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Abstract

The brachistochrone problem is posed as a problem of the calculus of variations
with differential side constraints, among smooth parametrized curves satisfying
appropriate initial and boundary conditions. In this paper we consider several gen-
eralizations of the classical brachistochrone problem in which friction is considered
as an arbitrary nonlinear function of either the normal component of force or the
speed of the particle. We emphasize on the computational aspects of calculating
the resulting curves of minimum descend.
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1 Introduction

The brachistochrone problem consists of finding the curve, joining two (non–vertical)
given points, along which a bead of given mass falls under the influence of gravity in
the minimum time. This problem was first posed by Johann Bernoulli in 1696 and
solved that same year by Newton, Leibniz, the Bernoulli brothers Johann and Jacob,
and de L’Hôpital. In 1744, Euler solved a variation of the brachistochrone problem in
which friction is included as a nonlinear function of the square of the speed of the bead.
Although his solution was not explicit, it showed that the curve of minimum descend is
no longer a cycloid as in the problem without friction. Ashby, Brittin, Love, and Wyss
[1] and Lipp [5] have considered variations of the problem in which friction is either a
linear function or the absolute value, of the component of the force acting on the particle
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that is normal to the curve (including the term corresponding to the acceleration in the
direction of the normal).

In this paper we consider several generalizations of these problems emphasizing on
the computational aspects of calculating the resulting curves of minimum descend. We
formulate the problem as one of the calculus of variations with the equation of motion of
the mass along the tangential direction to the curve now as a differential side constraint.
Our presentation generalizes those in [1] and [5] in the sense that we consider the fric-
tion as an arbitrary nonlinear function of either the normal component of force (kinetic
friction) or the speed of the particle (drag friction).

First in Section (2) we formulate the basic problem of finding the curve of minimum
descend as a problem of the calculus of variations with differential side conditions. In
Section (2.1) we consider the special case in which the frictional force is a nonlinear
function of the component of the force acting on the particle normal to the curve but not
including the component of the acceleration in the direction of the normal. In Section
(2.2) we consider the full problem in which the frictional force is a nonlinear function
of the component of the force acting on the particle normal to the curve including the
component of the acceleration in the direction of the normal. Finally in Section (3) we
derive once again the result of Euler [3] in which friction is taken as a nonlinear function
of the speed of the bead.

2 The Nonlinear Brachistochrone with Friction

We let a particle slide from (0, 0) to (a, b) (where a > 0 and b ≤ 0) along the curve
(x(t), y(t)) under the influence of gravity and subject to a frictional force. Let

• θ(t) be the angle of inclination of the tangent to the curve from the horizontal;

• v(t), ~a(t) the speed and acceleration respectively of the particle;

• ~T (t) the unit tangent vector to the curve;

• ~N(t) the unit normal vector to the curve.

It follows now that
~a(t) = v(t)θ̇(t) ~N(t) + v̇(t)~T (t).

The forces acting on the particle are:

• ~W the weight of the mass m;

• ~Fn (reaction) force normal to the curve;

• ~Ff frictional force.
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We can write these forces in terms of the quantities defined above as:

~W = −mg~ı = −mg[sin θ(t)~T (t) + cos θ(t) ~N(t)],

~Fn = n(t) ~N(t),

~Ff = f(t)~T (t).

From Newton’s second law of motion we get that:

m~a(t) = ~W + ~Ff + ~Fn.

That is

m[v(t)θ̇(t) ~N(t) + v̇(t)~T (t)] = −mg[sin θ(t)~T (t) + cos θ ~N(t)]

+ n(t) ~N(t) + f(t)~T (t).

If we equate the terms in the normal and tangential directions respectively, we get that

mv(t)θ̇(t) = −mg cos θ(t) + n(t),

mv̇(t) = −mg sin θ(t) + f(t). (1)

From the first of these equations we obtain the following expression for the normal com-
ponent of force:

n(t) = mg cos θ(t) + mv(t)θ̇(t).

Note that the second term in n(t) corresponds to the mass times the component of the
acceleration in the direction of the normal to the curve.

We take the frictional force to be a nonlinear function of the normal component of
force to the curve. That is

f(t) = K̂(n(t)) = K̂(mg cos θ(t) + mv(t)θ̇(t)),

The angle, speed, and velocity of the particle are related by:

ẋ(t) = v(t) cos θ(t), (2a)

ẏ(t) = v(t) sin θ(t). (2b)

The equation of motion (1) along the tangential direction can be written now as:

v̇(t) = −g sin θ(t) + K(g cos θ(t) + v(t)θ̇(t)), (3)

where

K(N) =
1

m
K̂(mN). (4)

We can eliminate θ(t) from (2) and (3) upon recalling that

v(t) =
√

ẋ(t)2 + ẏ(t)2, θ̇ =
ẋ(t)ÿ(t)− ẏ(t)ẍ(t)

v(t)2
. (5)
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Thus we now have that

v(t) =
√

ẋ(t)2 + ẏ(t)2, (6a)

v(t)v̇(t) = −gẏ(t) + v(t)K

(
ẋ(t)(g + ÿ(t))− ẏ(t)ẍ(t)

v(t)

)
. (6b)

We let t = t̂(τ) be a reparametrization of the curve in terms of a parameter τ where we
assume that:

t̂′(τ) =
dt̂(τ)

dτ
> 0.

