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Abstract

The brachistochrone problem is posed as a problem of the calculus of variations
with differential side constraints, among piecewise smooth parametrized curves sat-
isfying appropriate initial and boundary conditions. In the classical brachistochrone
problem, the initial speed is taken to be zero with initial angle of inclination of
—m/2. In this paper we consider more general initial conditions. In particular,
we show that the initial value problems in which the initial angle of inclination is
given, or that in which the initial speed (kinetic energy) is specified, both have so-
lutions. If a certain compatibility condition between the initial angle of inclination
and speed is not satisfied, we show that there is a minimum time of descent but no
minimizer of the time functional.
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1 Introduction

The brachistochrone problem consists of finding the curve, joining two (non—vertical)
given points, along which a bead of given mass falls under the influence of gravity in the
minimum time!. This problem was first posed by Johann Bernoulli in 1696 and solved
that same year by Newton, Leibniz, the Bernoulli brothers Johann and Jacob, and de
L’Hopital. The solution of the brachistochrone problem was pivotal to the development
of the now very important branch of analysis called the calculus of variations. Since then
variations of the brachistochrone problem have been presented in many books and papers
(see e.g. [2], [3], [5], [8]) but the great majority of these expositions assume from the start
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!The curve as well as the initial velocity of the bead are assumed to lie in the vertical plane containing
the two given points.



that the solution curve is a function of x in the zy plane. Although this assumption turns
out to be correct, these derivations do not expose a whole variety of problems associated
to the brachistochrone problem, in particular those concerning the specification of initial
conditions which are not discussed in standard differential equations textbooks.

In this paper we discuss the solution of the brachistochrone problem along the lines
of the treatments in [1] and [4]. The problem is posed as one of the calculus of variations
with differential side constraints, among smooth parametrized curves satisfying appro-
priate initial and boundary conditions. The equation of motion of the mass along the
tangential direction to the curve, becomes now a differential side condition in the vari-
ational formulation (cf. (4a)). A major advantage of this approach as compared to the
standard derivations based on conservation of energy, is that one does not commit itself
to any specific parametrization of the curve of descent, like time or arc-length. A suitable
parameter can then be chosen for the solution of the corresponding Euler—Lagrange equa-
tions. Even though this formulation is more appropriate for the problems with friction
discussed in [1] and [4], it allows us to preserve all the structure of the classical problem
that we need for the discussion regarding the specification of initial conditions.

In Section (4) we show that the Euler-Lagrange equations for the resulting varia-
tional formulation can be solved explicitly. The variational process leads naturally to
the use of the angle of inclination of the tangent to the curve from the horizontal as the
parametrization for the solution curve and time integrand. The resulting extremals are
sections of a cycloid? with the size of the cycloid and the initial angle of inclination as
parameters to be determined from the initial and boundary conditions. It is not imme-
diately obvious that these extremals can be chosen so as to satisfy the given initial and
boundary conditions. In this paper we show that the following two problems have unique
solutions: the initial value problem in which (in addition to the boundary conditions)
the initial angle of inclination is given (Section (5)), or that in which the initial speed
(kinetic energy) is specified (Section (6)). Even though we do not discuss in this paper
the numerical aspects of constructing the curves of minimum descent, we describe briefly
the procedures used in the numerical examples.

The specification of the initial velocity of the particle, which amounts to specifying
both the initial speed and initial angle of inclination, in general leads to an inconsistent
problem?, unless the compatibility condition (cf. (30)) is satisfied. When the compati-
bility condition is not satisfied, we show in Section (7) that there is a minimum time of
descent but there is no minimizer, i.e., there is no curve that yields the minimum time.

Notation: We denote derivatives with respect to time ¢ by the usual “dot” notation,

2The cycloid is also the solution of the problem of the tautochrone, that is finding the curve with
property that the time of descent from any point on the curve to a lower (fixed) point is independent
of the initial point. This property was proved by Huygens (1659) and used for the constructions of the
cycloidal pendulum clocks.

3In the classical brachistochrone problem the initial angle of inclination is taken to be —w/2. We
show that in this case an initial speed of zero is the only possible selection that leads to a consistent
problem.



#(t), etc.. Those derivatives with respect to any other parameter not equal to time will
be denoted by primes.

