization of (14) over (15), must be “aggressive”808

enough, specially during the early stages of the minimization, to allow for actual809

increases in the intermediate approximate energies, which rules out the use of strictly810

descent methods. The reason for this is that, when needed, the scheme has to increase811

the phase function v in regions where the determinant of the deformation gradient812

might become large. To do so, it might be necessary to increase v past τ in the penalty813

function ϕτ (cf. (14)), resulting in an increase in the computed energy. One could814

try to avoid this by taking initial candidates for v large, but this requires identifying815

regions where this is to be done, which in turn presumes knowledge of the location of816

the singularities. Although in general one can not assume such knowledge, it might817

be the case if the locations of possible flaws in the material are known before hand.818

The results in the paper for non–radial problems can be extended to more general819

displacement type boundary conditions and for mixed type boundary conditions. We820

refer to [28] or [33] for the corresponding technical details.821
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Finally we did not address the question of the convergence of the minimizers of the822

discretized versions of (14) over (15). Also we need to test the method on more general823

problems, like the one for non radially symmetric deformations, and in problems in824

which the Lavrentiev phenomenon takes place for boundary value problems in two825

dimensional elasticity among admissible continuous deformations. (See [11].) These826

questions shall be pursued elsewhere.827
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