If we let x̄(τ) = x(t̂(τ)), then it follows now that

t̂′(τ)ẋ(t̂(τ)) = x̄′(τ), t̂′(τ)2ẍ(t̂(τ)) = x̄′′(τ)− t̂′′(τ)ẋ(t̂(τ)).

Using these expressions we can write the second equation in (5) as:

θ̄′(τ) =
x̄′(τ)ȳ′′(τ)− ȳ′(τ)x̄′′(τ)

t̂′(τ)2v̄(τ)2
, (7)

and (6a), (6b) as:

t̂′(τ)v̄(τ) =
√

x̄′(τ)2 + ȳ′(τ)2, (8a)

v̄(τ)v̄′(τ) = −gȳ′(τ) + t̂′(τ)v̄(τ)K

(
gx̄′(τ)

t̂′(τ)v̄(τ)
+

x̄′(τ)ȳ′′(τ)− ȳ′(τ)x̄′′(τ)

t̂′(τ)3v̄(τ)

)
. (8b)

The problem now is to minimize the time integral:
∫ τ2

τ1

t̂′(τ)dτ, (9)

subject to the differential constraints (8a), (8b), and to the boundary conditions:

x̄(τ1) = ȳ(τ1) = 0, x̄(τ2) = a , ȳ(τ2) = b, (10a)

x̄′(τ1) = x′0, ȳ′(τ1) = y′0, (10b)

t̂(τ1) = 0. (10c)

2.1 No centrifugal acceleration included

This is the case where the function K depends only on g cos θ(t). Thus we have to
minimize the time integral (9) subject to (10a), (10c), the differential constraints (8),
and v̄(τ1) = v0 instead of (10b). Introducing the Lagrange multipliers λ(t), σ(t) we get
that the first order necessary conditions for this problem are equivalent to those for the
functional:

I(x̄, ȳ, v̄, t̂, σ̄, λ̄) =

∫ τ2

τ1

[
t̂′(τ) + σ̄(τ)

(
t̂′(τ)v̄(τ)−

√
x̄′(τ)2 + ȳ′(τ)2

)

+ λ̄(τ)

(
v̄(τ)v̄′(τ) + gȳ′(τ)− t̂′(τ)v̄(τ)K

(
gx̄′(τ)

t̂′(τ)v̄(τ)

) )]
dτ. (11)
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The Euler–Lagrange equations for I are given by (8) and

1 + σ̄(τ)v̄(τ) = c1 + λ̄(τ)v̄(τ)

[
K(h̄(τ))− gx̄′(τ)

t̂′(τ)v̄(τ)
K ′(h̄(τ))

]
, (12a)

v̄(τ)λ̄′(τ) = t̂′(τ)
(
σ̄(τ) + λ̄(τ)

[
h̄(τ)K ′(h̄(τ))−K(h̄(τ))

])
, (12b)

σ̄(τ)x̄′(τ)

t̂′(τ)v̄(τ)
= c2 − gλ̄(τ)K ′(h̄(τ)), (12c)

− σ̄(τ)ȳ′(τ)

t̂′(τ)v̄(τ)
= c3 − gλ̄(τ), (12d)

where now

h̄(τ) =
gx̄′(τ)

t̂′(τ)v̄(τ)
.

and c1, c2, c3 are constants of integration. The boundary conditions are given by (10a),
(10c), v̄(τ1) = v0, and

λ̄(τ2) = 0, 1 + σ̄(τ)v̄(τ)− λ̄(τ)v̄(τ)

[
K(h̄(τ))− gx̄′(τ)

t̂′(τ)v̄(τ)
K ′(h̄(τ))

]∣∣∣∣
τ=τ2

= 0. (13)

The second boundary condition in (13) implies that c1 = 0.
In terms of the parameter τ we have that (2a) and (2b) can be written as:

x̄′(τ) = t̂′(τ)v̄(τ) cos θ̄(τ), ȳ′(τ) = t̂′(τ)v̄(τ) sin θ̄(τ). (14)

It follows now that (8a) is satisfied and that (8b) and (12) reduce to:

v̄′(τ) = t̂′(τ)(−g sin θ̂(τ) + K(g cos θ̄(τ))) (15a)

1 + σ̄(τ)v̄(τ) = λ̄(τ)v̄(τ)

[
K(g cos θ̄(τ))− g cos θ̄(τ)K ′(g cos θ̄(τ))

]
, (15b)

v̄(τ)λ̄′(τ) = t̂′(τ)
(
σ̄(τ)

+λ̄(τ)
[
g cos θ̄(τ)K ′(g cos θ̄(τ))−K(g cos θ̄(τ))

] )
, (15c)

σ̄(τ) cos θ̄(τ) = c2 − gλ̄(τ)K ′(g cos θ̄(τ)), (15d)

−σ̄(τ) sin θ̄(τ) = c3 − gλ̄(τ). (15e)

If we treat (15d) and (15e) as a linear system for σ̄, λ̄ we get that

σ̄(τ) =
c2 − c3K

′(g cos θ̄(τ))

cos θ̄(τ) + sin θ̄(τ)K ′(g cos θ̄(τ))
(16a)