2 The Variational Formulation

We let a particle slide from (0,0) to (a,b) (where @ > 0 and b < 0) along the curve
(x(t),y(t)) under the influence of gravity. We let 6(¢) be the angle of inclination of the
tangent to the curve from the horizontal. If v(t) denotes the speed of the particle at
(x(t),y(t)), then we have that

(t) = w(t)cosb(t), (1a)
y(t) = w(t)sinf(?), (1b)
0(t) = —gsinf(t). (1c)

We can eliminate 0(t) from these equations upon recalling that

v(t) = Va(t)* + y(t)> (2)

Thus we now have that
v(t) = V) +y(t)? (3a)
o(t)o(t) = —gy(t). (3b)

Note that (3b) is equivalent to conservation of energy. We let ¢ = #(7) be a reparametriza-
tion of the curve in terms of a parameter 7 where we assume that:

N dt
t'(r) = d(:) > 0.

If we let #(7) = x(£(7)), then it follows now that

Using these expressions we can write (3a), (3b) as

Y = VIR (1a)
BT =~ (7). (1)

The problem now is to minimize the time integral:

/T P(r)dr, (5)



among piecewise smooth® functions subject to the differential constraints (4a), (4b), and
to the boundary conditions:

j(Tl) = g(Tl) = 9 j(7—2) =a, g(7—2) = ba (6&)
t

3 The Lagrange Multiplier Rule with Differential Con-
straints

Lety: [a,b] > R", f:]a,b] x R* xR* - R, and ¢ : [a,b] X R" x R" — R™ where m < n.
We consider the problem of minimizing

b
1) = [ fry).y @) @
among smooth functions y subject to the differential side conditions:

o(ry(r),y'(r)) =0, a<7<bh, (8)

and to the boundary conditions:

y(a) =y y(b) =y (9)
We now have (see e.g. [6], [7]):

Theorem 3.1. Let y be a piecewise smooth function minimizing (7) subject to (8) and
(9). Let f,¢ be C functions and Dyi¢ be of full rank m. Then there exists a piecewise
continuous nonzero function X : [a,b] — R™ such that

Lory(0).5 (. A0) = [ L€ 3(€.5(O. MO e + . (10)
for some constant vector c € R* and where

L1y, ¥y, A) = —f(r,y,¥) + X o(1,y,¥"). (11)

The function L in the theorem is called the Lagrangian while A is the Lagrange
multiplier or costate variable. If y(-) € C' and A(-) is continuous, then the right hand
side of (10) is a differentiable function of 7. Thus upon differentiating on both sides,

*A continuous function is called piecewise smooth on [a,b] if it is differentiable except possibly at a
finite number of points. At the points of discontinuity of the first derivative, both the left and right
derivatives exist.



we get that the so called Euler-Lagrange equations® for the problem of minimizing (7)
subject to (8) and (9) are given by:

diT Ly (1, y(7),¥'(7), A(7)) = Ly (7, y(7),¥'(7), (7)), (12)

in addition to (8) and (9). If some components of y(a) or y(b) are not specified in
(9), then we would have the so called natural boundary conditions corresponding to the
unspecified components. (See e.g. [6], [7].)

4 The Euler-Lagrange Equations
We return now to the problem posed at the end of Section (2). Let
7),0(7), 4(7)), (13a)
(7)), (13b)
Lry.y' N = i+ (i V@ + 7))
+ A (00" + g) . (13c)
It follows now from Theorem (3.1) and assuming that y(-) € C' and A(-) is continuous,

that the Euler-Lagrange equations for the problem of minimizing (5) subject to (6), and
the differential constraints (4), are given by:

N(r) = #'(r)a (), (14a)

ST O
7(r)3(r) ")) gA(T) = ¢s, (14b)

together with (4), where ¢y, ¢9, c3 are some constants of integration. Note that the time
parametrization ¢(7) is part of the variational process (cf. (14a)s) and as such is com-

pletely determined up to a constant.
The boundary conditions are given by (6) and the natural boundary conditions® by:

L+a(r)o(r) =c, o(7)

C2,

| QI

oL oL
B =0, — =0,
U lr=r ot T=T3
which are equivalent (assuming #(72) # 0) to:
A7) =0, 1+a6(n)v(rn) =0, (15)

"Equation (10) is the integral form of the first order necessary condition for a minimizer and is
satisfied at every point of the domain of the extremal curve. Equation (12) however is satisfied only at
the points where y’ and A are continuous. Equations (10) and (12) are equivalent if one specifies that
(12) holds except at the points of discontinuity of y' or A.