λ̄(τ) =
c2 sin θ̄(τ) + c3 cos θ̄(τ)

g
(
cos θ̄(τ) + sin θ̄(τ)K ′(g cos θ̄(τ))

) . (16b)
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This motivates us to take θ as the parameter and rewrite (16) as

σ̄(θ) =
c2 − c3K

′(g cos θ)

cos θ + sin θK ′(g cos θ)
(17a)

λ̄(θ) =
c2 sin θ + c3 cos θ

g (cos θ + sin θK ′(g cos θ))
. (17b)

We can use (15b) to get that

v̄(θ) = −1/
(
σ̄(θ)− λ̄(θ)(K(g cos θ)− g cos θK ′(g cos θ))

)
. (18)

Also, using (15b), we have that (15c) simplifies to:

t̂′(θ) = −v̄2(θ) λ̄′(θ), (19)

where λ̄′(θ) can be computed from (17). It follows now that (15a) is equivalent to:

v̄′(θ) = v̄2(θ)λ̄′(θ)(g sin θ −K(g cos θ)). (20)

We have now:

Lemma 2.1. Equation (20) follows from (17), (18), and (19).

Proof : First note that from (18) we get that

v̄′(θ) = v̄2(θ)
[
σ̄′(θ)− λ̄′(θ)(K(g cos θ)− g cos θK ′(g cos θ))

− g2 sin θ cos θλ̄(θ)K ′′(g cos θ)
]
, (21)

where the prime denotes now differentiation with respect to θ. But (15d), (15e) or
equivalently (17) imply that

σ̄′(θ) =
gλ̄′(θ)− σ̄(θ) cos θ

sin θ
, (22)

λ̄′(θ) =
σ̄(θ) + g2λ̄(θ) sin2 θK ′′(g cos θ)

g (cos θ + sin θK ′(g cos θ))
(23)

We can write (23) as:

g2λ̄(θ) sin2 θK ′′(g cos θ) = gλ̄′(θ) (cos θ + sin θK ′(g cos θ))− σ̄(θ).

Using this expression and (22) we can write the term multiplying v̄2(θ) in (21) as

gλ̄′(θ)− σ̄(θ) cos θ

sin θ
− λ̄′(θ)(K(g cos θ)− g cos θK ′(g cos θ))

− (
gλ̄′(θ) (cos θ + sin θK ′(g cos θ))− σ̄(θ)

)
cot θ

= λ̄′(θ) (g csc θ −K(g cos θ)− g cos θ cot θ)

= λ̄′(θ)(g sin θ −K(g cos θ)),
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from which the result follows.

It follows now from the first boundary condition in (13) and equation (17b) that

c2 sin θ2 + c3 cos θ2 = 0, (24)

Since v̄(θ1) = v0 is given, we get from (18) that

v0 = −1/
(
σ̄(θ1)− λ̄(θ1)(K(g cos θ1)− g cos θ1K

′(g cos θ1))
)
. (25)

Equations (24) and (25) can be written as:

(
g − A(θ1) sin θ1 −gK ′(g cos θ1)− A(θ1) cos θ1

sin θ2 cos θ2

) (
ĉ2

ĉ3

)
=

( −gD(θ1)
0

)
, (26)

where the functions A(θ) and D(θ) are given by

A(θ) = K(g cos θ)− g cos θK ′(g cos θ), (27)

D(θ) = cos θ + sin θK ′(g cos θ), (28)

and
ĉ2 = c2v0, ĉ3 = c3v0. (29)

From (10a) we get that:

a =

∫ θ2

θ1

x̄′(θ) dθ =

∫ θ2

θ1

t̂′(θ)v̄(θ) cos θ dθ, (30a)

b =

∫ θ2

θ1

ȳ′(θ) dθ =

∫ θ2

θ1

t̂′(θ)v̄(θ) sin θ dθ, (30b)

Combining equations (18), (19), and (23) we get that

t̂′(θ)v̄(θ) = g2v2
0D(θ)

[
(1 + g sin3 θK ′′(g cos θ))ĉ2+

(−K ′(g cos θ) + g sin2 θ cos θK ′′(g cos θ))ĉ3

]× (31)

[(g − A(θ) sin θ)ĉ2 − (gK ′(g cos θ) + A(θ) cos θ)ĉ3]
−3

.

It follows now that the left hand side of the following equation

∫ θ2

θ1
t̂′(θ)v̄(θ) sin θ dθ

∫ θ2

θ1
t̂′(θ)v̄(θ) cos θ dθ

− b

a
= 0. (32)

is a function of θ2 only, since ĉ2, ĉ3 are functions of θ2 only, which can then be solved for
θ2.

1 We can compute the value of v0 using (31) with either (30a) or (30b). It follows

1In practice we compute θ2 by a fixed point iteration. Namely, given an approximate value of θ2, we
solve (26) for ĉ2, ĉ3, With these values of ĉ2, ĉ3, we solve (32) for θ2, an then repeat the process.
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now from (16) and (29) that σ̄(·) and λ̄(·) are completely determined from ĉ2, ĉ3, v0. Also
from (18) and (19) we get that v̄(·) and t̂(·) are completely determined from σ̄(·) and
λ̄(·). Finally we can construct x̄(·) and ȳ(·) using v̄(·), t̂(·) in (14).