6These boundary conditions correspond to the unspecification of #(») and () respectively.
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the second of which implies that ¢; = 0 in (14). In terms of the parameter 7 we have
that (1a) and (1b) can be written as:

(1) =1 (1)o(r) cos O(7), 7 (1) =1t (r)5(7)sin (7). (16)

It follows now that (4a) is satisfied and that (4b) and (14) reduce to:

v'(t) = —gi'(7)sinf(r), (17a)
1+a(r)o(r) = 0, (17b)
o(T 71(7') = '(r)a(r), (17¢)
a(7) cos 9_(7') = o (174d)
a(r)sinf(1) = gA(1) — cs. (17e)
It follows immediately that
o(r) = — ; o gAN(T) = ¢35 + co tan O(7), (18a)
B(r) = —% cos(r),  #(r) = —6—1% cos? B(r)X (7). (18b)

Note that we can use now 6 as a parameter and using (16) and the second equation in
(18b) we get that

1
T'(0) =4ycos*, §'(0) =4ysinfcosd, ~=-—. (19)
4gcy
Assuming that the initial angle of inclination is 0; € [—7/2,7/2), we get from the first
equation in (6a) and (19) that

z(0) = v(2(0 — 01) +sin20 —sin26,), y(0) = y(cos 20, — cos 26), (20)

which are the parametric equations for a cycloid. If #; > 6, is the final angle of inclination,
we get from the second and third equations in (6a) that §(6)/Z(02) = b/a, that is
cos 20, — cos 26, b

= —. 21
2(0y — 01) +sin 20, —sin26, «a (21)

If such 6, is found, then v in (20) can be obtained for instance from z(6) = a which

gives that
a

7= 2(92 — 91) + sin 292 —sin 291 '

Note that if the initial velocity of the particle is given, then both vy (the initial
speed) and the initial angle #; are specified. It follows now from the first equation in
(18b) that ¢y is completely determined. This fixes v, the size of the cycloid, according to
the third equation in (19). The final angle f; depends only on 6y, a, b and can be obtained

(22)
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from (21). (See Proposition (5.1).) Finally equation (22), which is the condition that
the cycloid contains the target point (a,b), must be satisfied and acts in this case as a
compatibility condition for the values of v and #y found so far. Thus the problem with
the initial velocity of the particle specified leads to an over—determined system which in
general is inconsistent.

We consider now two cases in which these equations have solutions, namely when
the initial angle of inclination is specified, or when the initial speed, or equivalently, the
initial kinetic energy is specified.

5 Initial Angle of Inclination Specified

We assume that the initial angle of inclination 6, € [—7/2,7/2) is given. We now give
conditions under which (21) has solutions.

Proposition 5.1. Let 6, € [-7/2,7/2), a > 0, and b € R. Then equation (21) has a
solution Oy € [0y, /2] which is unique provided 0y is such that
b 1 + cos 26,

tanf; < — < .
nU = a — w— 260, —sin 260,

(23)

Proof: Let
cos 260, — cos 20

T 2(0—6,) +sin 20 — sin 20,
We show below that w(-) is strictly increasing on [0, 7/2] from which the result of the
proposition would follow since

w(8)

sin 20
0 = ———— =tan0
w(th) 95% 1 + cos 260 an o1,
1 20
w(n)2) = R B

T —20; —sin20; —

where the last inequality holds for 6, € [—7/2,7/2).
By direct computation and after some simplifications one gets that

d
d—z = 8h(0) [2(0 — 0;) + sin 20 — sin 260,] 2,

where
h(f) = (0 — 6, + sinf cosf — sin by cos 0;) sin O cos
—(cos® §; — cos? ) cos® 0,
[(9 — 0 — sin#; cos 6,) sin O + sin® #, cos 9] cos ),
= ¢(0)cosb.