Equation (25) acts as a compatibility condition between the initial angle of inclination
θ1 and the initial speed v0. The process described in the previous paragraph is for the
problem in which θ1 is specified and v0 is adjusted to comply with the compatibility
condition. We describe now the problem in which v0 is prescribed and θ1 must be
adjusted to meet the compatibility condition. In this case we solve the full system (26),
(30) for the unknowns ĉ2, ĉ3, θ1, θ2 by a blocked fixed point iteration. Namely, given θ1, θ2

one solves (26) for ĉ2, ĉ3; with these values of ĉ2, ĉ3 we solve (30) to get new values for
θ1, θ2, and repeat the process. Let

g1(θ1, θ2) =

∫ θ2

θ1

γ(θ) cos θ dθ − a, (33a)

g2(θ1, θ2) =

∫ θ2

θ1

γ(θ) sin θ dθ − b, (33b)

where we defined
γ(θ) = t̂′(θ)v̄(θ).

Also, let θ = (θ1, θ2), and g(θ) = (g1(θ), g2(θ)). Then

D�g(θ) =

( −γ(θ1) cos θ1 γ(θ2) cos θ2

−γ(θ1) sin θ1 γ(θ2) sin θ2

)
,

the inverse of which is given by the formula:

D−1
� g(θ) =

1

γ(θ1)γ(θ2) sin(θ1 − θ2)

(
γ(θ2) sin θ2 −γ(θ2) cos θ2

γ(θ1) sin θ1 −γ(θ1) cos θ1

)
.

These formulae can be used now for a Newton–type iteration for the solution of (33) as
part of the blocked fixed point iteration described above.

We implemented this iteration in MATLAB using for the nonlinear frictional force
K(N) the following function:

K(N) = −µN + βN3, (34)

where µ > 0 and β ∈ R are given constants. When β < 0 we get the equivalent of a
hard–type spring frictional force, where as for β > 0 we get a soft–type model. We show
in Figure (1) the corresponding brachistochrone curves for a = 3, b = −9, g = 9.8, initial
speed v0 = 35, with units consistent with those of a, b, and for µ = 5, 10, 15, β = 0.02.
We see that as the linear frictional coefficient µ increases, the optimal curve of descend
opens further to the left. This has the effect that the particle picks up a larger speed at
the beginning of the curve, because of free falling, to compensate for the dissipation of
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Figure 1: Graphs of the brachistochrone curves for initial speed v0 = 35 and for µ =
5, 10, 15, (dotted, dashed, and solid respectively) and β = 0.02 in (34).

energy due to friction and to get to the target point in minimum time. Note that the
brachistochrone corresponding to µ = 15 in this example is a genuine curve in the plane,
that is, not a function x. The corresponding times of descend where respectively 0.27559,
0.28919, 0.30236.

In Figure (2) we compare the effect of the model been hard versus soft by graphing the
curves corresponding to µ = 15 and β = ±0.02 again with initial speed v0 = 35. We see
that for the hard frictional force the effect of curving to the left is less pronounced than
for the soft response. This is because the model with the hard response dissipates quicker
the initial excess kinetic energy. Even though the curve for the hard model is shorter
than the the corresponding one for the soft response, the time of descend is 0.30567 for
the hard model versus 0.30236 for the soft.

Finally in Table (1) we collect the computed values of θ1, θ2 with the corresponding
total times of descend for different values of µ, β and v0 = 35.
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Figure 2: Graphs of the brachistochrone curves for initial speed v0 = 35 and for 15, and
β = −0.02, 0.02 (dashed and solid respectively) in (34).

µ β θ1 θ2 Total Time

5 0.02 -1.4539 -1.0669 0.27559
5 −0.02 -1.4361 -1.0349 0.27655

10 0.02 -1.6525 -0.85172 0.28919
10 −0.02 -1.622 -0.81621 0.29076

15 0.02 -1.8136 -0.62964 0.30236
15 −0.02 -1.8292 -0.57491 0.30567

Table 1: Computed values of θ1, θ2, and total times of descend for different values of µ, β
and v0 = 35 for the model response function (34).
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2.2 The General Case

Again with the Lagrange multipliers λ(t), σ(t) we get that the first order necessary con-
ditions for this problem are equivalent to those for the functional

I(x̄, ȳ, v̄, t̂, σ̄, λ̄) =

∫ τ2

τ1

[
t̂′(τ) + σ̄(τ)

(
t̂′(τ)v̄(τ)−

√
x̄′(τ)2 + ȳ′(τ)2

)

+λ̄(τ)

(
v̄(τ)v̄′(τ) + gȳ′(τ)

−t̂′(τ)v̄(τ)K

(
gx̄′(τ)

t̂′(τ)v̄(τ)
+

x̄′(τ)ȳ′′(τ)− ȳ′(τ)x̄′′(τ)

t̂′(τ)3v̄(τ)

))]
dτ

The Euler–Lagrange equations for I are given by (8) and:

1 + σ̄(τ)v̄(τ) = c1 + λ̄(τ)v̄(τ)

[
K(h̄(τ))−

(
gx̄′(τ)

t̂′(τ)v̄(τ)

+
3(x̄′(τ)ȳ′′(τ)− ȳ′(τ)x̄′′(τ))

t̂′(τ)3v̄(τ)

)
K ′(h̄(τ))

]
, (35a)

v̄(τ)λ̄′(τ) = t̂′(τ)
(
σ̄(τ) + λ̄(τ)×[

h̄(τ)K ′(h̄(τ))−K(h̄(τ))
] )

, (35b)

v̄(τ)
d

dτ

(
λ̄(τ)K ′(h̄(τ))ȳ′(τ)

t̂′(τ)2

)
= c2v̄(τ)− σ̄(τ)x̄′(τ)/t̂′(τ)

−λ̄(τ)v̄(τ)K ′(h̄(τ))(g + ȳ′′(τ)/t̂′(τ)2), (35c)

v̄(τ)
d

dτ

(
λ̄(τ)K ′(h̄(τ))x̄′(τ)

t̂′(τ)2

)
= c3v̄(τ) + σ̄(τ)ȳ′(τ)/t̂′(τ)− gλ̄(τ)v̄(τ)

−λ̄(τ)v̄(τ)K ′(h̄(τ))x̄′′(τ)/t̂′(τ)2, (35d)

where we have set

h̄(τ) =
gx̄′(τ)

t̂′(τ)v̄(τ)
+

x̄′(τ)ȳ′′(τ)− ȳ′(τ)x̄′′(τ)

t̂′(τ)3v̄(τ)
,

and c1, c2, c3 are constants. The boundary conditions are given by (10),

λ̄(τ2) = 0, (36)

and

1 + σ̄(τ)v̄(τ)− λ̄(τ)v̄(τ)

[
K(h̄(τ))

−
(

gx̄′(τ)

t̂′(τ)v̄(τ)
+

3(x̄′(τ)ȳ′′(τ)− ȳ′(τ)x̄′′(τ))

t̂′(τ)3v̄(τ)

)
K ′(h̄(τ))

]∣∣∣∣
τ=τ2

= 0. (37)
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This last condition implies that c1 = 0 in (35).
We take now t̂(τ) = τ , i.e., t = τ . It follows now that (8a), (8b) reduce again to (6a),

(6b), and that (35a)–(35d) become:

1 + σ(t)v(t) = λ(t)v(t)

[
K(h(t))−

(
gẋ(t)

v(t)

+
3(ẋ(t)ÿ(t)− ẏ(t)ẍ(t))

v(t)

)
K ′(h(t))

]
, (38a)

v(t)λ̇(t) = σ(t) + λ(t) [h(t)K ′(h(t))−K(h(t))] , (38b)

v(t)
d

dt
(λ(t)K ′(h(t))ẏ(t)) = c2v(t)− σ(t)ẋ(t)

−λ(t)v(t)K ′(h(t))(g + ÿ(t)), (38c)

v(t)
d

dt
(λ(t)K ′(h(t))ẋ(t)) = c3v(t) + σ(t)ẏ(t)

−λ(t)v(t)K ′(h(t))ẍ(t)− gλ(t)v(t), (38d)

where now

h(t) =
ẋ(t)(g + ÿ(t))− ẏ(t)ẍ(t)

v(t)
= g cos θ(t) + v(t)θ̇(t). (39)

Using (2a) and (2b) we can write the above equations as:

1 + σ(t)v(t) = λ(t)v(t)
[
K(h(t))

−(
g cos θ(t) + 3v(t)θ̇(t)

)
K ′(h(t))

]
, (40a)

v(t)λ̇(t) = σ(t) + λ(t) [h(t)K ′(h(t))−K(h(t))] , (40b)

λ(t)v(t) sin θ(t)
d

dt
(K ′(h(t))) = c2 − σ(t) cos θ(t)− gλ(t)K ′(h(t))

−2λ(t)K ′(h(t))(v̇(t) sin θ(t) + v(t)θ̇(t) cos θ(t))

−λ̇(t)v(t) sin θ(t)K ′(h(t)), (40c)

λ(t)v(t) cos θ(t)
d

dt
(K ′(h(t))) = c3 + σ(t) sin θ(t)− gλ(t)− λ̇(t)v(t) cos θ(t)K ′(h(t))

−2λ(t)K ′(h(t))(v̇(t) cos θ(t)− v(t)θ̇(t) sin θ(t)),(40d)

We can now use (40a) and (40b) to eliminate σ(t) and λ̇(t) respectively from (40c) and
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(40d) to get that

λ(t)v(t)2 sin θ(t)
d

dt
(K ′(h(t))) = c2v(t)− gλ(t)v(t)K ′(h(t))

−2λ(t)v(t)[v̇(t)− v(t)θ̇(t)K ′(h(t))]K ′(h(t)) sin θ(t)

+λ(t)v(t)[h(t)K ′(h(t))−K(h(t))] cos θ(t)

+ cos θ(t) + sin θ(t)K ′(h(t)), (41a)

λ(t)v(t)2 cos θ(t)
d

dt
(K ′(h(t))) = c3v(t)− gλ(t)v(t)

−2λ(t)v(t)[v̇(t)− v(t)θ̇(t)K ′(h(t))]K ′(h(t)) cos θ(t)