Since cosf > 0 for 0 € [0y, 7/2], 6, € [-7/2,7/2) (being zero only at /2, and at 6,
when 6, = —7/2), we need only to check the sign of ¢(#). We consider two subcases:
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1. Case 6, € [-7/2,0): Since # — 0, —sin 0, cos @y > 0 for 0 € [0y, 7/2], 6, € [-7/2,0)
(equal to zero only at §# = 0, = —r/2), it follows that ¢(#) > 0 for 6 € [0, 7/2]. For
6 € [01,0], first note that

¢() = (60— 6, —sinf cosh;)cosd + cos*#; sinf,
¢"(0) = —(0—0, —sinf cos)sinf + (1 + cos*#;) cosb.

Since ¢(61) =0, ¢'(#1) = 0, and ¢"(#) > 0 for 0 € [0, 0], it follows that ¢(#) > 0 for
6 € (61,0]. Combining this with the result on [0,7/2], we get that w(-) is strictly
increasing.

2. Case 6, € [0,7/2): Note that

q(@) = (0 —0;1)sin6 + sin by (sin b, cos @ — cos B sin ),
sin(9 — 91)

= (9—91) sinﬂ—sinﬂl 9_91

Now for 0 € [0;,7/2], 8, € [0,7/2), we have that sinf > sin#; > 0, and that

sin(9—91) < 1,
-0, —

from which it follows that ¢(f) > 0 with equality only at # = 6;. Hence w(-) is
strictly increasing in this case as well.

O

From the expression for (-) in (18b), we see that the initial speed is given by the
formula,

v(6) = _0_12 cos By = 2,/g7 cosb;. (24)

Thus the initial speed can be zero only if the initial angle of inclination is §; = —7 /2.
Furthermore, note that the inequality (23) is automatically satisfied when b < 0 for
0, = —n/2. Thus only final points with negative y—coordinate are accesible by the
extremals (20) in this case. This should be intuitively clear since in this case the initial
speed must be zero, and by conservation of energy, one can not reach with an extremal
a point above the positive axis.

To completely determine (20) one would proceed in two steps:

1. Given a,b, 6y, solve equation (21) for 6.
2. Compute the constant vy from equation (22).

This gives essentially an algorithm to compute the cycloid which we implemented in
MATLAB. We show in Figure (1) the corresponding brachistochrone curves for a = 6,
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0
\ — 91=—7r/2
v — 0,=-n/2+0.4
o5k \\ 0,=-m/2+0.6
_l | -
>
-15F
_2 | -
-25 1 1 1 1 1 1 |
0 1 2 3 4 5 6 7

Figure 1: Graphs of the brachistochrones (cycloids) for initial angles of inclination 6; =
—7/2,—7/2+ 0.4, —7 /2 + 0.6 and final point a =6, b = —1.

b = —1 and the cases ¢ = —7/2,—7/2 4+ 0.4, —7/2 + 0.6. The corresponding initial
speeds are 0, 2.5692, and 3.9234 with units consistent with those of a,b. The times of
descent (c.f. (25)) were respectively 1.5508, 1.2478, and 1.0799.

We close this section with some additional results and properties.

Proposition 5.2. For any given a > 0 and b € R, the solution 0y of (21) has the form
0, = 0(0,) where Oy : [—7/2,07) — R is a C" decreasing function with 05(6,) > 0, and
02(07) = 07 where 07 = tan—*(b/a). The time of descent along the curve (20) is given by
the formula:

T(0,) = 2\/ L) k1) — (25)
9(2(02(01) — 01) + sin 265(0;) — sin 26,)
Furthermore
lim v(6;) =00, lim T(#,) = 0. (26)

01—0; 0107

Proof: Let w(fy,6;) be given by the left hand side of (21). Since w(fz,6;) = w(6:,62),
it follows from the proof of the previous proposition that:
ow ow

— — . 2
892>0’ 801>0 (27)



Let 6 satisfy (23) and let f, be the corresponding solution given by Proposition (5.1),
i.e., w(fy,6;) = b/a. It follows now from first inequality in (27) and the Implicit Function
Theorem that there exists a C* function f(-) such that 6,(6;) = 6, and

w(f(61),01) = -

for all #; in a maximal interval containing él. Since

ow
o, —(0:(61), 61)

a ’
55, 0260,

0,(61) =

it follows from (27) that 0,(-) is decreasing. The statement concerning 6% = tan~'(b/a)
follows from the observation that when 6; = 67, then 6, = 0} is the unique solution of
(23) predicted by Proposition (5.1).