−λ(t)v(t)[h(t)K ′(h(t))−K(h(t))] sin θ(t)

− sin θ(t) + cos θ(t)K ′(h(t)). (41b)

Multiplying the first of these equations by cos θ(t), the second by sin θ(t), and subtracting
the resulting equations, we get an expression for λ(t) in terms of v(t) and θ(t):

λ(t) =
c3 sin θ(t)− c2 cos θ(t)− 1/v(t)

g sin θ(t)−K(h(t)) + v(t)θ̇(t)K ′(h(t))
. (42)

If we now multiply (41a) by sin θ(t), (41b) by cos θ(t), and add the resulting equations,
we get that

λ(t)v(t)2 d

dt
(K ′(h(t))) = v(t)[c2 sin θ(t) + c3 cos θ(t)] + K ′(h(t))

−gλ(t)v(t)[cos θ(t) + sin θ(t)K ′(h(t))]

−2λ(t)v(t)[v̇(t)− v(t)θ̇(t)K ′(h(t))]K ′(h(t)). (43)

Using (42) and the equation of motion (3) to eliminate v̇(t), we can write this equation
as

v(t)
d

dt
(K ′(h(t))) =

[
v(t) (c2 sin θ(t) + c3 cos θ(t)) + K ′(h(t))

v(t) (c3 sin θ(t)− c2 cos θ(t))− 1
+ 2K ′(h(t))

]
×

(
g sin θ(t)−K(h(t)) + v(t)θ̇(t)K ′(h(t))

)

−g (cos θ(t) + sin θ(t)K ′(h(t))) . (44)

We can eliminate θ̇(t) from this equation using (39), introduce h(t) as a dependent vari-
able, and with the equation of motion (3) we arrive at the following system of equations
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for h(t), θ(t), v(t):

v(t)
d

dt
(K ′(h(t))) =

[
v(t) (c2 sin θ(t) + c3 cos θ(t)) + K ′(h(t))

v(t) (c3 sin θ(t)− c2 cos θ(t))− 1
+ 2K ′(h(t))

]
×

(g(sin θ(t)− cos θ(t)K ′(h(t))) + h(t)K ′(h(t))−K(h(t)))

−g (cos θ(t) + sin θ(t)K ′(h(t))) , (45a)

θ̇(t) =
h(t)− g cos θ(t)

v(t)
, (45b)

v̇(t) = −g sin θ(t) + K(h(t)). (45c)

We need to assume that h(0) is given. Since θ(0), v(0) are given, this is equivalent to
the specification of the normal component of the acceleration v(0)θ̇(0). We take this
component of acceleration initially to be zero which gives that

h(0) = g cos θ(0). (46)

Thus given c2, c3, the system (45) can be solved in principle to get h(t), θ(t), v(t). The
boundary conditions (30a), (30b), (36) and equation (42), imply that

c3 sin θ(tf )− c2 cos θ(tf )− 1/v(tf ) = 0, (47a)∫ tf

0

v(t) cos θ(t) dt = a, (47b)

∫ tf

0

v(t) sin θ(t) dt = b, (47c)

where tf is the final minimum unknown time. The system (47) together with (45) yields
a nonlinear system of equations for c2, c3, tf . The solution of this system maybe done by
means of a blocked fixed point iteration: given a value of tf , we solve (47b), (47c) for
c2, c3 using Newton’s method for systems; with these values of c2, c3 we adjust tf using
equation (47a), and repeat the process.

We discuss briefly the solution of (47b), (47c) for c2, c3 using Newton’s method, given
tf . Let (h(t; c2, c3), θ(t; c2, c3), v(t; c2, c3)) denote the solution of (45) given c2, c3 and the
boundary conditions for t = 0. Let

y(t; c2, c3) = (h(t; c2, c3), θ(t; c2, c3), v(t; c2, c3)),

and we represent (45) as:

dy

dt
(t; c2, c3) = f(y(t; c2, c3); c2, c3), (48)

where f is given by the right hand side of (45). Let

g1(c2, c3) =

∫ tf

0

v(t; c2, c3) cos θ(t; c2, c3) dt− a,

g2(c2, c3) =

∫ tf

0

v(t; c2, c3) sin θ(t; c2, c3) dt− b.
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We have now that

∂g1

∂cj

(c2, c3) =

∫ tf

0

[
∂v

∂cj

(t) cos θ(t)− v(t) sin θ(t)
∂θ

∂cj

(t)

]
dt, j = 2, 3,

∂g2

∂cj

(c2, c3) =

∫ tf

0

[
∂v

∂cj

(t) sin θ(t) + v(t) cos θ(t)
∂θ

∂cj

(t)

]
dt, j = 2, 3,

where for simplicity we omitted the dependence on c2, c3 from v, θ. The partial derivatives
under the integral signs can be computed differentiating (48) with respect to c2, c3. More
specifically, differentiating with respect to cj in (48) we get that

d

dt

(
∂y

∂cj

(t)

)
=

∂f

∂y
(y(t))

∂y

∂cj

(t) +
∂f

∂cj

(y(t)).

Given y(t), this system of ordinary differential equations together with the initial condi-
tion

∂y

∂cj

(0) = 0,

can be solved for ∂y/∂cj.

3 Friction as a nonlinear function of speed

We consider the case of a drag frictional force which is given as a nonlinear function of
the speed, that is K(v). It follows now that (8b) becomes:

v̄(τ)v̄′(τ) = −gȳ′(τ) + t̂′(τ)v̄(τ)K(v̄(τ)). (49)

The first order necessary conditions for a minimizer of (9) are equivalent to those for the
functional:

I(x̄, ȳ, v̄, t̂, σ̄, λ̄) =

∫ τ2

τ1

[
t̂′(τ) + σ̄(τ)

(
t̂′(τ)v̄(τ)−

√
x̄′(τ)2 + ȳ′(τ)2

)

+λ̄(τ)

(
v̄(τ)v̄′(τ) + gȳ′(τ)− t̂′(τ)v̄(τ)K(v̄(τ))

)]
dτ.

The Euler–Lagrange equations for this functional are given by (8a), (49), and:

1 + σ̄(τ)v̄(τ)− λ̄(τ)v̄(τ)K(v̄(τ)) = c1, (50a)

σ̄(τ)x̄′(τ)√
x̄′(τ)2 + ȳ′(τ)2

= c2, (50b)

− σ̄(τ)ȳ′(τ)√
x̄′(τ)2 + ȳ′(τ)2

+ gλ̄(τ) = c3, (50c)

σ̄(τ)t̂′(τ)− λ̄′(τ)v̄(τ)− λ̄(τ)t̂′(τ)(K(v̄(τ)) + v̄(τ)K ′(v̄(τ))) = 0, (50d)
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with boundary conditions (10a), (10c), v̄(τ1) = v0, and

λ̄(τ2) = 0, 1 + σ̄(τ)v̄(τ)− λ̄(τ)v̄(τ)K(v̄(τ))
∣∣
τ=τ2

= 0, (51)

the second of which implies that c1 = 0.
Using (8a) and (14) we get from (50b), (50c) that:

σ̄(τ) =
c2

cos θ̄(τ)
, (52a)

λ̄(τ) =
1

g

[
c3 + c2 tan θ̄(τ)

]
. (52b)

This motivates us to take θ as the parameter and rewrite the above equations as:

σ̄(θ) =
c2

cos θ
, λ̄(θ) =

1

g
[c3 + c2 tan θ] . (53)

We now have the following:

Lemma 3.1. Equation (50a) follows from (53), (49), and (50d).

Proof : From (50d) we get that

d

dv
(vK(v))

∣∣∣∣
v=v̄(θ)

=
σ̄(θ)t̂′(θ)− λ̄′(θ)v̄(θ)

λ̄(θ)t̂′(θ)
.

Thus

d

dθ
(σ̄(θ)v̄(θ)− λ̄(θ)v̄(θ)K(v̄(θ))) = σ̄′(θ)v̄(θ) + σ̄(θ)v̄′(θ)

−λ̄′(θ)v̄(θ)K(v̄(θ))− λ̄(θ)v̄′(θ)
d

dv
(vK(v))

∣∣∣∣
v=v̄(θ)

,

=
v̄(θ)

t̂′(θ)

(
t̂′(θ)σ̄′(θ) + (v̄′(θ)− t̂′(θ)K(v̄(θ)))λ̄′(θ)

)
.

Using (49) we get that

v̄′(θ)− t̂′(θ)K(v̄(θ)) = −gt̂′(θ) sin θ.

With this the previous equation simplifies to:

d

dθ
(σ̄(θ)v̄(θ)− λ̄(θ)v̄(θ)K(v̄(θ))) = v̄(θ)

(
σ̄′(θ)− g sin θλ̄′(θ)

)
.

From (53) one gets that:

λ̄′(θ) =
1

g
σ̄(θ) sec θ, σ̄′(θ) = σ̄(θ) tan θ.
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Using this in the previous expression gives that,

d

dθ
(σ̄(θ)v̄(θ)− λ̄(θ)v̄(θ)K(v̄(θ))) = 0,

from which the result follows.

The first boundary condition in (51) and v̄(θ1) = v0 gives the following system for
c2, c3:

(
v0(g −K(v0) sin θ1) −v0K(v0) cos θ1

sin θ2 cos θ2

)(
c2

c3

)
=

( −g cos θ1

0

)
. (54)

From (49) we have:
v̄′(θ) = [−g sin θ + K(v̄(θ))] t̂′(θ). (55)

From (50d) we get that:

t̂′(θ) =
v̄(θ)λ̄′(θ)

σ̄(θ)− λ̄(θ)(v̄(θ)K ′(v̄(θ)) + K(v̄(θ))
, (56)

which can be used in the equation above for v̄(θ). Using these two equations we can
compute both integrands in (30). Thus (30) and (54) gives a system of four equations in
the variables v0, θ1, θ2, c2, and c3.