Formula (25) follows from (5), (18b), (22), and the result above concerning 6 (6; ).
Since 05(61) \, 0} as 6; 7 0%, it follows from equation (22) that 4 — oo as #; 0. This
together with (24) implies that (26), holds.

Finally to show (26),, note that by Taylor’s Theorem applied to sin 20 about 6 = 6,
we get that

2(@2(91) - 91) + sin 2@2(91) — sin 291 = 2(@2(91) - 91)(1 -+ cos 26(91)),
where £(6;) is between 0, and 65(0;). Thus (25) can now be written as

_ a(62(61) — 61)
T(6) = 2\/5,(1 Feos26(01)

Since ég(ﬁl) N OF as 0; 7 0f, we get that as 6, — 0f, then £(6;) — 67, and since
07 € (—m/2,7/2) we have that (26), follows. Note that according to (26), this is achieved
only as the initial speed becomes infinite. O

6 Initial Kinetic Energy Specified

We assume now that the initial speed vy > 0 is given. After eliminating v from them,
equations (21) and (22) now have to be solved for 6y, 6. Once these values are determined,
we can get v from (22) and the solution curve from (20).

Using the first equation in (18b) evaluated at ; and the third equation in (19), we
can write (22) as

2
20, + sin 20, = 20, + sin 20, + (#) (1 + cos 26;). (28)
Yo
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Even though 6, is unknown we can still apply Propositions (5.1) and (5.2) to write the
above equation as

A A 2
205(01) + sin 265(0;) = 26, + sin 26, + (%) (1 + cos 26,). (29)
0
Since 0 (—1/2) > —m/2 and 0 > 26 + sin 20 is increasing, we have that
20, (—7/2) + sin 205 (—7/2) > 2(—7/2) + sin 2(—x/2).

Thus the left hand side of (29) is greater than the right hand side for #; = —x/2. On
the other hand since 5 (%) = 0% where 0 = tan~1(b/a), and 14 cos 207 > 0, we get, that
the right hand side of (29) is greater than the left hand side for §; = 0}. Hence equation
(29) has a solution 0; € [—7/2,07]. With this 6; we then proceed to solve equation (21)
as before for #,. This proves the following:

Proposition 6.1. Let vy > 0, a > 0, and b € R. Then the system (21)-(22) has a
solution pair (0y,0;) with 6, > 0.

The numerical procedure described above to solve (21) and (28) for (6;,6:) given
a, b, vy, is better implemented in practice by a blocked fixzed point iteration. Namely:

1. Given a, b, vg and an initial approximation to 61,

(a) Solve equation (21) for 6y given 6.
(b) With the 6, from part (a), solve equation (28) for 6.

(c) Repeat (a), (b) as necessary to achieve a certain prescribed accuracy.
2. Compute the constant v from equation (22).

We implemented this procedure in MATLAB. We show in Figure (2) the correspond-
ing brachistochrone curves for a = 6, b = —1 and the cases vy = 0.01,2,4 with
units consistent with those of a,b. The corresponding initial angles turned out to be
—1.5694, —1.2585, and —0.96004. The times of descent are respectively 1.5499, 1.3195,
and 1.0708.

7 The Compatibility Condition

The first equation in (18b) when evaluated at 7 = 7; yields the relation:

1
vg = —— cos b, (30)
Co

between the initial angle of inclination and the initial speed. We call this the compatibility
condition. In this section we address the following questions: when the compatibility

11
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0

Figure 2: Graphs of the brachistochrones (cycloids) for initial speeds vy = 0.01,2,4 and
final point a = 6, b = —1.

condition is not satisfied, is there a minimum time of descent?, and if so, does a minimizer
exist?

To answer these questions we are going to consider the simpler scenario in which the
descent curves are assumed to be functions of x from the start of the analysis. In this
case the time integral (5) is given by (see e.g.

I(y,v) = \/_/ \/ 1a+—y dz, (31)

where o = v3/2g. The set of admissible functions A consists of continuous functions
joining the initial and final point, with a piecewise continuous derivative, and such that
y(x) < a for z € [0,al]. Let
I = inf I(y,vo)
yeA
which exists and is attained by the cycloid joining the initial and final points ([2]).
If the initial angle 6, is specified, let

Ao, ={y e A : ¢'(0) =tanb,},

12



and
Igl = yg}lf‘;l I(y, Uo).
Since Ay, C A we have that
Iy, > T (32)

We further show now that I,, = I*! We do this by constructing a sequence in 4, with
time integrals converging to [*.