In general one can not specify both v0 and θ1 as the first equation in (54) act as a
compatibility condition on these variables. Thus we can consider two problems: one in
which v0 is specified and θ1, θ2, c2, and c3 are determined; or θ1 is specified and v0, θ2, c2,
and c3 are determined. We discuss only the former problem. To determine the solution
curve in this case, we would solve (54) for c2, c3 as functions of θ1, θ2. With these values
of c2, c3 we get σ̄(·), λ̄(·) from (53). The differential equation (55) can then be integrated
for v̄(·) as a function of θ1, c2, c3. Finally, equation (32) can now be solved for θ1, θ2. In
practice, this process is done by means of a blocked fixed point iteration. Namely, given
values of θ1, θ2 one solves (54) for c2, c3; with these values of c2, c3 we solve (32), (55),
(56) for θ1, θ2, and repeat the process. We describe in details now this last part of the
blocked fixed point iteration.

Using (53) and (56) one can easily show that

t̂′(θ) = F (v̄(θ), θ),

where

F (v, θ) =
c2v sec θ

gc2 − (vK ′(v) + K(v))(c2 sin θ + c3 cos θ)
,

where for simplicity we have omitted the dependence on c2, c3 from F . Let v̄(θ; θ1) be
the solution of the initial value problem

v̄′(θ) = (−g sin θ + K(v̄(θ))) F (v̄(θ), θ), v̄(θ1) = v0. (57)
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Let

g1(θ1, θ2) =

∫ θ2

θ1

F (v̄(θ; θ1), θ)v̄(θ; θ1) cos θ dθ − a,

g2(θ1, θ2) =

∫ θ2

θ1

F (v̄(θ; θ1), θ)v̄(θ; θ1) sin θ dθ − b.

Thus

∂g1

∂θ1

=

∫ θ2

θ1

[
∂F

∂v
(v̄(θ), θ)v̄(θ) + F (v̄(θ), θ)

]
∂v̄

∂θ1

(θ) cos θ dθ

−F (v̄(θ1), θ1)v̄(θ1) cos θ1,

∂g1

∂θ2

= F (v̄(θ2), θ2)v̄(θ2) cos θ2,

∂g2

∂θ1

=

∫ θ2

θ1

[
∂F

∂v
(v̄(θ), θ)v̄(θ) + F (v̄(θ), θ)

]
∂v̄

∂θ1

(θ) sin θ dθ

−F (v̄(θ1), θ1)v̄(θ1) sin θ1,

∂g2

∂θ2

= F (v̄(θ2), θ2)v̄(θ2) sin θ2,

where for simplicity we omitted the dependence on θ1 from v̄. From (57) we get that if

w(θ; θ1) =
∂v̄

∂θ1

(θ; θ1),

then

dw

dθ
(θ; θ1) =

[
(−g sin θ + K(v̄(θ; θ1)))

∂F

∂v
(v̄(θ; θ1), θ)

+K ′(v̄(θ; θ1))F (v̄(θ; θ1), θ)

]
w(θ; θ1),

w(θ1; θ1) = −v̄′(θ1; θ1),

= F (v̄(θ1; θ1), θ1) [g sin θ1 −K(v̄(θ1; θ1))] ,

= F (v0, θ1) [g sin θ1 −K(v0)] .

This is a linear initial value problem which upon integration, has solution:

w(θ; θ1) = F (v0, θ1) [g sin θ1 −K(v0)] exp

[∫ θ

θ1

H(v̄(ξ; θ1), ξ) dξ

]
,

where

H(v, θ) = (−g sin θ + K(v))
∂F

∂v
(v, θ) + K ′(v)F (v, θ).
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Figure 3: Graphs of the brachistochrone curves with µ = 0.3, β = 0.004 in (58) and
initial speeds v0 = 2, 4, 6 (solid, dashed, and dotted respectively).

We used the above formulae to implemented a blocked fixed point iteration in MAT-
LAB in which the system

g1(θ1, θ2) = 0, g2(θ1, θ2) = 0,

is solved for any given c2, c3 using Newton’s method. We employ for the frictional response
function the model equation (34) but with N replaced by the speed v, that is:

K(v) = −µv + βv3. (58)

For these simulations we used a = 6, b = −1 and g = 9.8. In Figure (3) we show
the calculated curves of minimum descend for µ = 0.3, β = 0.004 and initial speeds
v0 = 2, 4, 6. The times of descend are respectively 1.4688, 1.1561, 0.88833. In Figure (4)
we present the drag force profile (left) and the speed profile (right) in each case. We
can see clearly the non–monotonicity with respect to v of the force due to the cubic
term which has the effect of diminishing the drag force for this regime of speeds. The
corresponding profiles withe the same initial speeds but with µ = 0.1 and β = −0.002
(hard–type frictional force) are shown in Figure (5).

The last simulation presented compares the soft–type vs hard–type frictional re-
sponses. We present in Figure (6) the computed curves for v0 = 2, µ = 0.1 and
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Figure 4: Graphs of the drag force (left) and speed (right) profiles for the curves of
minimum descend for µ = 0.3, β = 0.004 in (58) and initial speeds v0 = 2, 4, 6 (solid,
dashed, and dotted respectively).

β = 0.002,−0.002 (solid and dotted respectively). The corresponding times of descend
are 1.3456 (solid curve) and 1.4328 (dotted curve). Note the even though the solid curve
is longer, the descend time for the corresponding soft model is lower because the particle
can achieve a higher speed profile because the frictional force is not as large as for the
hard–type model. We show in Figure (7) the corresponding drag force and speed profiles.
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