Let y.(x) be the cycloid yielding the minimum time of descent I*. For any £ > 0, let
H.(z) be the cubic Hermite polynomial such that

HE(O) = yc(o)v Hé(O) = tan 0y, HE(S) = yc(g)a Hé(é‘) = y;(s),

and define

wa) = { 16 02T 33)

By construction y. € C''[0, a] and joins the initial and final given points. One can easily
show now by looking at the formula defining H.(z), that for £ sufficiently small y. € A,
ie., y(r) < afor all z € [0,a]. Hence y. € Ay,. Again, working with the expression for
H., one can show that there exists a constant M > 0 independent of ¢ such that

mas [y (2)] < M, max |y (2)] < M. (34)
z€[0,a] z€[0,a]

Thus we have now that

a ! 2
[(yg; ’UO) — _1 / ]' + ya("I’.) dx,
29 /o a— y.(x)
1 ¢ 14+ H'(z)? 1 1
L frmer o L,
29 /o « — H.(x) 2¢g J. a — ye(x)

It follows from (34) that
1+ Hl(z)" H !
5%0 o —
Using this in the previous identlty we get that

: o 1+ y.(x

iy o) = iy [y
1 a
— =7

1+ yu(r)?

a — ye(x)

Combining this with (32) we get that Iy, = I*.
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We can answer now both of the questions posed at the beginning of this section.
Even when the compatibility condition (30) is not satisfied, there is a minimum time of
descent which equals the minimum time of descent for the problem with initial speed vg
disregarding the initial angle ;. However the minimum time of descent for the problem
with both vy and 6, specified, is not attained, i.e., there is no minimizer. This is because
a minimizer in Ay, must satisfy the corresponding Euler-Lagrange equations of (31), the
solutions of which are cycloids satisfying the compatibility condition.

8 Comments and Conclusions

If the compatibility condition (30) is not satisfied, then one can not specify in an arbitrary
fashion the initial velocity of the particle. Since the extremals for our problem are given
by (20), the candidates for the curve of minimum descent are always sections of a cycloid.
When the initial velocity of the particle is such that the compatibility condition is not
satisfied, then there is no extremal in the family (20) that connects the initial point to
the final one. Thus the cycloids parametrized by v in (20) either overshoot or undershoot
the desired target at (a,b). There still a minimum time of descent (which equals the
minimum time for the problem with the given initial speed disregarding the given initial
angle of inclination) but there is no minimizer. Our analysis shows that if the initial
angle is specified, then the initial speed can be adjusted to reach the required target in
minimum time; or if the initial speed is given, then the initial angle can be adjusted to
reach the required target in minimum time as well.

The problem in which the initial velocity of the bead does not necessarily lie in the
vertical plane containing the initial and final points is another example of a problem of the
calculus of variations in which the infimum exists but there is no minimizer. In this case
the competing functions are three dimensional curves. However their projections onto
the vertical plane containing the initial and final points, and the acceleration of gravity,
are competing functions for the planar problem. Consequently the time of descent along
the three dimensional curve must be greater than or equal than the optimal time of
descent for the planar problem. One can now construct a sequence of three dimensional
curves satisfying the initial velocity condition and whose times of descent approach the
optimal one for the planar problem. (This last construction is similar to the one for the
infimizing sequence (33), in which the three dimensional curves are essentially planar
but with a little bump out of the plane at the beginning to satisfy the initial velocity
condition.) However no planar curve can satisfy the condition with the initial velocity
out of the vertical plane containing the initial and final points and consequently there is
no minimizer.

In 1744, Euler solved a variation of the brachistochrone problem in which friction is
included as a nonlinear function of the square of the speed of the bead. Although his
solution was not explicit, it showed that the curve of minimum descend is no longer a
cycloid as in the problem without friction. Ashby, Brittin, Love, and Wyss [1] and Lipp
[4] have considered variations of the problem in which friction is either a linear function

14



or the absolute value, of the component of the force acting on the particle that is normal
to the curve (including the term corresponding to the acceleration in the direction of the
normal). The question of whether or not there is some kind of compatibility condition
for the initial velocity when friction is present shall be pursued elsewhere.
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